运动纱线的动力学行为与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动纱线在纺织工业的生产实践中大量存在,随着纺织设备的高速化,其动力学特性对实际生产及产品质量的影响愈加明显。由于实际工程系统在高速运行时对外界因素的干扰比较敏感,任何外部扰动都可引起参数变化而导致参数振动。本文以纺织生产过程中的运动纱线作为工程背景,将其模型化为轴向运动弦线,应用理论建模、数值分析和实验验证相结合的手段,对其参激共振的稳定性及控制进行了较系统的研究。具体内容包括以下几个方面:
     1.采用Kelvin模型描述粘弹性纱线的本构关系,对多种纱线进行拉伸试验和蠕变试验,得到蠕变回归方程,验证了模型的合理性,并由此得到运动纱线动力学模型中的相关粘弹性参数。在此基础上,得到实际生产过程中运动纱线的粘弹性参数。
     2.利用广义Hamilton原理建立轴向变速运动粘弹性纱线横向振动的非线性动力学方程,将Galerkin离散法和多尺度法相结合,获得轴向运动粘弹性纱线在速度参数激励下发生共振的条件。分析了系统参数对参激共振幅值和幅频特性曲线的影响,数值模拟了主参激共振时的时间响应曲线和相轨迹。研究了纺丝和织前准备过程中可能发生的参激共振现象。
     3.作为Kelvin模型的退化,分析了运动均质纱线线性参激共振的不稳定区间。设计速度反馈控制来抑制纱线的横向振动,从幅频特性曲线和时域响应曲线上对系统控制效果进行仿真分析,证实了控制策略的可行性。通过滑模控制和参数控制相结合,利用所构造的Lyapunov函数设计张力的变化规律达到控制纱线振动的目的,用有限差分法对纱线共振状态和控制效果进行了数值模拟。为了有效地消除滑模控制中控制力的抖振,设计模糊滑模控制器对粘弹性纱线的横向振动进行控制,通过Matlab仿真分析证明了系统的渐进稳定性和控制规律的鲁棒性。
     4.搭建实验平台,通过实验研究轴向运动纱线的参激共振与控制。为了便于信号的检测与控制,以不锈钢箔带替代纱线作为运动介质。实验装置由机械部分、测量部分和控制部分组成。设计以微控制器LPC1768为核心的三相无刷直流电机转速控制系统,实现运行速度的近似简谐规律变化特性。设计运动带的横向振动控制系统,以数字信号控制器TMS320F28335为基础实现了模糊滑模算法。
     5.在所设计的轴向运动带的实验装置上,利用虚拟仪器LabVIEW设计的检测分析系统完成对电机转速信号和运动带横向振动信号的实时检测与分析,对轴向运动带的参激共振现象及其控制进行了实验研究。分别研究了当系统固有频率为1Hz和2Hz时系统发生的参激共振现象,并在共振状态下利用所设计的振动控制器对其横向振动施加控制,实验结果验证了参数激励对横向振动的影响以及所设计的控制方案的有效性。
There commonly exist the moving yarns in the production process of textile industry.With the high-speed of textile equipment, the effect on the practical production and productquality becomes more obvious for the dynamic behaviors of moving yarns. The highlyrunning engineering system is very sensitive to foreign interferences, any of which willcause parametrical excitation and consequent parametric vibration. In the engineeringscenario, the moving yarn in the textile production process is modeled as an axiallymoving string. This dissertation focuses on the systematic and intensive research on thestability and control of the parametric resonant with the combination of theoreticalmodeling, numeric analysis and experiment verification. The main respects of the researchare listed as follows:
     1. The dynamic behaviors of the moving yarn are discussed and the Kelvin model isused to describe the constitutive relation of the viscoelastic yarn. Tensile tests and creeptests are conducted on various yarns. The regression equation of yarn creep is establishedand the model’s rationality is verified. The corresponding viscoelastic parameters areobtained for the dynamic model of moving yarn,and so are viscoelastic parameters ofyarns in the production process.
     2. The nonlinear dynamic equation is established for the transverse vibration of anaxially moving viscoelastic yarn using the generalized Hamilton principle. By means ofcombining the Galerkin approach and the multi-scale method, the resonant condition forthe axially moving viscoelastic yarn under the speed excitation is found.How systemparameters affect resonant amplitude and the amplitude-frequency characteristic curve isanalyzed. The time response curves and phase trajectories in resonance region arenumerically simulated. Researches are investigated on the parametric resonance whichmay occur during the spinning process and weaving preparation process.
     3. As a special case, dynamics of homogeneous yarn is studied. The unstable intervalof linear parametric resonance for moving yarn is analyzed. The transverse vibration is suppressed by the speed feedback, and the control effect is simulated. The feasibility of thecontrol scheme is proved. The vibration of a yarn is controlled by combining sliding-modecontrol and parameter control, and by the tensile force whose change rule is designed byLyapunov function. The vibrating state of the yarn and the control effect are simulated bythe finite difference method. In order to remove effectively the buffet of the controllingforce under the sliding-mode control, a fuzzy sliding-mode controller is designed to controlthe transverse vibration of the viscoelastic yarn. The simulation results demonstrate theasymptotic stability and robustness of the system.
     4. The test set-up is designed for signal detection and control, where the stainlesssteel foil is replaced as a moving belt so that the parametric resonance and control of theaxially moving yarn can be experimentally studied. The test system is composed of themechanical, measurement and control components. The speed governing system ofbrushless DC motor uses microcontroller LPC1768as the core and the approximateharmonic speed is produced. The control system of transverse vibration for the moving beltis designed and the fuzzy sliding-mode algorithm is implemented on the digital signalcontroller TMS320F28335.
     5. With the help of the designed test set-up, the system based on LabVIEW isdesigned to accomplish the real time detection and analysis for the speed of motor and thetransverse vibration of the moving belt. The parametric resonance and control of theaxially moving belt are tested. The phenomenon of parametric resonance is analyzed whenthe inherent frequency of system is1Hz and2Hz, respectively. The experimental resultsverify the effect of parametric excitation on the transverse vibration and verify the validityof the designed controller.
引文
[1]《纺织工业调整和振兴规划》. http://www.gov.cn/zwgk/2009-04/24/content_1294877. htm.
    [2] http://www.365yarn.com/news/201403/19/13015.html.
    [3]《纺织工业“十二五”发展规划》.工业和信息化部,2012-1-19.
    [4]于伟东.纺织材料学[M].北京:中国纺织出版社,2006.
    [5] Chen L Q. Analysis and control of transverse vibrations of axially movingstrings[J]. Applied Mechanics Reviews,2005,58(2):91-116.
    [6] Aiken J. An account of some experiments on rigidity produeed by centrifugalforee[J]. The London, Edinburgh, and Dublin Philosophieal Magazine and Joumalof Science,1878,5(29):81-105..
    [7] Skutch R. Uber die Bewegung eines gespannten Fadens,welcher gezwungun ist,durch zwei feste Punkte mit einer constante Geschwindigkeit zu gehen, undzwischen denselben in transversalen Schwingungen von gerlinger Amplitudeversetzt wird[J].Annalen der Physik und Chemie,1897,61:190-195.
    [8] Sack R A. Transverse oscillations in travelling strings[J]. British Journal of AppliedPhysics,1954,6(5),224-226.
    [9] Archibald F R, Emslie A G. The vibrations of a string having a uniform motionalong its length[J]. Journal of Applied Mechanics,1958,25(3):347-348.
    [10] Wickert J A, Mote Jr C D. Classical vibration analysis of axially moving continua.Journal of Applied Mechanics,1990,57(3):738-744.
    [11] Wickert J A, Mote Jr C D. Response and discretization method for axially movingmaterials[J]. Applied Mechanics Reviews,1991,44(11):279–284.
    [12] Wickert J A. Response solutions for the vibration of a traveling string on an elasticfoundation[J]. Journal of Vibration and Acoustics,1994,116(1):137–139.
    [13] Bhat R B, Xistris G D, Sankar T S. Dynamic behavior of a moving belt supportedon an elastic foundation[J]. Journal of Mechanical Design,1982,104(1):143-147.
    [14] Perkins N C. Linear dynamics of a translating string on an elastic foundation[J].Journal of Vibration and Acoustics,1990,112(1):2-7.
    [15] Lakshmikumaran A V, Wickert J A. On the vibrating of coupled traveling stringand air bearing systems[J]. Journal of Vibration and Acoustics,1996,118(3):398-405.
    [16] Wickert J A, Mote Jr C D. Linear transverse vibration of an axially movingstring-particle System[J]. The Journal of the Acoustical Society of America,1988,84(3):963-969.
    [17] Zhu W D, Mote Jr C D. Free and forced response of an axially moving stringtransporting a damped linear oscillator[J]. Journal of Sound and Vibration,1994,177(5):591-610.
    [18]陈立群, Zu J W.平带驱动系统振动分析研究进展[J].力学与实践,2001,23(4):8-12.
    [19] Pakdemirli M, Ulsoy A G. Stability analysis of an axially accelerating string[J].Journal of Sound and Vibration,1997,203(5):815-832.
    [20] Chen LQ. Principal parametric resonance of axially accelerating viscoelastic stringswithan integral constitutive law[J]. Proceedings of the Royal Society. A,2005,461(2061):2701-2720.
    [21]李映辉,杜长城,张清泉,高庆.变速粘弹性传送带混沌运动[J].四川大学学报(工程科学版),2006,38(3):1-5.
    [22] Nayfeh A H, Mook D T.非线性振动[M].北京:高等教育出版社,1990.
    [23]陈立群.轴向运动弦线的纵向振动及其控制[J].力学进展,2001,31(4):535-546.
    [24]王建军,邹西风,李其汉.轴向移动系统的参数振动问题研究进展[J].应用力学学报,2003,20(4):34-36.
    [25] Mahalingam S. Transverse vibrations of power transmission chains[J]. BritishJournal of Applied Physics,1957,8:145-148.
    [26] Mote Jr C D. Parametric excitation of an axially moving string[J]. Journal ofApplied Mechanics,1968,35(1):171-172.
    [27] Naguleswaran S, Williams C J H. Lateral vibration of band-saw, pulley belts andthe like[J]. International Journal of Mechanical Sciences,1968,10(4):239-250.
    [28] Ulsoy A G, Whitesell J E, Hooven M D. Design of belt-tensioner systems fordynamic stability[J]. Journal of Vibration and Acoustics,1985,107(3):282-290.
    [29] Ariartnam S T, Asokanthan S F. Dynamic stability of chain drives[J]. Journal ofMechanical Design,1987,109(3):412-418.
    [30] Mochensturm E M, Perkins N C, Ulsoy A G. Stability and limit cycles ofparametrically excited, axially moving strings[J]. Journal of Vibration andAcoustics,1996,116(3):346-351.
    [31] Liu Z S, Huang C. Evaluation of the parametric instability of an axially translatingmedia using a variational principle[J]. Journal of Sound and Vibration,2002,257(5):985-999.
    [32] Parker R G, Lin Y. Parametric instability of axially moving media subjected tomultifrequency tension and speed fluctuation[J]. Journal of Applied Mechanics,2001,68(1):49-57.
    [33] Miranker W L. The wave equation in a medium in motion[J]. IBM Journal ofResearch and Development,1960,4(1):36-42.
    [34] Mote Jr C D. Stability of system transporting accelerating axially movingmaterials[J]. Journal of Dynamic Systems, Measurement and Control,1975,97(1):96-98.
    [35] Pakdemirli M, Batan H. Dynamic stability of a constantly accelerating strip[J].Journal of Sound and Vibration,1993,168(2):371-378.
    [36] Pakdemirli M, Ulsoy A G, Ceranoglu A. Transverse vibration of an axiallyaccelerating string[J]. Journal of Sound and Vibration,1994,169(2):179-196.
    [37] Wiekert J A. Transient vibration of gyroscopic systems with unsteady superposedmotion[J]. Journal of Sound and Vibration,1996,195(5):797-807.
    [38] Pakdemirli M, Ulsoy A G. Stability analysis of an axially accelerating string[J].Journal of Sound and Vibration,1997,203(5):815-832.
    [39] Fung R F, Huang J S, Chen Y C. The transient amplitude of the viscoelastictraveling string: an integral constitutive law[J]. Journal of Sound and Vibration,1997,201(2):153-167.
    [40] Fung R F, Huang J S, Yeh J Y. Nonlinear dynamic stability of a moving string byhamiltonian formulation[J]. Computers and Structures,1998,66(5):597-612.
    [41] Ozkaya E, Pakdenirli M. Lie group theory and analytical solutions for the axiallyaccelerating string problem[J]. Journal of Sound and Vibration,2000,230(4):729-742.
    [42] Chung J, Han C S. Vibration of an axially moving string with geometricnon-linearity and translating acceleration[J]. Journal of Sound and Vibration,2001,240(4):733-746.
    [43]陈立群,吴俊.轴向变速运动粘弹性弦线的横向振动分岔[J].固体力学学报,2005,26(1):83-86.
    [44]张能辉,王建军,程昌钧.轴向变速运动粘弹性弦线横向振动的复模态Galerkin方法[J].应用数学和力学,2007,28(1):1-8.
    [45] Wickert J A. Non-linear vibration of a traveling tensioned beam[J]. InternationalJournal of Non-Linear Mechanics,199227(3):503-517.
    [46] Cheng S P, Perkins N C. The vibration and stability of a friction-guided translatingstring[J]. Journal of Sound and Vibration,1991,144(2):281-292.
    [47] Fung R F, Huang J S, Chen Y C. The transient amplitude of the viscoelastictraveling string: an integral constitutive law[J]. Journal of Sound and Vibration,1997,201(2):153-167.
    [48] Fung R F, Huang J S, Chen Y C, Yao C M. Nonlinear dynamic analysis of theviscoelastic string with a harmonically varying transport speed[J]. Computers andStructures,1998,66(6):777-784.
    [49] Zhang L, Zu J W. Nonlinear vibrations of viscoelastic moving belts, Part1: freevibration analysis[J]. Journal of Sound and Vibration,1998,216(1):75-91.
    [50] Zhang L, Zu J W. Nonlinear vibration of parametrically excited moving belts, Part2: stability analysis[J]. Journal of Applied Mechanics,1999,66(2):403-409.
    [51] Hou Z, Zu W. Non-linear free oscillations of moving viscoelastic belts[J].Mechanism and Machine Theory,2002,37(9):925-940.
    [52] Chen L Q, Zhang N H, Zu J W. The regular and chaotic vibrations of an axiallymoving viscoelastic string based on4-order Galerkin truncation[J]. Journal ofSound and Vibration,2003,261(4):764-773.
    [53] Chen L Q, Wu J, Zu J W. The chaotic response of the viscoelastic travelingstring:an iniegral constitutive law[J]. Chaos, Solitons and Fractals,2004,21(2):349-357.
    [54] Chen L Q, Zhao W J. A computation method for non-linear vibration of axiallyaccelerating viscoelastic strings[J]. Applied Mathematics and Computation,2005,162(1):305-310.
    [55] Chen L Q, Zu J W, Wu J. Steady-state response of the parametrically excitedaxially moving string constituted by the Boltzmann superposition principle[J]. ActaMechanica,2003,162(1):143-155.
    [56] Chen L Q, Zu J W, Wu W, Yang X D. Transverse vibrations of an axiallyaccelerating viscoelastic string with geometric nonlinearity[J]. Journal ofEngineering Mathematies,2004,48(2):171-182.
    [57] Zhao W J, Chen L Q. A numerical algorlthm for non-linear Parametric vibrationanalysis of a viscoelastic moving belt[J]. International Joumal of Nonlinear Seienceand Numerical simulation,2002,3(2):129-134.
    [58] Chen L Q, Zhao W J. A computation method for nonlinear vibration of axiallyaceelerating viscoelastic strings[J]. Applied Mathematics and Computation,2005,162(1):305-310.
    [59] Chen L Q, Zhao W J, Zu J W. Transient responses of anaxially acceleratingviscoelastic string constituted by a fractional differentiation law[J]. Joumal ofSound and Vibration,2004,278(4/5):861-871.
    [60] Zhang L, Zu J W. Non-linear vibrations of Parametrically exeited viscoelasticmoving belts, Partl: dynamic response[J]. Joumal of Applied Mecehanics,1999,66(2):396-402.
    [61] Zhang L, Zu J W. Nonlinear vibration of parametrically excited moving belts, Part2: stability analysis[J]. Joumal of Applied Mechanics,1999,66(2):403-409.
    [62] Chen L Q, Zu J W. Parametrical resonance of the excited axially moving stringwithan integral constitutive law[J]. Intemational Joumal of Nonlinear Science andNumerical Simulation,2003,4(2):169-177.
    [63] Chen L Q, Zhang N H, Zu J W. Bifurcation and chaos of an axially movingviscoelastic string[J]. Mechanics Research Communications,2002,29(2-3):81-90.
    [64]陈立群,吴俊.轴向变速运动粘弹性弦线的横向振动分岔[J].固体力学学报,2005,26(1):83-86.
    [65]张清泉,李映辉,姚进.变速枯弹性传送带非线性动力稳定性与分岔[J].四川大学学报(工程科学版),2006,38(02):43-46.
    [66]吴俊,陈立群.轴向变速运动弦线的非线性振动的稳态响应及其稳定性[J].应用数学和力学,2004,25(9):917-926.
    [67]陈立群,吴俊.轴向运动粘弹性弦线的横向非线性动力学行为[J].工程力学,2005,22(4):48-51.
    [68]赵维加,陈立群,祖武争.微分本构粘弹性轴向运动弦线横向振动分析的差分法[J].应用数学和力学,2006,27(1):21-27.
    [69] Zhang W, Song C Z. Higher-dimensional periodic and chaotic oscillations forviscoelastic moving belt with multiple internal resonances[J]. International Journalof Bifurcation and Chaos,2007,17(5):1637-1660.
    [70]刘彦琦,张伟.参数激励粘弹性传送带的分岔和混沌特性[J].工程力学,2010,27(1):58-62.
    [71] Li T C, Hou Z C, Li J F. Stabilization analysis of a generalized nonlinear axiallymoving string by boundary velocity feedback[J]. Automatica,2008,44:498-503.
    [72] Chen L Q, Chen H, Ding H, LIM C W. Nonlinear combination parametricresonance of axially accelerating viscoelastic strings constituted by the standardlinear solid model[J]. Science China Technological Sciences,2010,53(3):645-655.
    [73] Mohammad T A, Nasrabadi V Y, Mohammadi H. Nonlinear transversal vibration ofan axially moving viscoelastic string on a viscoelastic guide subjected tomono-frequency excitation [J]. Acta Mechanica,2010,214(3-4):357-373.
    [74] Kimura H. Forced vibration analysis of an axially moving string with constantlength[J]. Journal of System Design and Dynamics,2011,5(8):1546-1558.
    [75] Mergen H, Ghayesh, Niloofar M. Nonlinear dynamic response of axially moving,stretched viscoelastic strings[J]. Archive of Applied Mechanics,2011,81(6):781-799.
    [76] Yurdda A zkaya s E, Boyac H. Nonlinear vibrations of axially movingmulti-supported strings having non-ideal support conditions[J]. NonlinearDynamics,2013,73(3):1223-1244.
    [77] Yang T Z, Yang X D,Chen F, Fang B. Nonlinear parametric resonance of afractional damped axially moving string[J]. Journal of Vibration and Acoustics,2013,135(6):1-5.
    [78] Swope R D, Ames W F. Vibration of a moving threadline[J]. Journal of theFranklin Institute,1963,275(1):36-55.
    [79] Ames W F, Lee S Y, Zaiser J N. Non-linear vibration of a traveling threadline[J].International Journa1of Non-Linear Mechanies,1968,3(4):449-469.
    [80] Ames W F, Lee S Y, Vicario Jr A A. Longitudinal wave propagation on a travelingthreadline-II[J]. International Journa1of Non-Linear Mechanics,1970,5(3):413-426.
    [81] Roos J P, Schweigman C, Timan R. Mathematical formulation of the laws ofconservation of mass and energy and the equation of motion for a moving thread[J].Journal of Engineering Mathematics,1973,7(2):139-146.
    [82] Moustafa M A, Salman F K. Dynamic properties of a moving thread line[J]. Journalof Engineering for Industry,1976,98(3):868-875.
    [83] Donato A, Oliveri F. On nonlinear plane vibration of a moving threadline[J].Zeitschrift für Angewandte Mathematik und Physik,1988,39(3):367-375.
    [84] Oliveri F. Wave features related to the equations of a moving threadline[J].Zeitschrift für Angewandte Mathematik und Physik,1989,40(3):356-374.
    [85]冯志华,朱晓东,兰向军.轴向运动纱线非线性动力学[J].苏州大学学报(工科版),2004,24(9):23-25.
    [86]韩大玮,邵先喜.粘弹性轴向运动纺织纤维的振动分析[J].青岛大学学报(工程技术版),2005,20(9):22-26.
    [87] Nachane R P, Sundaram V. Analysis of relaxation phenomena in textile fibers: Part I:Stress relaxation[J]. Journal of the Textile Institute,1995,86(1):10-19.
    [88] Nachane R P, Sundaram V. Analysis of relaxation phenomena in textile fibres: PartII: Inverse relaxation[J]. Journal of the Textile Institute,1995,86(1):20-32.
    [89] Karl G. Viscoelastic parameter determination for a yarn[J]. International Journal ofClothing Science and Technology,1998,10(3-4):226-233.
    [90]储才元,钟瑜.纱线的粘弹性力学性能探讨[J].上海纺织科技术,1998,26(5):18-20.
    [91]张建春, Tencel纤维粘弹塑性的模型[J].西北纺织工学院学报,1999,13(5):399-402.
    [92] Manich A M, Marino P N, De Castellar M D, Saldivia M, Sauri R M.Viscoelasticmodeling of natural and synthetic textile yarns[J]. Journal of Applied PolymerScience,2000,76:2062-2067.
    [93] Shi F J, H J L. Study on bending of woven fabrics using linear viscoelasticitytheory[J]. Journal of China Textile University,2001,8(1):51-56.
    [94] Ngo Ngoc C, Bruniaux P, Castelain J M. Constrained dynamic yarn modeling[J].Textile Research Journal,2002,72(11):1002-1008.
    [95] Chailleux E, Davies P. Modelling the non-linear viscoelastic and viscoplasticbehaviour of aramid fibre yarns[J]. Mechanics of Time-Dependent Materials,2003,7(3):291-303.
    [96]张涛,鲍文斌,俞建勇.竹浆纤维力学性能的模拟分析[J].纺织学报,2005,26(1):28-29,32.
    [97]闫红芹.竹浆纤维及纱线的力学性能研究[D].陕西:西安工程技术大学,2005.
    [98]成玲,梁银铮.纱线的动态力学性能[J].纺织学报,2006,27(8):19-21.
    [99]肖丰,李营建.氨纶包芯纱蠕变性能测试与分析[J].纺织学报,2007,28(6):48-51.
    [100]宋江超,梁方阁,石风俊.纱线的应力松弛性能[J].纺织学报,2007,28(6):40-44.
    [101]宋江超,梁方阁,石风俊.纱线蠕变性能研究[J].国外丝绸,2007,4:4-6,32.
    [102] Gao X P, Sun Y Z, Meng Z, Sun Z J. Viscoelastic modelling of yarn for tuftingcarpet[J]. Procedia Engineering,2011,10:2886-2891.
    [103] Tang H B, Xu B G, Tao X M, Feng J. Mathematical modeling and numericalsimulation of yarn behavior in a modified ring spinning system[J]. AppliedMathematical Modelling,2011,35(1):139-151.
    [104] Li S Y, Xu B G, Tao X M. Dynamic modeling and evaluation for constituent fibersin fabrication of twisted flexible yarns with consideration of fiber mass andviscoelasticity[J]. Journal of Materials Science,2013,48(3):1090-1099.
    [105] Gerald H, Chokri C, Karoline M, Rolf S, Jan M. Simulation of the yarntransportation dynamics in a warp knitting machine[J]. Textile Research Journal,2013,83(12):1251-1262.
    [106]张伟.轴向运动弦线横向振动的控制[D].上海:上海大学,2006.
    [107] Ulsoy A G. Vibration control in rotating or translating elastic systems[J]. Journalof Dynamic Systems, Measurement and Control,1984,106(1):6-14.
    [108] Yang B, Mote Jr C D. Active vibration control of the axially moving string in the sdomain[J]. Joumal of Applied Mechanics,1991,58(1):189-196.
    [109] Yang B, Mote Jr C D. Frequency-domain vibration control of distributedgyroscopic system[J]. Journal of Dynamic Systems, Measurement and Control,1991,113(1),18-25.
    [110] Asfar K R, Masound K K. Damping of parametrically excitedsingle-degree-of-freedom systems[J]. International Journal of Non-LinearMechanics,1994,29(3):421-428.
    [111] Queini S S, Nayfeh A H. Single-mode control of a cantilever beam under principalparametric excitation[J]. Journal of Sound and Vibration,1999,224(1):33-47.
    [112] Huang J S, Chao P C P, Fung R F, Lai C L. Parametric control of an axially movingstring via fuzzy sliding-mode and fuzzy neural network methods[J]. Journal ofSound and Vibration,2003,264(1):177-201.
    [113] Toshihiro K. Boundary position feedback control of Kirchhoff’s non-linearstring[J]. Mathematical Methods in the Applied Sciences,2004,27(1):79-89.
    [114] Li T C, Hou Z C. Exponential stabilization of an axially moving string withgeometrical nonlinearity by linear boundary feedback[J]. Journal of Sound andVibration,2006,296(4-5):861-870.
    [115] Chern T L, Wu Y C. Design of integral variable structure controller and applicationto electrohydraulic velocity servosystems[J]. IEE Proceedings Part D: ControlTheory and Applications,1991,138(5):439-444.
    [116] Huang J S, Fung F R, Chen D S. Application on variable structure control in thegyroscopic string vibration[J]. Trans. Aeronaut Soc. Rep., China,1994,26(4),329-338.
    [117] Fung R F, Liao C C. Application of variable structure control in the nonlinearstring system[J]. International Journal of Mechanical Sciences,1995,37(9):985-993.
    [118] Fung R F, Huang J S, Wang Y C, Yang R T. Vibration reduction of the nonlinearlytraveling string by a modified variable structure control with proportional andintegral compensations[J]. International Journal of Mechanical Sciences,1998,40(6):493-506.
    [119] Orlov Y V, Utkin V I. Sliding mode control in indefinite-dimensional systems[J].Automatica,1987,23(6):753-757.
    [120] Fung R F, Tseng C C. Boundary control of an axially moving string via lyapunovmethod[J]. Journal of Dynamic Systems, Measurement and Control,1999,121(1):105-110.
    [121] Nagarkatti S P, Zhang F, Rahn C D, Dawson D M. Tension and speed regulationfor axially moving materials[J]. Journal of Dynamic Systems, Measurement andControl,2000,122(3):445-453.
    [122] Zhu W D, Ni J, Huang J. Active control of translating media with arbitrarilyvarying length[J]. Journal of Vibration and Acoustics,2001,123(3):347-358.
    [123] Shahruz S M, Kurmaji D A. Vibration suppression of a non-linear axially movingstring by boundary control[J]. Journal of Sound and Vibration,1997,201(1):145-152.
    [124] Shahruz S M. Boundary control of a nonlinear axially moving string[J].International Journal of Robust and Nonlinear Control,2000,10(1):7-25.
    [125] Fung R F, Huang J S, Wang Y C, Yang R T. Vibration reduction of the nonlinearlytravelling string by a modified variable structure control with proportional andintegral compensations[J]. International Journal of Mechanical Sciences,1998,40(6):493-506.
    [126] Luo A H, Guo B Z, Morgul O. Stability and stabilization of infinite dimensionalsystems with applications[J]. Stringer-Verlag, New York.1999.
    [127] Fung R F, Wu J W, Lu P Y. Adaptive boundary control of an axially moving stringsystem[J]. Journal of Vibration and Acoustics,2002,124(3):435-440.
    [128] Huang J S, Chao P C P, Fung R F, Lai C L. Parametric control of an axiallymoving string via fuzzy sliding-mode and fuzzy neural network methods[J]. Journalof Sound and Vibration2003,264(1):177-201.
    [129] Chao P C P, Lai C L. Boundary control of an axially moving string via fuzzysliding-mode control and fuzzy neural network methods[J]. Journal of Sound andVibration,2003,262(4):795-813.
    [130]张伟,陈立群.轴向运动弦线横向振动控制的LyaPunov方法[J].控制理论与应用,2006,23(4):531-535.
    [131]张伟,陈立群.轴向运动弦线横向振动的线性反馈控制[J].应用力学学报,2006,23(2):242-245.
    [132]张伟,陈立群.轴向运动弦线横向振动控制的自适应方法[J].机械工程学报,2006,42(4):96-100.
    [133] Nguyen Q C, Hong K S. Asymptotic stabilization of a nonlinear axially movingstring by adaptive boundary control[J]. Journal of Sound and Vibration,2010,329(22),4588-4603.
    [134] Nguyen Q C, Hong K S. Simultaneous control of longitudinal and transversevibrations of an axially moving string with velocity tracking[J]. Journal of Soundand Vibration,2012,331(13):3006-3019.
    [135]余小刚,张伟.轴向运动弦线横向振动的变结构控制[J].福州大学学报(自然科学版),2012,40(2):217-221.
    [136]于伟东,储才元.纺织物理[M].上海:东华大学出版社,2001.
    [137]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
    [138]陈金平.基于高速运动的织物与滚筒机械系统动力学性能研究[D].上海:东华大学,2008.
    [139]李荣华.偏微分方程的数值解法[M].北京:高等教育出版社,2005.
    [140]刘金坤.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [141] Rahn C D, Mote Jr C D. Parametric control of flexible systems[J]. Journal ofVibration and Acoustics,1994,116(3):379-385.
    [142] Rahn C D, Mote Jr C D. Parametric control of conservative mechanical systems[J].Journal of Dynamic Systems,Measurement and Control,1996,118(2):309-314.
    [143] Huang J S, Paul, Chao C P. Parametric control of an axially moving string viafuzzy sliding-mode and fuzzy neural network methods[J]. Journal of Sound andVibration,2003,264(1):177-201.
    [144] Mamdani E H. Application of fuzzy algorithms for control of simple dynamicplant[J]. Proceedings of the Institution of Electrical Engineers,1974,121(12),1585-1588.
    [145]刘金琨.智能控制[M].电子工业出版社,2009:13-48.
    [146] Hwang G C, Cheng S. A stability approach to control design for nonlinearsystems[J]. Fuzzy Sets and Systems,1992,48(3):279-287.
    [147] Ishigame A, Furukawa T, Kawamoto S. Slidng mode controller design based onfuzzy inference for nonlinear systems[J]. IEEE Transactions on IndustrialElectronics,1993,40(1):64-70.
    [148] Lee H, Kim E, Kang H. Design of a sliding mode controller with fuzzy slidingsurfaces[J]. IEEE Proceedings on Control Theory and Applications,1998,145(5):411-418.
    [149] Wickert J A, Mote C D. Traveling load response of an axially moving string[J].Journal of Sound and Vibration,1991,149(2):267-284.
    [150] Moon J, Wickert J A. Non-linear vibration of Power transmission belts[J]. Jounralof Sound and Vibration,1997,200(4):419-431.
    [151]时彧,刘义伦.稀土永磁体辅助金属带传动的非线性动力学研究[D].长沙:中南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700