长足大竹象的食物识别信号和幼虫种群变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹材是造纸的主要原料和林区竹农的经济支柱,竹产业是当前发展的朝阳产业。长足大竹象(Cyrtotrachelus bugueti Guer)是当前丛生竹林的主要害虫,严重制约着竹材产量的提高和农民经济收入的增加。国家林业局2003年将长足大竹象列为我国首批林业危险性有害生物之一。
     本研究采用气相色谱-质谱联用、触角电位反应及电镜扫描等多种技术手段,研究了竹林主要害虫长足大竹象的食物识别信号,明确了长足大竹象嗅觉感器的超微结构及不同类型竹笋挥发物中对长足大竹象发生作用的成分。在长足大竹象危害地调查了长足大竹象幼虫种群动态,应用SPSS16.0软件分析了长足大竹象幼虫种群变化与气候因子的关系,揭示了长足大竹象幼虫种群发生规律及其与气候、竹笋的内在统一性。本研究将长足大竹象幼虫密度的气候影响因子和食物识别信号结合起来,利用长足大竹象与竹笋间的自然化学作用在幼虫高峰期之前控制竹林主要害虫,以期为实现害虫防治、昆虫资源利用、环境无污染三者的协调统一提供理论依据。主要结果如下:
     1长足大竹象头部感器的超微结构
     电镜观察表明长足大竹象头部感器主要集中在触角和口器,触角感器主要集中在鞭节的末亚节,占感器的95%以上。触角上共发现了5类感器,分别为锥形感器、毛形感器、柱形感器、芽形感器、手形感器。触角以具有嗅觉功能的锥形感器最多,密度最大,其次是具有信息化合物感受功能的毛形感器。口器上分布大量的具味觉功能的长柱毛形感器。研究结果表明长足大竹象成虫对竹笋的识别主要通过鞭节末亚节上的锥形感器。
     2竹笋挥发物成分测定和长足大竹象触角电位反应
     气质色谱联用在竹笋挥发性物质中检测到28种物质,主要为醛类、醇类、酸类和脂肪酸的衍生物,醛类物质相对含量最高,其次是醇类和酸类物质。竹笋不同类型、同一竹笋不同部位挥发物的组分不同,丛生慈竹笋尖挥发物中以苯甲醛、芳樟醇、对羟基苯甲醛、氯己酸的含量较高,丛生慈竹笋基部挥发物以对羟基苯甲醛、2,5,8,11,14-五氧杂-16-十六烷醇、(3-甲基-环氧-2-丙烷基)-甲醇、苯甲醛的含量较高,散生苦竹笋尖挥发物中以对羟基苯甲醛、十六酸、亚油酸、(3β)-豆甾-5-烯-3-醇的含量较高,丛生慈竹笋笋尖挥发物中特有的和含量较高的成分可能是吸引长足大竹象取食产卵的重要物质。
     选择含量较高的20种竹笋挥发物成分对长足大竹象成虫做触角电位测定,结果表明竹笋挥发性物质的不同组分对成虫有不同的电生理活性,其中苯甲醛、氯己酸、芳樟醇等6种成分是引起长足大竹象显著电生理活性的重要挥发物质。用此6种挥发物诱捕长足大竹象成虫的结果表明,苯甲醛诱捕长足大竹象成虫数量最多且差异达到极显著水平。研究表明长足大竹象很可能是根据以苯甲醛为主要成分构成的、具有特定成分和比例的化学图谱识别竹笋。
     3长足大竹象幼虫种群变化规律研究
     长足大竹象地上生活史与温度显著相关。2004-2008年于四川沐川定期调查了3个受害慈竹林内所有竹笋上的幼卵和幼虫密度变化,运用主成分、相关和通径分析及决策系数研究了影响幼虫种群变化的主要气候因子,并用8种不同的函数模型对虫口密度与旬平均气温、旬最低气温的关系进行拟合。结果表明,幼虫种群变化呈单峰型,7月中旬以前虫口数量较低,8月为高峰期,9月中旬以后虫口密度显著降低,10月上旬以后虫口密度逐渐趋向于0水平。4种分析表明,长足大竹象幼虫种群变化最主要的限制因子是旬平均气温,最主要的决策因素是旬最低气温。8种函数拟合表明平均虫口密度与旬平均气温、旬最低气温之间分别用直线函数方程Y=-0.535+0.031X、对数函数方程Y=-1.594+0.6001nX拟合的效果最好,据此建立了平均虫口密度气候预测表,提出了长足大竹象防治的温度指标:旬平均温度21.5℃或旬最低温度17.70C。
     4降雨量、气温、竹笋与长足大竹象发生的内在统一性
     在长足大竹象地上活动期间,7月较多的降雨量有利于成虫出土,8月较高的气温促进竹笋的生长,丰富的食源促进长足大竹象的生长繁殖,从而形成8月长足大竹象幼虫危害的高峰,此表明降雨量、气温、竹笋、长足大竹象具有内在统一性。
Bamboo was the main raw material for paper making industry and the key economic resourse for bamboo farmers, and bamboo industry had been developed into a sunrise industry. Cyrtotrachelus bugueti, the main bamboo forest pests of cluster bamboo forest, had seriously constrained the improvement of bamboo produce and the income increase of bamboo farmers. The insect had been taken as one of dangerous forestry pests by the State Forestry Administration since 2003.
     The food identification signal of C. bugueti, including its ultrastructure of touch sensilla and smell sensilla, as well as the volatiles effecting on C. bugueti from different varieties and types of bamboo shoots, were studied by using the scanning electron microscopy, the gas chromatography-mass spectrometry (GC-MS), the elctroantennogram (EAG) technique respectively. The larvae population dynamics of C. bugueti and its relationship to climate factors were analyzed too. The study combined climate factor effecting on larvae density with food identification signal of C. bugueti for controlling the bamboo pest by the nature chemistry between C. bugueti and bamboo shoot.This study provided theoretical basis for harmony among control of bamboo pest, utilization of insect resource and protection of environment. The results were as follow:
     1 Antenna ultrastructure and food identification sensilla of C. bugueti
     Abservation using scanning electron microscopy showed that the head sensilla of C. bugueti mainly distributed in antenna and mouthpart, and the antenna consists of the scape, pedicel and seven flagellomeres. The sensillaes of flagellomeres in the end of antenna were over 95%of antenna sensilla. In antenna, one type of sensilla basiconic, two type of sensilla trichodea, one type of sensilla column, one type of bud-shaped sensilla and one type of hand-shaped sensilla were distinguished with the shapes and distribution of sensilla. The sensilla basiconic with olfactory function were the largest density sensilla, the second was the sensilla trichodea with the pheromones feeling function. Mouthparts also distributed a large number of long columns sensilla trichodea with taste function. The results showed that volatiles from bamboo shoots were apperceived mainly through the sensilla basiconica in flagellomeres of antenna.
     2 Study on relationship between volatile components of bamboo shoots and C. bugueti
     28 bamboo shoot volatiles were discovered by GC-MS, and the results showed that the volatiles from the tine of cluster bamboo shoot were with high content of benzaldehyde, linalool,4-hydroxy-benzaldenhyde and 8-chlorocapric acid, the volatiles from the bottom of cluster bamboo shoot were with high content of 4-hydroxy-benzaldenhyde,2,5, 8,11,14-pentaoxahexadecan, (3-methyl-oxiran-2-yl)-methanol, benzaldehyde, and the volatiles from the tine of scattered bamboo shoot were with high content of 4-hydroxy-benzaldenhyde, hexadecanoic acid, linoleic acid and stigmast-5-en-3-ol (3.beta.24s). The results suggested that the high content or the special volatiles of the tine of cluster bamboo shoot might be the important substance attracting C. bugueti.
     EAG reaction suggested that the antenna of C. bugueti imago reacting to the different volatiles from bamboo shoots showed different electrophysiological reaction, and benzaldehyde, linalool and 8-chlorocapric acid and so on could caused C. bugueti imago significant electrophysiological reaction. With them trapping C. bugueti imago, the results showed that benzaldehyde could attracted the most imagoes. The study suggested that C. buqueti might identified the bamboo shoot by the chemistry finger map with primary benzaldehyde and special proportion of components.
     3 Overground propagatation of C. buqueti was markedly impacted by temperature. From 2004 to 2008, the eggs and larvae of C. buqueti in all bamboo shoots of three bamboo forests were regularly investigated in the Muchuan Sichuan. The principal component analysis, as well as correlation and path analysis and decision coefficient, was exerted to study the effect of main climate factors on larvae population dynamics, and eight functions were used to analyze the relationship among C. buqueti larval density and mean temperature and minimum temperature. The results showed that the larvae population fluctuation was single peaked, with the peak in August. The larvae population was low before mid-July and evidently reduced after mid-September and gradually tended to zero level after early October. The results of four analyzing methods suggested that the most important limiting-factor and the most important decision factor of larvae population fluctuation was respectively the mean temperature and the minimum temperature, two forecasting models for the larvae population fluctuation were established, i.e., C. buqueti larvae density (Y) and mean temperature(X) follow the equation of Y=-0.535+0.031X, and C. buqueti larvae density(Y) and minimum temperature (X) follow the equation of Y=-1.594+0.6001nX. Based on these results, the forecast tables for C. buqueti larvae density were provided, and for controlling larvae density of C. buqueti, mean temperature 21.5℃of ten days and minimum temperature 17.7℃often days were suggested too.
     4 The emergence of C. bugueti had the intrinsic unity with rainfall, temperature and bamboo shoots. During overground propagatation of C. buqueti, the growth of bamboo shoot was facilitated by the more rainfall of July and the higher temperature of August, and provided abundand food for C. buqueti. Therefore, the high larvae population came into being.
引文
1辉朝茂,杨宇明,郝吉明,等.论竹子生态环境效益与竹产业可持续发展.西南林学院学报,2003,23(4):25-29.
    2董文渊.21世纪中国竹产业可持续发展的历史机遇.世界林业研究,2003,16(1):42-45.
    3李智勇,王登举,樊宝敏.中国竹产业发展现状及其政策分析.北京林业大学学报:社会科学版,2005,4(4):50-54
    4杨宇明,辉朝茂.优质笋用竹产业化开发.北京,中国林业出版社,1998.
    5任明亮,宋维明.国内外竹产业研究的现状与未来.林业经济,2008,6:33-37.
    6李智勇,林德荣.中国竹产业发展现状及其对策.中国农村经济,2004:24-28.
    7武文定,董文渊.越南竹产业现状及发展对策.世界竹藤通讯,2007,5(4):1-3.
    8冉瑞平,王锡桐.建设长江上游生态屏障的对策思考.林业经济问题,2005,25(3):137-141
    9邓坤枚,石培礼.长江上游森林生态系统水源涵养量与价值的研究.资源科学,2002,24(6):68-73.
    10李江,黄从德.川西退耕还林地苦竹林碳密度,碳贮量及其空间分布.浙江林业科技,2006,26(4):7-8
    11 笪志祥,楼一平.梁山慈竹在退耕还林中的水土保持效应研究.浙江林业科技,2007,27(3):22-27.
    12黄从德,张健.退耕还林地在植被恢复初期碳储量及分配格局研究.水土保持学报,2007,4(4).
    13何亚平,费世民,蒋俊明,等.川南几种竹种退耕还林植被恢复研究.四川林业科技,2006,27(6):7-13.
    14华正媛,陈雁.衢州市竹子害虫名录初报.中国森林病虫,2002,21(4):30-33.
    15唐燕平,陈久春.东至县竹类害虫种类调查初报.安徽农业科学,2003,1.
    16李涛,高志兴,邓光明,等.长足大竹象的危害特性及防治技术.四川林业科技,2005,26(6):43-46.
    17陈封政,王维德,王雄清,等.长足大竹象的发生危害与防治.植物保护,2005,31(2):89-90.
    18王维德,陈封政,王雄清,等.长足大竹象繁殖行为的初步研究.四川动物,2005,24(4):540-541.
    19孔垂华.21世纪植物化学生态学前沿领域.应用生态学报,2002,13(3):349-353.
    20杨振德,朱麟,赵博光,等.昆虫化学生态学与植物保护.南京林业大学学报:自然科学版, 2003,27(5):93-98.
    21王维德,王雄清,陈封政.沐川县竹林主要害虫大竹象的调查.乐山师范学院学报,2002,19(4):49-50
    22鞠瑞亭,夏翠华,徐俊华,等.上海地区长足大竹象初报.中国森林病虫,2005,24(2):7-9.
    23杨瑶君,汪淑芳,弓加文,等.长足大竹象虫口密度与虫孔数、竹笋受害率的关系,应用生态学
    报,2009,20(8):1980-1986
    24王维德,陈封政,王雄清,等.芜花提取物对竹象虫的防治研究.乐山师范学院学报,2003,18(4):35-36
    25汪淑芳,杨瑶君,刘超,等.长足大竹象生殖系统的形态解剖研究.四川动物,2009,28(1):79-81.
    26杨瑶君,向清祥,谭辉旭,等.防治长足大竹象复配农药的生产制备方法和该复配农药的应用.国家发明专利,2009,ZL200710048246.6.
    27杨瑶君,向清祥,谭辉旭,等.一种防治长足大竹象的复配农药及其制备方法和应用.国家发明专利,2009,ZL200710048245.1.
    28严福顺,钦俊德,项秀芬,等.七星瓢虫成虫下唇须化学感受器的细微结构.昆虫学报,1982,25(2):135-140.
    29汤德良,王琛柱,罗林儿,等.棉铃虫和烟青虫幼虫下颚栓锥感器对某些化合物反应特性的比较.SCIENCE IN CHINA (Series C),2000,30(5):512-515.
    30 Steinbrecht RA, Gnatzy W. Pheromone receptors in Bombyx mori and Antheraea pernyi. Cell and tissue research,1984,235(1):25-34.
    31 Steinbrecht RA. Pore structures in insect olfactory sensilla:a review of data and concepts. International Journal of Insect Morphology and Embryology,1997,26(3-4):229-245.
    32尹文英,郦一平.棉红铃虫触角感觉器的扫描电镜观察.昆虫学报,1980,23(2):123-129.
    33李坤,罗梅浩,赵国强,等.烟实夜蛾(Helicoverpa aassulta Guenee)触角感器的超微结构观察.河南农业大学学报,2005,40(3):250-253.
    34杜永均,唐觉.大豆蚜触角嗅觉感器结构及其功能.昆虫学报,1995,38(1):1-7.
    35杨广,黄桂诚.小菜蛾触角的显微结构及其作用.福建农业大学学报,2001,30(1):75-79.
    36 Roelofs W, Comeau A, Hill A, et al. Sex Attractant of the Codling Moth:Characterization with Electroantennogram Technique. Science (New York, NY),1971,174(4006):297.
    36魏辉,杨广,王前梁,等.小菜蛾幼虫头部化学感觉器电镜扫描观察.福建农林大学学报:自 然科学版,2003,32(4):434-437.
    37 陆宴辉,仝亚娟,吴孔明.绿盲蝽触角感器的扫描电镜观察.昆虫学报,2007,50(8):863-867.
    38 Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature,1981, 293:161-163.
    39 Vogt RG, Prestwich GD, Lerner MR. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. Journal ofneurobiology,1991,22(1):74-84.
    40 Pelosi P, Maida R. Odorant-binding proteins in insects. Comparative biochemistry and physiology. PartB, Biochemistry& molecular biology,1995,111(3):503.
    41 Sandler BH, Nikonova L, Leal WS, et al. Sexual attraction in the silkworm moth:structure of the pheromone-binding-protein-bombykol complex. Chemistry& biology,2000,7(2):143-151.
    42 Callahan FE, Vogt RG, Tucker ML, et al. High level expression of "male specific" pheromone binding proteins (PBPs) in the antennae of female noctuiid moths. Insect Biochemistry and Molecular Biology,2000,30(6):507-514.
    43 Krieger J, Raming K, Breer H, et al. Cloning of genomic and complementary DNA encoding insect pheromone binding proteins:evidence for microdiversity. Biochimica et biophysica acta, 1991,1088(2):277.
    44 Grimes HD, Overvoorde PJ, Ripp K, et al. A 62-kD sucrose binding protein is expressed and localized in tissues actively engaged in sucrose transport. The Plant Cell Online,1992,4(12): 1561.
    45 Pelosi P. Odorant-binding proteins. Critical reviews in biochemistry and molecular biology,1994, 29(3):199-228.
    46 Hekmat-Scafe DS, Scafe CR, McKinney AJ, et al. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome research,2002,12(9):1357.
    47 Steinbrecht RA, Laue M, Ziegelberger G Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell and Tissue Research,1995,282(2):203-217.
    48 Visser JH, Piron PGM. Olfactory antennal responses to plant volatiles in apterous virginoparae of the vetch aphidMegoura viciae. Entomologia Experimentalis et Applicata,1995,77(1):37-46.
    49 Steinbrecht RA, Lee JK, Altner H, et al. Volume and surface of receptor and auxiliary cells in hygro-/thermoreceptive sensilla of moths(Bombyx mori, Antheraea pernyi, and A. polyphemus). Cell and Tissue Research,1989,255(1):59-67.
    50 Zhang S, Maida R, Steinbrecht RA. Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera). Chemical senses,2001,26(7):885.
    51 Dobritsa AA, Van Der Goes Van Naters W, Warr CG, et al. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron,2003,37(5):827-841.
    52 Horst R, Damberger F, Luginbuhl P, et al. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proceedings of the National Academy of Sciences, 2001,98(25):14374.
    53 Lee D, Damberger FF, Peng G, et al. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS letters,2002,531(2):314-318.
    54 Vogt RG, Callahan FE, Rogers ME, et al. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chemical senses,1999,24(5):481.
    55 Bianchet MA, Bains G, Pelosi P, et al. The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition. Nature Structural& Molecular Biology,1996, 3(11):934-939.
    56 Bianchet MA, Ko YH, Amzel LM, et al. Modeling of nucleotide binding domains of ABC transporter proteins based on a F 1-ATPase/recA topology:structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). Journal of bioenergetics and biomembranes,1997,29(5):503-524.
    57 Bianchet MA, Ahmed H, Vasta GR, et al. Soluble-galactosyl-binding lectin (galectin) from toad ovary:Crystallographic studies of two protein-sugar complexes. Proteins:Structure, Function, and Bioinformatics,2000,40(3):378-388.
    58 Dickens JC, Callahan FE, Wergin WP, et al. Intergeneric distribution and immunolocalization of a putative odorant-binding protein in true bugs(Hemiptera, Heteroptera). Journal of Experimental Biology,1998,201(1):33.
    59 Steinbrecht RA, Ozaki M, Ziegelberger G, et al..Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell and Tissue Research,1992,270(2):287-302
    60 Karlson P, Butenandt A. Pheromones (ectohormones) in insects. Annual Review of Entomology, 1959,4(1):39-58.
    61 董双林,杜家纬.甜菜夜蛾性信息素组分的鉴定及其田间试验.植物保护学报,2002,29(1):19-24.
    62 Nakagawa T, Sakurai T, Nishioka T, et al. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science,2005,307(5715):1638.
    63修伟明,董双林.昆虫信息素结合蛋白及其分子运输机制和生理功能研究进展.昆虫学报,2005,48(5):778-784.
    64 Sato K, Touhara K. Insect Olfaction:Receptors, Signal Transduction, and Behavior. Chemosensory Systems in Mammals, Fishes, and Insects,2009,1-18.
    65李水芳,文瑞芝,曾栋,等.气相色谱-质谱法分析湖南产阔叶箬竹叶挥发油的化学成分.质谱学报,2007,28(2):117-121
    66 Visser JH. Host odor perception in phytophagous insects. Annual Review of Entomology,1986, 31(1):121-144.
    67 Getz WM, Chapman RF. An odor discrimination model with application to kin recognition in social insects. International Journal ofNeuroscience,1987,32(3-4):963-978.
    68 De Bruyne M, Baker TC. Odor detection in insects:volatile codes. Journal of chemical ecology, 2008,34(7):882-897.
    69 娄永根,程家安.虫害诱导的植物挥发物:基本特性,生态学功能及释放机制.生态学报,2000,20(6):1097-1106.
    70胡永建,任琴.虫害马尾松(Pinus massoniana Lamb)邻枝针叶挥发物及其内源茉莉酸甲酯的快速变化.生态学报,2008,28(11):5331-5337.
    71 宋晓君,唐超,覃伟权,等.虫害诱导植物挥发物的释放机制及应用.中国农学通报,2009,25(13):161-165.
    72 Entomology P. Volatile spider-mite pheromone and host-plant kairomone, involved in spaced-out gregariousness in the spider mite Tetranychus urticae. Physiological Entomology,2008,11(3): 251-262.
    73 Schoeppner NM, Relyea RA. Damage, digestion, and defence:the roles of alarm cues and kairomones for inducing prey defences. Ecology letters,2005,8(5):505-512.
    74 Keeling CI, Plettner E, Slessor K, et al.. Hymenopteran semiochemicals. Topics in Current Chemistry,2004,239:133-178.
    75邓小勇,谷茂,许伯球,等.SPME/GC-MS法分析柠檬草挥发气体成分.深圳职业技术学院 学报,2008,7(2):36-40.
    76 郝蕙玲,杜家纬.几种驱避化合物对白纹伊蚊寄主搜寻能力的影响.昆虫学报,2008,51(11):1220-1224.
    77 Lau JA, Miller RE, MD Rausher, et al. Selection through male function favors smaller floral display size in the common morning glory Ipomoea purpurea (Convolvulaceae). The American Naturalist,2008,172(1):63-74.
    78 Coberly CL, Rausher MD.Pleiotropic effects of an allele producing white flowers in Ipomoea purpurea. Evolution,2008,62(5):1076-1085.
    79 李义明,李典谟.种群生存力分析研究进展和趋势.生物多样性,1994,2(1):1-10.
    80 李开枝,尹健强,等.河口浮游动物生态学研究进展.海洋科学,2007,31(3):72-75.
    81 吕欣,韩诗畴,徐洁莲,等.广州桔小实蝇(Bactrocera dorsalis (Hendel))发生动态及气象因子.生态学报,2008,28(4):1850-1856.
    82 陈鹏,叶辉.云南六库桔小实蝇成虫种群数量变动及其影响因子分析.昆虫学报,2007,50(1):38-45.
    83 O'Bannon JH, Radewald JD, Tomerlin AT. Population fluctuation of three parasitic nematodes in Florida citrus. J. Nematol,1972,4(3):194-199.
    84 方展强,邱玫,王春凤.剑尾鱼鳃结构的光镜,扫描和透射电镜观察.电子显微学报,2004,23(5):553-559.
    85 王四宝,周弘春.松褐天牛触角感器电镜扫描和触角电位反应.应用生态学报,2005,16(2):317-322.
    86 董文霞,张钟宁.中红侧沟茧蜂触角感受器的扫描电镜观察.昆虫学报,2006,49(6):1054-1056.
    87 Schneider D. Insect antennae. Annual review of entomology,1964,9(1):103-122.
    88 Chinta S, Dickens JC, Baker GT, et al. Morphology and distribution of antennal sensilla of the tarnished plant bug, Lygus lineolaris (Palisot de beauvois)(Hemiptera:Miridae). International Journal of Insect Morphology and Embryology,1997,26(1):21-26.
    89 Consoli FL, Kitajima EW, Parra JRP. Sensilla on the Antenna and Ovipositor of the Parasitic Wasps Trichogramma galloi Zucci and T. pretiosum Riley (Hym., Trichogrammatidae). Microscopy research and technique,1999,45:313-324.
    90 Ochieng SA, Park KC, Zhu JW, Baker TC. Functional morphology of antennal chemoreceptors of the parasitoid Microplitis croceipes (Hymenoptera:Braconidae). Arthropod Structure and Development,2000,29(3):231-240.
    91 吴才宏.棉铃虫雄蛾触角的毛形感器对其性信息素组分及类似物的反应.昆虫学报,1993,36(4):385-389.
    92 Raguso RA, Light DM. Electroantennogram responses ofHyles lineata (Sphingidae:Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. Journal of Chemical Ecology,1996,22(10):1735-1766.
    93 Farbert P, Koch UT, Farbert A, et al. Pheromone Concentration Measured with Electroantennogram in Cotton Fields Treated for Mating Disruption of Pectinophora gossypiella (Lepidoptera:Gelechiidae).1997,26(5):1105-1116.
    94李新岗,刘惠霞,刘拉平,等.影响松果梢斑螟寄主选择的植物挥发物成分研究.林业科学,2006,42(6):71-78.
    95 杨雪彦,王福贵,周嘉熹,等.混交林中天牛成虫选择行为研究.西北林学院学报,1995,10(2):22-26.
    96戴华国,孙丽娟.二化螟水稻类群和茭白类群成虫产卵与幼虫寄主选择行为的比较研究.应用生态学报,2003,14(5):741-743.
    97徐延熙,孙绪艮,秦小薇,等.被害马尾松(Pinus massoniana)针叶挥发性物质的提取,鉴定及蚕饰腹寄蝇(Blepharipa zebina)的电生理活性.生态学报,2007,27(11):4403-4411.
    98 宁眺,樊建庭.不同危害状态下寄主萜烯挥发物含量的变化及松墨天牛对其组分的触角电位反应.昆虫学报,2006,49(2):179-188.
    99孙月琴,骆有庆.侧柏挥发性物质组成及其释放速率的日变化.北京林业大学学报,2007,29(005):84-87.
    100万郑凯,何娟,康长安,等.气相色谱-质谱联用在农药残留检测方面的应用进展.分析测试技术与仪器,2006,12(1):51-58.
    101 李庆玲,徐晓琴,黎先春,等.固相微萃取-气相色谱-质谱联用测定海水和沉积物间隙水中的痕量多环芳烃.中国科学:B辑,2006,36(3):202-210.
    102 陈明,阴永光.顶空固相微萃取-气相色谱-质谱联用快速测定环境水样中的硝基苯,苯和苯胺.科学通报,2006,51(11):1359-1362.
    103 Schnee C, Kllner TG, Held M, et al. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the United States of America,2006,103(4):1129-1134
    104 Abel C, Clauss M, Schaub A, et al. Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta,2009,230(1):1-11.
    105杨振德,赵博光,巨云为,等.柳蓝叶甲对几种植物气味的触角电位反应.南京林业大学学报(自然科学版),2008,32(1):121-126
    106 Schuckel J, Meisner S. Dynamic properties ofDrosophila olfactory electroantennograms. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,2008, 194(5):483-489.
    107 Slone DH, Sullivan BT. An automated approach to detecting signals in electroantennogram data. Journal of Chemical Ecology,2007,33(9):1748-1762.
    108 Yang ZD, Zhang BQ Ju YW, et al. Electroantennogram responses of Plagiodera versicolora to leaf odors of several plant species. Journal of Nanjing Forestry University (Natural Sciences Edition),2008,32(l):75-78.
    109 Thiery D, Marion-Poll F. Electroantennogram responses of Douglas-fir seed chalcids to plant volatiles. Journal of insect physiology,1998,44(5-6):483-490.
    110杜永均,严福顺.大豆蚜嗅觉在选择寄主植物中的作用.昆虫学报,1994,37(4):385-392.
    111 杜永均,严福顺.植物挥发性次生物质在植食性昆虫,寄主植物和昆虫天敌关系中的作用机理.昆虫学报,1994,37(2):233-250.
    112张峰,阚炜,张钟宁.寄主植物-蚜虫-天敌三重营养关系的化学生态学研究进展.生态学报,2001,21(6):875-879.
    113刘向东,张立建,张孝羲,等.棉蚜对寄主的选择及寄主专化型研究.生态学报,2002,22(8):1281-1285.
    114李欣,白素芬.寄主植物-植食性昆虫-天敌三重营养关系中化学生态学的研究进展.河南农业大学学报,2003,37(3):224-232.
    115刘力,夏守真.苯甲醛对果蝇视觉联想记忆的阻断.生物物理学报,1996,12(4):642-646.
    116林凯.淡竹竹叶挥发油成分分析.江西农业学报,2009,21(2):92-93]
    117李水芳,文瑞芝,曾栋,等.气相色谱-质谱法分析湖南产阔叶箬竹叶挥发油的化学成分.质谱学报,2007,28(2):117-121.
    118南京农业大学.昆虫生态及预测预报.北京:农业出版社.1985,327-329.
    119唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社.2002,367-373.
    120 何东进,洪伟,崔春英.通径分析在毛竹枯梢病研究中的应用.福建林学院学报,2000,20(3):203-206.
    121 袁志发,周静芋,郭满才,等.决策系数—通径分析中的决策指标.西北农林科技大学学报,29(5):131-133.
    122贾乃光.数理统计,第2版.北京:中国林业出版社.1993,166-212.
    123 Kriticos DJ, Watt MS, Withers TM, et al.. A process-based population dynamics model to explore target and non-target impacts of a biological control agent. Ecological Modelling,2009,220(17): 2035-2050.
    124郭宝林,杨俊霞,李永慈.主成分分析法在仁用杏品种主要经济性状选种上的应用研究.林业科学,2000,36(6):53-56.
    125唐守正.多元统计分析.北京:中国农业出版社.1990,28-32.
    126陈鹏,叶辉,刘建宏.云南瑞丽桔小实蝇成虫种群数量变动及其影响因子分析.生态学报,2006,26(9):2801-2807.
    127 Sempala SDK. Seasonal population dynamics of the immature stages of Aedes africanus (Theobald)(Diptera:Culicidae) in Zika Forest, Uganda. Bulletin of Entomological Research, 2009,73(1):11-18.
    128温小遂,唐艳龙,施明清.萧氏松茎象有虫株率与虫口密度关系的研究.江西农业大学学报,2005,27(6):843-846.
    129罗永松,黄昌华,温小遂,等.萧氏松茎象幼虫有虫株率与虫口密度相关关系.中国森林病虫,2006,25(5):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700