小麦抗赤霉病相关基因的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦赤霉病(Fusarium Head Blight, FHB)是小麦的一种主要病害,主要的致病菌是禾谷镰刀菌(Fusarium graminearum,F.g),赤霉病的流行严重影响小麦产量和品质。在侵染小麦时禾谷镰刀菌分泌脱氧雪腐镰刀菌烯醇(Deoxynivalenol, DON)毒素,可以促进赤霉菌在小麦穗部的扩展。DON可被一些特异的UDP-葡糖基转移酶(UDP-glycosyltransferases, UGT)糖基化,降低其毒性。本研究依据一对感、抗赤霉病近等基因系Apogee和Apogee73S2在赤霉菌侵染前后的表达谱数据,挖掘一些与赤霉病抗性相关的基因,通过生物信息学分析、表达分析以及功能分析等方法对克隆的2个UGT基因和1个1,3-1,4-β-葡聚糖水解酶(endo-1,3-1,4-β-glucanase,EGL)开展了初步的功能分析,主要研究结果如下:
     1.同源克隆获得TaUGT4,RACE克隆获得仅在抗病的Apogee73S2中存在的TaUGT5。TaUGT4编码461个氨基酸残基,位于2D染色体上,编码蛋白分布在细胞质中。TaUGT5编码476个氨基酸残基。两基因编码的蛋白在C-端均有PSPG box功能域。
     2.在禾谷镰刀菌、DON毒素处理下两个UGT基因表达均显著上调,说明两个基因参与了小麦对赤霉菌的应答响应。相比水杨酸(SA)处理,甲基茉莉酸(MeJA)更能有效地诱导两个基因的上调表达,说明JA可能在调节两个UGT基因的表达中起着重要作用。
     3. TaUGT5转化拟南芥,提高了转基因拟南芥对DON毒素的抗性,表明TaUGT5对DON具有一定解毒能力。
     4. MeJA和SA的处理均使感赤霉病小麦穗部的发病率下降,而且MeJA提高赤霉病抗性更加明显,表明JA在小麦抗赤霉病中起着重要作用。
     5. TaEGL1基因在抗赤霉病小麦苏麦3号和Apogee73S2中的基础表达水平高于感赤霉病小麦科农199和Apogee。用复性的原核表达蛋白TaEGL1处理小麦叶片,可导致叶片失绿,表现出细胞受损的症状,说明TaEGL1可能通过破坏细胞壁参与小麦的赤霉病发生。
     6. SA在感赤霉病小麦第一叶展开前处理可显著提高叶片对赤霉菌的抗性,而MeJA前处理抗赤霉病小麦则促使叶片感染赤霉菌,表明SA和JA作用机制的不同。
     通过以上研究,克隆获得两个新的UGT基因和一个EGL基因,并对三个基因的序列结构和表达特性开展了研究,通过拟南芥遗传转化、复性蛋白的功能分析以及激素的调节表达初步分析了三个基因的功能,为小麦抗赤霉病机制的研究以及抗赤霉病育种提供了参考依据。
Fusarium head blight, caused primarily by Fusarium graminearum, is a destructive disease ofwheat throughout the world. FHB epidemics not only cause significant yield losses, but alsoreduce grain quality primarily. Deoxynivalenol (DON) produced by F. graminearum whichenhance the pathogen to spread could be converted into inactivating formation D3G by UDP-glycosyltransferases (UGTs). FHB resistance-related genes were selected according to thetranscript profile generated from a FHB-susceptible cultivar Apogee and its one near-isogenicline Apogee73S2with resistance to FHB. Two UGT genes and one EGL gene were cloned inthis study and their functions were analyzed. The main results are as follows:
     1. TaUGT4and TaUGT5were obtained by in silico cloning and RACE, respectively.TaUGT4, which was located on chromosome2D, encoded461amino acids protein.Subcellular localization of TaUGT4indicated that TaUGT4protein was localized incytoplasm. Both of TaUGT4and TaUGT5have PSPG-box motif at C-terminus.
     2. Both of TaUGT4and TaUGT5were obviously induced by F. g inoculation or DONtreatment which suggested that the two UGT genes involved in response to F. g inoculation.The expressions of the two UGT genes were also significantly induced by MeJA treatment,implying that JA signaling pathway might play important roles against F. g inoculation.
     3. The TaUGT5transgenic Arabidopsis showed enhanced tolerance against DON whichsuggested that TaUGT5had the ability to deactivate DON.
     4. The ability of resistance to FHB was enhanced in FHB-susceptible cultivar bytreatment with SA or MeJA, and the effect was more significant in wheat spikes treated byMeJA. This result also suggested that JA signaling pathway might play important roles inFHB resistance.
     5. The expression of TaEGL1was higher in FHB-resistant cultivar than that in FHB-susceptible cultivar. Leaf cells could be damaged by renatured TaEGL1produced byprokaryotic expression, which suggested that TaEGL1might participated in F. g inoculation.
     6. The leaves of FHB-susceptible cultivar exhibited high resistance to F. g by treating theseeding with SA before the first leaf stretching. On the contrary, The leaves of FHB-resistantcultivar showed more susceptible to F. g by treating the seeding with MeJA before the firstleaf stretching.
     In conclusion, we cloned two novel TaUGT genes and one TaEGL gene from wheat, andanalysed their sequence characteristics and expression patterns. Their functions were analyzedby genetic transformation using Arabidopsis and exogenous hormone regulation. The above works established a foundation for using these novel genes in wheat transformation andgenetic improvement.
引文
柏贵华,肖庆璞,梅籍芳.六个小麦品种抗赤霉病性的遗传表现.上海农业学报,1989,5(4):17-23
    柏贵华,周朝飞,钱存鸣等.小麦品种抗赤霉病扩展基因的遗传分析.朱立宏主编,主要农作物抗病性遗传研究进展,南京:江苏科学技术出版社.1990,170-175
    陈楚和.小麦抗赤霉病遗传的研究.浙江农业大学学报,1983,9(2):115-126
    陈怀谷,王永文,王裕中.应用赤霉毒素-芽鞘生测法鉴定小麦品种的抗赤霉病性.江苏农业科学,1990,6:23-24
    陈怀谷,蔡志祥,陈飞,张凯明.不同小麦品种抗赤霉病性类型和抗毒素积累能力分析.植物保护学报,2007,34(1):32-36
    陈利锋,叶茂炳,陈永幸,徐朗莱,徐雍皋.抗坏血酸与小麦抗赤霉病性的关系.植物病理学报,1997,27(2):113-118
    陈佩度,王兆梯,王苏玲,黄俐,王裕中,刘大钧.将大赖草种质转移给普通小麦的研究-Ⅲ.抗赤霉病异附加系选育.遗传学报,1995,22:206-210
    方毅敏,肖碧玉,黄继平,许文真,朱涵.小麦抗赤霉病性田间自然鉴定与抗赤霉病育种中的问题.植物保护学报,1998,26(4):294-298
    封德顺.体细胞杂种小麦与供体高冰草的高分子量麦谷蛋白亚基及其基因分析.山东大学博士学位论文,2004
    郭绍铮,主编.江苏麦作科学.南京:江苏科学技术出版社,1994.86-89
    何觉民.关于小麦抗赤霉病育种的研究Ⅱ小麦品种形态抗赤霉病性的机制.湖南农学院学报,1983,3:13-18
    黄德崇,汪志远,赵文俊,刘宗镇,吴兆苏,蒋国梁.抗赤霉病小麦基因库群体的抗性分析.上海农业学报,1988,4(2):7-12
    李社荣,张敬,李安生,孙光祖,王广金.小麦抗赤霉菌毒素细胞变异体的筛选及再生植株生化特性分析.农业生物技术学报,1997,5(3):216-220
    李祥义,吴兆苏.小麦盛花期胆碱浓度与赤霉病抗性的关系研究初报.作物学报,1994,20(2):176-185
    廖玉才,余毓君.小麦地方品种望水白抗赤霉病性的遗传分析.华中农学院学报,1985,4(2):6-14
    林一波,杨竹平,吴兆苏.不同地理来源抗赤霉病小麦品种的抗性遗传分析.上海农业学报,1992,8(1):31-36
    刘光欣,陈佩度,冯祎高,周波,王苏玲,张守忠.小麦-大赖草易位系对赤霉病抗性的聚合.麦类作物学报,2006,26(3):34-40
    刘景松.小麦有关性状与赤霉病的相关分析.黑龙江农业科学,1982,2:39-42
    刘思衡,杨彬元.小麦抗赤霉病性遗传的初步分析.福建农业学报,1988,2:43-48
    刘文轩,陈佩度,刘大钧.一个普通小麦-大赖草易位系T01的选育与鉴定.作物学报,2000,26(3):305-309
    刘宗镇,汪志远,赵文俊.小麦品种资源抗赤霉病性研究.上海农业学报,1985,1(2):75-84
    陆维忠,程顺和,王裕中.小麦赤霉病研究.北京:科学出版社,2001,5
    陆维忠.小麦赤霉病抗性分子标记的筛选及其利用.江苏农业学报,2011,27(2):243-249.
    庞炜,王治伦,吕社民,吕旌乔.真菌毒素DON研究进展.中国地方病防治杂志,1996,11(6):349-351
    沈秋泉,陈楚和,张全德.小麦杂种一代赤霉病抗性遗传研究.杭州农业科学,1979,5:12-19
    宋玉立,陈利锋,聂理,徐朗莱,徐雍皋.脱氧雪腐镰刀菌烯醇对小麦愈伤组织SOD活力的影响.南京农业大学学报,1997,20(1):112-113
    万永芳,叶华智.小麦抗赤霉病的一些生理生化特性.四川农业大学学报,1993,11:439-443
    万永芳,颜济,杨俊良,刘法圈.小麦近缘野生植物的赤霉病抗性研究.植物病理学报,1997,27(2):107-111
    王雅平,吴兆苏,刘伊强.小麦抗赤霉病性的生化研究及其机制的探讨.作物学报,1994,20(3):327-333
    王洋,孙连发.小麦赤霉病主要抗源抗赤霉病基因分子标记及其应用研究进展.黑龙江农业科学,2008,5:14-18
    王裕中,杨新宁,肖庆璞.小麦赤霉病抗性鉴定技术的改进及其抗源的开拓.中国农业科学,1982,(4):26-29
    翁益群,刘大钧.鹅观草(Roegneria C. Koch)与普通小麦(Triticum aestivum L.)属间杂种F1的形态、赤霉病抗性和细胞遗传学研究团.中国农业科学,1989,22:1-7
    杨崇力,赵玲瑛.小麦赤霉病抗性与农艺性状的相关性.作物杂志,1996(1):33-34
    杨艳萍,陈佩度.普通小麦与鹅观草属间杂种F1及BC1的分子细胞遗传学,育性和赤霉病抗性研究.遗传,2009,31(3):290-296
    姚金保,陆维忠.中国小麦抗赤霉病育种研究进展.江苏农业学报,2000,16(4):242-248
    姚金保,葛永福,周朝飞,钱存鸣,姚国才,盛培英.小麦赤霉病抗性与若干农艺性状的相关性研究.江苏农业科学,1995,6:13-16
    叶茂炳,徐郎莱,徐雍皋,朱斌.苯丙氨酸解氨酶和绿原酸与小麦抗赤霉病性的关系.南京农业大学学报,1990,3:103-107
    张旭,任丽娟,周淼平,高力,沈晓蓉,向阳海,马鸿翔,陆维忠.三个小麦赤霉病抗源的抗性QTL定位.麦类作物学报,2006,26(3):28-33
    周朝飞,夏穗生,钱存鸣,姚国才,沈建新.关于小麦抗赤霉病育种问题的讨论.中国农业科学,1987,20(2):19-25
    Abate Z.A., Liu S., Mckendry A.L.. Quantitative trait loci associated with deoxynivalenolcontent and kernel quality in the soft red winter wheat ‘Ernie’. Crop Sci.,2008,48:1408-1418
    Adie B.A.T., Pérez-Pérez J., Pérez-Pérez M.M., Godoy M., Sánchez-Serrano J.J., SchmelzE.A. and Solano R.. ABA is an essential signal for plant resistance to pathogens affectingJA biosynthesis and the activation of defenses in Arabidopsis. The Plant Cell,2007,19:1665-1681
    Anderson J.A., Stack R.W., Liu S., Waldron B.L., Fjeld A.D., Coyne C., Moreno-Sevilla B.,Mitchell-Fetch J., Song Q.J., Cregan P.B. and Frohberg R.C.. DNA markers forFusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet.,2001,102:1164-1168
    Anhalt S., Weissenb ck G.. Subcellular localization of luteolin glucuronides and relatedenzymes in rye mesophyll. Planta,1992,187:83-88
    Bai G., Kolb F.L., Shaner G. and Domier L.L.. Amplified fragment length polymorphismmarkers linked to a major quantitative trait locus controlling scab resistance in wheat.Phytopathology,1999,89:343-348
    Bai G.H., Desjardins A.E., Plattner R.D.. Deoxynivalenol-nonproducing Fusariumgraminearum causes initial infection, but does not cause disease spread in wheat spikes.Mycopathologia,2001,153:91-98
    Bai G.H., Shaner G.. Scab of wheat: prospects for control. Plant Dis.,1994,78:760-776
    Balasubramanian V., Vashisht D., Cletus J., Sakthivel N.. Plant β-1,3-glucanases: theirbiological functions and transgenic expression against phytopathogenic fungi. BiotechnolLett,2012,34:1983-1990
    Ban T.. Review studies on the genetics of resistance to Fusarium head blight caused byFusarium graminearum in wheat. In: Raupp J, Ma Z, Chen P, Liu D (eds) Proceedings ofthe international symposium wheat improve scab resistance,5-11May2000, Suzhou andNanjing, China,2000:82-93
    Bernardo A., Bai G.H., Guo P., Xiao K., Guenzi A.C., Ayoubi P.. Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant andsusceptible wheat cultivars. Funct Integr Genomics,2007,7:69-77
    Boddu J., Cho S., Kruger W.M., Muehlbauer G.J.. Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol. Plant-Microbe Interact.,2006,19(4):407-417
    Boddu J., Cho S., and Muehlbauer G.J.. Transcriptome analysis of trichothecene-inducedgene expression in barley. Mol. Plant-Microbe Interact.,2007,20:1364-1375
    Bollina V., Kumaraswamy G.K., Kushalappa A.C., Choo T.M., Dion Y., Rioux S., Faubert D.,Hamzehzarghani H.. Mass spectrometry based metabolomics application to identifyquantitative resistance related metabolites in barley against Fusarium head blight.Mol.Plant Pathol.,2010,11:769-782
    Burton R.A. and Fincher G.B..(1,3;1,4)-β-D-glucans in cell walls of the poaceae, lowerplants, and fungi: a tale of two linkages. Molecular Plant,2009,2(5):873-882
    Brown, N.A., Urban M., van de Meene, A.M.L. and Hammond-Kosack K.E. The infectionbiology of Fusarium graminearum: Defining the pathways of spikelet to spikeletcolonisation in wheat ears. Fungal Biol.,2010,114:555-571
    Browse J.. Jasmonate passes muster: A receptor and targets for the defense hormone. Annu.Rev. Plant Biol.,2009,60:183-205
    Bruins M.B.M., Karsa I., Schepers J. and Snijders C.H. A.. Phytotoxicity of deoxynivalenolto wheat tissue with regard to in vitro selection for Fusarium head blight resistance.Plant Sci.,1993,94:195-206
    Buerstmayr H., Ban T. and Anderson J. A.. QTL mapping and marker-assisted selection forFusarium head blight resistance in wheat: a review. Plant Breeding,2009,128:1-26
    Buerstmayr H., Lemmens M., Hartl L., Doldi L., Steiner B., Stierschneider M., RuckenbauerP.. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I.Resistance to fungal spread (type II resistance). Theor. Appl. Genet.,2002,104:84-91
    Buerstmayr H., Steiner B., Hartl L., Griesser M., Angerer N., Lengauer D., Miedaner T.,Schneider B., Lemmens M.. Molecular mapping of QTLs for Fusarium head blightresistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl.Genet.,2003,107:503-508
    Bushnell W.R., Perkins-Veazie P., Russo V.M., Collins J. And Seeland T.M.. Effects ofdeoxynivalenol on content of chloroplast pigments in barley leaf tissues. Phytopathology,2010,100(1):33-41
    Bushnell W.R., Hazen B.E. and Pritsch C. Histology and physiology of Fusarium head blight.In Fusarium Head Blight of Wheat and Barley (Leonard, K.J. and Bushnell, W.R., eds).St. Paul, MN: APS Press,2003,44-83
    Chandler E.A., Simpson D.R., Thomsett M.A. And Nicholson P.. Development of PCRassays to Tri7and Tri13trichothecene biosynthetic genes, and characterisation ofchemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis.Physiol. Mol. Plant P.,2003,62:355-367
    Chaturvedi R. and Shah J.. Salicylic acid in plant disease resistance.2007, Pages335-370in:Salicylic Acid-A Plant Hormone. S. Hayat and A. Ahmad, eds. Springer, Dordrecht, TheNetherlands
    Chaturvedi R., Krothapalli K., Makandar R., Nandi A., Sparks A.A., Roth, M. R., Welti, R.,and Shah, J. Plastid 3-fatty acid desaturase-dependent accumulation of a systemicacquired resistance inducing activity in petiole exudates of Arabidopsis thaliana isindependent of jasmonic acid. Plant J.,2008,54:106-117
    Chen L.F., Bai G.H., Desjardins A.E.. Recent advances in wheat head scab in China. In:Proeeedings of the International Symposium on wheat improvement for scab resistance.Suzhou and Nanjing, China, May5-11,2000
    Coutinho P.M., Deleury E., Davies G.J., Henrissat B.. An evolving hierarchical familyclassification for glucosyltransferases. J. Mol. Biol.,2003,328:307-317
    Couture L.. Receptivity of spring cereals to contamination of grains in the inflorescence byFusarium spp. Can. J. Plant Sci.,1982,62:29-34
    Cuthbert P.A., Somers D.J., Thomas J., Cloutier S., Brule-Babel A.. Fine mapping Fhb1, amajor gene controlling fusarium head blight resistance in bread wheat. Theor. Appl.Genet.,2006,112:1465-1472.
    Cuthbert P.A., Somers D.J., Brule-Babel A.. Mapping of Fhb2on chromosome6BS: a genecontrolling Fusarium head blight field resistance in bread wheat. Theor. Appl. Genet.,2007,114:429-437.
    Cutler H.G. and Jarvis B.B.. Preliminary observations on the effects of macrocyclictrichothecenes on plant growth. Environ. Exp. Bot.,1985,25:115-128
    Desjardins A.E., McCormick S.P. and Appell M.. Structureactivity relationships oftrichothecene toxins in an Arabidopsis thaliana leaf assay. J. Agric. Food Chem.,2007,55:6487-6492
    Desjardins A.E., Proctor R.H., Bai G., McCormick S.P., Shannon G., Beuchley G., and HohnT.M.. Reduced virulence of trichothecenenon producing mutants of Gibberella zeae inwheat field tests. Mol. Plant-Microbe Interact.,1996,9:775-781
    Desjardins A. E.. In: Fusarium Mycotoxins, Chemistry, Genetics, and Biology. The AmericanPhytopathological Society, St. Paul, MN,2006,13-64
    Dexter J. E. and Nowicki T. W..Safety assurance and quality assurance issues associated withFusarium head blight in wheat. in: Fusarium Head Blight of Wheat and Barley. K.J.Leonard and W.R. Bushnell, eds. The American Phytopathological Society, St. Paul, MN,2003,420-460
    Di R., and Tumer N.E.. Expression of a truncated form of ribosomal protein L3confersresistance to pokeweed antiviral protein and the Fusarium mycotoxin deoxynivalenol.Mol. Plant-Microbe Interact.,2005,18:762-770
    Ding L., Xu H., Yi H., Yang L., Kong Z., Zhang L., Xue S., Jia H., and Ma Z. Resistance tohemi-biotrophic F. graminearum infection is associated with coordinated and orderedexpression of diverse defense signaling pathways. PLoS One,2011, DOI:10.1371/journal.pone.0019008
    Dornez E., Croes E., Gebruers K., Carpentier S., Swennen R., Laukens K., Witters E., UrbanM., Delcour J.A., Courtin C.M..2-D DIGE reveals changes in wheat xylanase inhibitorprotein families due to Fusarium graminearum ΔTri5infection and grain development.Proteomics,2010,10:2303-2319
    Durrant W.E. and Dong X. Systemic acquired resistance. Annu. Rev. Phytopathol.,2004,42:185-209
    Eudes F., Comeau A., Rioux S., and Collin J. Impact of trichothecenes on Fusarium headblight [Fusarium graminearum] development in spring wheat (Triticum aestivum). Can.J. Plant Pathol.,2001,23:318-322
    Fraissinet-Tachet L., Baltz R., Chong J., Kauffmann S., Fritig B., Saindrenan P.. Two tobaccogenes induced by infection, elicitor and salicylic acid encode glucosyltransferases actingon phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Lett,1998,437:319-323
    Foroud N.A., Ouellet T., Laroche A., Oosterveen B., Jordan M.C., Ellis B.E., Eudes F..Differential transcriptome analyses of three wheat genotypes reveal different hostresponse pathways associated with Fusarium head blight and trichothecene resistance.Plant Pathology,2012,61:296-314
    Gardiner S.A., Boddu J., Berthiller F., Hametner C., Stupar R.M., Adam G., Muehlbauer G.J..Transcriptome analysis of the barley–deoxynivalenol interaction: evidence for a role ofglutathione in deoxynivalenol detoxification. Mol. Plant-Microbe Interact.,2010,23(7):962-976
    Geddes J., Eudes F.O., Laroche A., Selinger L.B.. Differential expression of proteins inresponse to the interaction between the pathogen Fusarium graminearum and its host,Hordeum vulgare. Proteomics,2008,8:545-554
    Gervais L., Dedryver F., Morlais J. Y., Bodusseau V., Negre S., Bilous M., Groos C., TrottetM.. Mapping of quantitative trait loci for field resistance to Fusarium head blight in aEuropean winter wheat. Theor. Appl. Genet.,2003,106:961-970
    Gilbert J., Tekauz A., Kaethler R., Mueller E., and Kromer U.. Occurrence of Fusarium headblight in Manitoba in1994. Can. Plant Dis. Surv.,1995,75:124-125
    Glazebrook J.. Contrasting mechanisms of defense against biotrophic and necrotrophicpathogens. Annu. Rev. Phytopathol.,2005,43:205-227
    Goswami R.S., Kistler H.C.. Pathogenicity and in planta mycotoxin accumulation amongmembers of the Fusarium graminearum species complex on wheat and rice.Phytopathology,2005,95:1397-1404
    Gottwald S., Samans B., Lück S., Friedt W.. Jasmonate and ethylene dependent defence geneexpression and suppression of fungal virulence factors: Two essential mechanisms ofFusarium head blight resistance in wheat? BMC Genomics,2012,13:369
    Gunnaiah R., Kushalappa A.C., Duggavathi R., Fox S., Somers D.J.. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributesto resistance against Fusarium graminearum. PLoS ONE,2012,7(7)
    H berle J., Holzapfel J., Schweizer G. and Hartl L.. A major QTL for resistance againstFusarium head blight in European winter wheat. Theor. Appl. Genet.,2009a,119:325-332
    H berle J., Schweizer G., Schondelmaier J., Zimmermann G. And Hartl L.. Mapping of QTLfor resistance against Fusarium head blight in the winter wheat populationPelikan//Bussard/Ning8026. Plant Breeding,2009b,128:27-35
    Han F.P., Fedak G., Ouellet T., Dan H. and Somers D.J.. Mapping of genes expressed inFusarium graminearum-infected heads of wheat cultivar ‘Frontana’. Genome,2005,48:88-96
    Harris L.J., and Gleddie S.C.. A modified Rpl3gene from rice confers tolerance of theFusarium graminearum mycotoxin deoxynivalenol to transgenic tobacco. Physiol. Mol.Plant Pathol.,2001,58:173-181
    Horevaja P., Brown-Guedirab G. and Milusa E.A., Resistance in winter wheat lines todeoxynivalenol applied into florets at flowering stage and tolerance to phytotoxic effectson yield. Plant Pathol.,2012,61:925-933
    Horvath D., Huang, D.J., Chua N.H.. Four classes of salicylate-induced tobacco genes. Mol.Plant-Microbe Interact.,1998,11:895-905
    Jansen C., von Wettstein D., Schafer W., Kogel K.H., Felk A., Maier F.J.. Infection patternsin barley and wheat spikes inoculated with wild-type and trichodiene synthase genedisrupted Fusarium graminearum. Proc. Natl. Acad. Sci. USA,2005,102:16892-16897
    Jayatilake D.V., Bai G.H. and Dong Y.H.. A novel quantitative trait locus for Fusarium headblight resistance in chromosome7A of wheat. Theor. Appl. Genet.,2011,122:1189-1198
    Jia H.Y., Cho S., and Muehlbauer G.J.. Transcriptome analysis of a wheat near-isogenic linepair carrying Fusarium head blight-resistant and-susceptible alleles. Mol. Plant-MicrobeInteract.,2009,22(11):1366-1378
    Jiang G.L., Dong Y.H., Shi J.R.. QTL analysis of resistance to Fusarium head blight in thenovel wheat germplasm CJ9306. II. Resistance to deoxynivalenol accumulation andgrain yield loss. Theor. Appl. Genet.,2007,115:1043-1052
    Jin X.L., Feng D.R., Wang H.B., Wang J.F.. A novel tissue-specific plantain β-1,3-glucanasegene that is regulated in response to infection by Fusarium oxysporum fsp. cubense.Biotechnol Lett,2007,29:1431-1437
    John H.N. and Stephen N.W.. Effects of FHB severity and cultivars on DON accumulation inwinter wheat. Proceedings of the2007national Fusarium head blight forum
    Jones R.K.. Managing Fusarium head scab for1995. Minn. Ext. Serv. Plant Pest Newsl.Department of Plant Pathology, University of Minnesota, St. Paul,1994,17:100-102
    Kang J., Clark A., Van Sanford D.V., Griffey C., Brown-Guedira G., Dong Y.H., Murphy J.P.,Costa J.. Exotic scab resistance quantitative trait loci effects on soft red winter wheat.Crop Sci.,2011,51:924-933
    Kang Z., Buchenauer H.. Immunocytochemical localization of Fusarium toxins in infectedwheat spikes by Fusarium culmorum. Physiol. Mol. Plant Pathol.,1999,55:275-288
    Kephart K.. Climatic conditions and regional differences. in: Soft Red Winter Wheat Quality:Issues for Producers, Merchants, and Millers. E. Jones, ed. VPI Coop. Ext. Publ.448-051.Virginia Polytechnic Institute, Blacksburg,1991,5-10
    Kirubakaran S.I., Sakthivel N.. Cloning and overexpression of antifungal barley chitinasegene in Escherichia coli. Protein Expres. Purif.,2007,52:159-166
    Kong L.,Ohm H.W., Anderson J.M..Expression analysis of defence-related genes in wheat inresponse to infections by Fusarium graminearum. Genome.2007,50:1038-1048
    Kong L.R., Anderson J.M., Ohm H.W.. Induction of wheat defense and stress-related genes inresponse to Fusarium graminearum. Genome,2005,48:29-40
    Koornneef A., Pieterse C.M.J.. Cross talk in defense signaling. Plant Physiol.,2008,46:839-844
    Krstanovic V., Klapec T., Velic N., Milakovic Z.. Contamination of malt barley and wheat byFusarium graminearum and Fusarium culmorum from the crop years2001-2003ineastern Croatia. Microbiol. Res.,2005,160(4):353-359
    Kruger W.M., Pritsch C., Chao S., Muehlbauer G.J.. Functional and comparativebioinformatic analysis of expressed genes from wheat spikes infected with Fusariumgraminearum. Mol. Plant-Microbe Interact.,2002,15:445-455
    Kumaraswamy K.G., Kushalappa A.C., Choo T.M., Dion Y., Rioux S.. Mass spectrometrybased metabolomics to identify potential biomarkers for resistance in barley againstFusarium head blight (Fusarium graminearum). J. Chem. Ecol.,2011,37:846-856
    Kunkel B.N., and Brooks D.M. Cross talk between signaling pathways in pathogen defense.Curr. Opin. Plant Biol.,2002,5:325-331
    Langevin F., Eudes F., Comeau A.. Effect of trichothecenes produced by Fusariumgraminearum during Fusarium head blight development in six cereal species. Eur. J.Plant Pathol.,2004,110:735-746
    Lee T., Oh D. W., Kim H. S., Lee J., Kim Y. H., Yun S. H. And Lee Y. H.. Identification ofdeoxynivalenol and nivalenol producing chemotypes of Gibberella zeae. Appl. Environ.Microb.,2001,67:2966-2972
    Lemmens M., Scholz U., Berthiller F., Dall’Asta C., Koutnik A., Schuhmacher R., Adam G.,Buerstmayr H., Mesterházy A., Krska R., Ruckenbauer P.. The ability to detoxify themycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusariumhead blight resistance in wheat. Mol. Plant-Microbe Interact.,2005,18:1318-1324
    Lewandowski S. and Bushnell W.R. Development of Fusarium graminearum on floretsurfaces of field-grown barley.2002national Fusarium head blight forum proceedings.East Lansing: Michigan State University,2001,128
    Li C.Y., Larry V.M. and Pierce A.P.. Relationship between FHB and DON among SRWWcultivars with different leves of type II resistance. Proceedings of the2007nationalfusarium head blight forum
    Li G.L. and Yen Y.. Jasmonate and ethylene signaling pathway may mediate Fusarium headblight resistance in wheat. Crop Science,2008,48:1888-1896
    Li T., Bai G., Wu S. and Gu S.. Quantitative trait loci for resistance to Fusarium head blightin the Chinese wheat landrace Huangfangzhu. Euphytica,2012,185:93-102
    Li T., Bai G.H., Wu S.Y., Gu S.L.. Quantitative trait loci for resistance to fusarium headblight in a Chinese wheat landrace Haiyanzhong. Theor. Appl. Genet.,2011,122:1497-1502
    Lin F., Xue S.L., Zhang Z.Z., Zhang C.Q., Kong Z.X., Yao G.Q., Tian D.G., Zhu H.L., LiC.J., Cao Y., Wei J.B., Luo Q.Y. and Ma Z.Q.. Mapping QTL associated with resistanceto Fusarium head blight in the Nanda2419/Wangshuibai population. Ⅱ: Type Ⅰresistance. Theor. Appl. Genet.,2006,112:528-535
    Liu B.Y., Lu Y., Xin Z.Y., Zhang Z.Y.. Identification and antifungal assay of a wheat β-1,3-glucanase. Biotechnol Lett,2009,31:1005-1010
    Liu S. and Anderson J. A.. Targeted molecular mapping of a major wheat QTL for Fusariumhead blight using ESTs and synteny with rice. Genome,2003,46:817-823
    Liu S., Hall M. D., GriVey C. A. and McKendry A. L.. Meta-analysis of QTL associated withFusarium head blight resistance in wheat. Crop Sci,2009,(49):1955-1968
    Liu S., Zhang X., Pumphrey M.O., Stack R.W., Gill B.S., Anderson J.A.. Complexmicrocolinearity among wheat, rice, and barley revealed by fine mapping of the genomicregion harboring a major QTL for resistance to Fusarium head blight in wheat. Funct.Integr. Genomic,2006,6:83-89
    Lorenzo O. and Solano R.. Molecular players regulating the jasmonate signalling network.Curr. Opin. Plant Biol.,2005,8:532-540
    Lorenzo O., Piqueras R., Sánchez-Serrano J.J. and Solano R.. Ethylene response factor1integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell,2003,15:165-178
    Lu Q., Szabo-Hever A., Bjornstad A., Lillemo M., Semagn K., Mesterhazy A., Ji F., Shi J.R.,Skinnes H.. Two major resistance quantitative trait loci are required to counteract theincreased susceptibility to fusarium head blight of the Rht-D1B dwarfing gene in wheat.Crop Sci.,2011,51:2430-2438
    Ma L.L., Shang Y., Cao A.Z., Qi Z.J., Xing L.P., Chen P.D., Liu D.J., Wang X.E.. Molecularcloning and characterization of an up-regulated UDP-glucosyltransferase gene inducedby DON from Triticum aestivum L. cv. Wangshuibai. Mol. Biol. Rep.,2010,37:785-795
    Makandar R., Essig J.S., Schapaugh M.A., Trick, H.N., and Shah J.. Genetically engineeredresistance to Fusarium head blight in wheat by expression of arabidopsis NPR1. Mol.Plant-Microbe Interact.,2006,19:123-129
    Makandar R., Nalam V., Chaturvedi R., Jeannotte R., Sparks A.A., and Shah, J. Involvementof salicylate and jasmonate signaling pathways in arabidopsis interaction with Fusariumgraminearum. Mol. Plant-Microbe Interact.,2010,23:861-870
    Makandar R., Nalam V.J., Lee H., Trick H.N., Dong Y.H., and Shah J.. Salicylic acidregulates basal resistance to Fusarium head blight in wheat. Mol. Plant-Microbe Interact.,2012,25(3):431-439
    Malla S. Association of Fhb1and Qfhs.ifa-5A in spring versus winter growth habits in breadwheat (Triticum aestivum L.). J. Agr. Sci.,2012,4(1):39-48
    Markell S.G. and Francl L.J.. Fusarium head blight inoculum: species prevalence andGibberella zeae spore type. Plant Dis.,2003,87:814-820
    Masuda D., Ishida M., Yamaguchi K., Yamaguchi I., Kimura M., and Nishiuchi T..Phytotoxic effects of trichothecenes on the growth and morphology of Arabidopsisthaliana. J. Exp. Bot,2007,58:1617-1626
    Mccartney C.A., Somers D.J., Fedak G., Depauw R. M., Thomas J., Fox S. L., at el. Theevaluation of FHB resistance QTLs introgressed into elite Canadian spring wheatgermplasm. Mol. Breeding,2007,20:209-221
    McLean M.. The phytotoxicity of Fusarium metabolites: An update since1989.Mycopathologia,1996,133:163-179
    McMullen M.P. and Nelson D.R.. Fusarium head blight and Septoria diseases of wheatsevere in North Dakota, Phytopathology,1995,85:1045
    McMullen M., Jones R. and Gallenberg D.. Scab of wheat and barley: a re-emerging diseaseof devastating impact. Plant Dis.,1997,81(12):1340-1348
    Mesterhazy A.. Types and components of resistance to Fusarium head blight. Plant Breeding,1995,114:377-386
    Métraux J. P., Nawrath C., and Genoud T.. Systemic acquired resistance. Euphytica,2002,124:237-243
    Miedaner T. and Korzun V.. Marker-assisted selection for disease resistance in wheat andbarley breeding. Phytopathology,2012,102:560-566
    Miedaner T. and Voss H.H.. Effect of dwarfing Rht genes on Fusarium head blight resistancein two sets of near-isogenic lines of wheat and check cultivars. Crop Sci.,2008,48(6):2115-2122
    Miedaner T., Cumagun C.J.R. and Chakraborty S.. Population genetics of three importanthead blight pathogens Fusarium graminearum, F. Pseudograminearum and F. culmorum.J. Phytopathol.,2008,156:129-139
    Miller D.. DON-past, presentand future. National Fusarium Head Blight Forum,2012
    Miller S.S., Watson E. M., Lazebnik J., Gulden S., Balcerzak M., Fedak G. and T. Ouellet..Characterization of an alien source of resistance to Fusarium head blight transferred toChinese spring wheat. Botany,2011,89:301-311
    Mitterbauer R., Poppenberger B., Raditschnig A., Lucyshyn D., Lemmens M., Gl ssl J., andAdam G.. Toxin-dependent utilization of engineered ribosomal protein L3limitstrichothecene resistance in transgenic plants. Plant Biotechnol. J.,2004,2:329-340.
    Mochida K., Yoshida T., Sakurai T., Ogihara Y., Shinozaki K.. TriFLDB: a database ofclustered full-length coding sequences from Triticeae with applications to comparativegrass genomics. Plant Physiol.,2009,150:1135-1146
    Mujeeb-Kazi A., Bernard M., Bekele G.T., Mirand J.L.. Incorporation of alien geneticinformation from Elymus giganteus into Triticum aestivum. In: Sakamoto S (ed)Proceedings of the6th international wheat genetics symposium. Plant germ-plasmInstitute, Kyoto, Japan,1983:223-231
    Mur L.A.J., Kenton P., Atzorn R., Miersch O., Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy,antagonism, and oxidative stress leading to cell death. Plant Physiol.,2006,140:249-262
    Nancy J.A., Susan P.M. and Robert H.P.. Genetic basis for the3-ADON and15-ADONtrichothecene chemotypes in fusarium. Proceedings of the2010National Fusarium HeadBlight Forum
    Nishiuchi T., Masuda D., Nakashita H., Ichimura K., Shinozaki K., Yoshida S., Kimura M.,Yamaguchi I. and Yamaguchi K.. Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among theirmolecular species. Mol. Plant-Microbe Interact.,2006,19:512-520
    Nopsa J.H. and Wegulo S.N.. Effects of FHB severity and cultivars on DON accumulation inwinter wheat. Proceedings of the2007national Fusarium head blight forum.
    Oliver P.E., Cai X., Xu S.S., Chen X., Staek R.W.. Wheat-alien species derivatives: a novelsource of resistance to Fusarium head blight in wheat. Crop Sci.,2005,45:1353-1360
    Packa D.. Cytogenetic changes in plant cells as influenced by mycotoxins. Mycotoxin Res.,1991,7:150-155
    Paillard S., Schnurbusch T., Tiwari R., Messmer M., Winzeler M., Keller B., Schachermayr J..QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticumaestivum L.). Theor. Appl. Genet.,2004,109:323-332
    Paranidharan V., Abu-Nada Y., Hamzehzarghani H., Kushalappa A.C., Mamer O., Dion Y.,Rioux S., Comeau A., Choiniere L.. Resistance-related metabolites in wheat againstFusarium graminearum and the virulence factor deoxynivalenol (DON). Botany,2008,86:1168-1178
    Parry D.W., Jenkinson P. and McLeod L.. Fusarium ear blight (scab) in small grains-a review.Plant Pathol.,1995,44:207-238
    Patricia A.C., Daryl J.S., Julian T., Sylvie C., Anita B.B.. Fine mapping Fhb1, a major genecontrolling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor.Appl. Genet.,2006,112:1465-1472
    Penninckx I.A.M.A., Thomma B.P.H.J., Buchal, A., Métraux J.P. and Broekaert W.F.Concomitant activation of jasmonate and ethylene response pathways is required forinduction of a plant defensin gene in Arabidopsis. Plant Cell,1998,10:2103-2113
    Pestka J.J.. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. FoodAddit. Contam.,2008,25:1128-1140
    Pestka J.J., Zhou H.R., Moon Y., Chung Y.J.. Cellular and molecular mechanisms forimmune modulation by deoxynivalenol and other trichothecenes: unravelling a paradox.Toxicol Lett,2004,153:61-73
    Pieterse, C.J.M., and van Loon, LC. NPR1: the spider in the web of induced resistancesignaling pathways. Curr. Opin. Plant Biol.,2004,7:456-464
    Poppenberger B., Berthiller F., Lucyshyn D., Sieberer T., Schuhmacher R., Krska R., KuchlerK., Gl ssl J., Luschnig C., Adam G.. Detoxification of the Fusarium mycotoxindeoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem.,2003,278:47905-47914
    Pré M., Atallah M., Champion A., De Vos M., Pieterse C.M.J., Memelink J.. The AP2/ERFdomain transcription factor ORA59integrates jasmonic acid and ethylene signals inplant defense. Plant Physiol.,2008,147:1347-1357
    Proctor R.H., Hohn, T.M. and McCormick S.P.. Reduced virulence of Gibberella zeae causedby disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact.,1995,4:593-601
    Pumphrey M.O., Bernardo R., Anderson J.A.. Validating the Fhb1QTL for Fusarium headblight resistance in near-isogenic wheat lines developed from breeding population. CropSci.,2007,47:200-206.
    Pritsch C., Muehlbauer G.J., Bushnell W. R., Somers D. A. and Vance C. P. Fungaldevelopment and induction of defence response genes during early infection of wheatspikes by Fusarium graminearum. Mol. Plant-Microbe Interact.,2000,13:159-169
    Qi L.L., Pumphrey M.O., Bernd F., Chen P.D. and Gill B.S.. Molecular cytogeneticcharacterization of alien introgressions with gene Fhb3for resistance to Fusarium headblight disease of wheat. Theor. Appl. Genet.,2008,11:1155-1166
    Ribichich K.F., Lopez S.E. and Vegetti A.C.. Histopathological spikelet changes produced byFusarium graminearum in susceptible and resistant wheat cultivars. Plant Dis.,2000,84:794-802
    Rocha O., Ansari K. And Doohan F.M.. Effects of trichothecene mycotoxins on eukaryoticcells: A review. Food Addit. Contam.,2005,22(4):369-378
    Rojo E., Solano R. and Sanchez-Serrano J.J.. Interactions between signaling compoundsinvolved in plant defense. J. Plant Growth Regul.,2003,22:82-98
    Ross, Li Y., Lim E-K., Bowles D.J.. Higher plant glycosyltransferases. Genome Biol.,2001,2(2):3004.1-3004.6
    Rubella S., Goswami R.S. and Kistler H.C. Heading for disaster: Fusarium graminearum oncereal crops. Mol. Plant Pathol.,2004,5:515-525
    Salameh A., Buerstmayr M., Steiner B., Neumayer A., Lemmens M. and Buerstmayr H..Effects of introgression of two QTL for fusarium head blight resistance from Asianspring wheat by marker-assisted backcrossing into European winter wheat on Fusariumhead blight resistance, yield and quality traits. Mol. Breeding,2011,28:485-494
    Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerville S.C., MannersJ.M.. Coordinated plant defense responses in Arabidopsis revealed by microarrayanalysis. Proc. Natl. Acad. Sci. USA,2000,97:11655-11660
    Schothorst R.C. and Van Egmond H.P.. Report from SCOOP task3.2.10“collection ofoccurrence data of Fusarium toxins in food and assessment of dietary intake by thepopulation of EU member states” Subtask: trichothecenes. Toxicol. Lett.,2004,153:133-143
    Schweiger W., Boddu J., Shin S., Poppenberger B., Berthiller F., Lemmens M., MuehlbauerG.J., Adam G.. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol. Plant-MicrobeInteract.,2010,23:977-986
    Schweiger W., Pasquet J.C., Nussbaumer T., Kovalsky Paris M.P., Wiesenberger G., MacadréC., Ametz C., Berthiller F., Lemmens M., Saindrenan P., Mewes H.W., Mayer K.F.X.,Dufresne M., Adam G.. Functional characterization of two clusters of Brachypodiumdistachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxificationgenes. Mol. Plant-Microbe Interact.,2013a,26:781-792
    Schweiger W., Steiner B., Ametz C., Siegwart G., Wiesenberger G., Berthiller F., LemmensM., Jia H.Y., Adam G., Muehlbauer G.J., Kreil D.P., Buerstmayr H.. Transcriptomiccharacterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1and Qfhs.ifa-5A, identifies novel candidate genes. Mol. Plant Pathol.,2013b,14(8):772-785
    Schweiger W., Steiner B., Limmongkon A., Brunner K.. Cloning and heterologous expressionof candidate DON-inactivating UDP-glucosyltransferases from rice and wheat in yeast.Plant Breed Seed Sci.,2011,64:105-111
    Sewald N., von Gleissenthall J.L., Schuster M., Müller G., and Aplin R.T.. Structureelucidation of a plant metabolite of4-desoxynivalenol. Tetrahedron: Asymmetry,1992,3:953-960
    Shan X.C., Goodwin P.H.. Silencing an ACC oxidase gene affects the susceptible hostresponse of Nicotiana benthamiana to infection by Colletotrichum orbiculare. Plant cellrep.,2006,25:241-247
    Shen X.R., Kong L.R. and Ohm H.. Fusarium head blight resistance in hexaploid wheat(Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin byPCR markers. Thero. Appl. Genet.,2004,108:808-813
    Shen X., Zhou M., Lu W., Ohm H.. Detection of Fusarium head blight resistance QTL in awheat population using bulked segregant analysis. Theor. Appl. Genet.,2003,106:1041-1047
    Shimada T. and Otani M.. Effects of Fusarium mycotoxins on the growth of shoots and rootsat germination in some Japanese wheat cultivars. Cereal Res. Commun.,1990,18:229-232
    Simmons C.R.. The physiology and molecular biology of plant1,3-β-D-glucanases and1,3;1,4-β-D-glucanases. Crit. Rev. Plant Sci.,1994,13(4):325-387
    Shin S., Torres-Acosta J.A., Heinen S.J., McCormick S., Lemmens M., Paris M.P., BerthillerF., Adam G., Muehlbauer G.J.. Transgenic Arabidopsis thaliana expressing a barleyUDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. J. Exp.Bot.,2012,63:4731-4740
    Singh R.P., Ma H., Rajaram S.. Genetic analysis of resistance to scab in spring wheat cultivarFrontana. Plant Dis.,1995,79(3):238-240
    Somers D.J., Fedak G. and Savard M.. Molecular mapping of novel genes controllingFusarium head blight resistance and deoxynivalenol accumulation in spring wheat.Genome,2003,46:555-564
    Spoel S.H., Koornneef A., Claessens S., Korzelius J.P., Van Pelt J.A., Mueller M.J., BuchalaA.J., Métraux J.P., Brown R., Kazan K., Van Loon L.C., Dong X.N, and Pieterse Co..NPR1modulates cross-talk between salicylate-and jasmonate-dependent defensepathways through a novel function in the cytosol. The Plant Cell,2003,15:760-770
    Srinivasachary, Gosman N., Steed A., Hollins T.W., Bayles R., Jennings P. and Nicholso P..Semi-dwarfing Rht-B1and Rht-D1loci of wheat differ significantly in their influence onresistance to Fusarium head blight. Theor. Appl. Genet.,2009,118:695-702
    Stack R.W.. Return of an old problem: Fusarium head blight of small grains. APSnet feature.APSnet Plant Pathology Online,2000, DOI:10.1094/PHP-2000-0622-01-RV
    Steiner B., Lemmens M., Griesser M., Scholz U., Schondelmaier J. and Buerstmayr H..Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivarFrontana. Theor. Appl. Genet.,2004,109:215-224
    Strange R.N., Smith H.. Specifity of choline and betaine as stimulants of Fusariumgraminearum. Trans. Bri. Mycol. Soc.,1978,10:187-192
    Susan P.M., Nancy J.A. and Robert H.P.. Fusarium Tri8determines3-acetyldeoxynivalenol(3ADON) or15ADON production. Proceedings of the2010national Fusarium headblight forum
    Sutton J.C.. Epidemiology of wheat head blight and maize ear rot caused by Fusariumgraminearum. Can. J. Plant Pathol.,1982,4:195-209
    Suzuki T., Sato M. And Takeuchi T.. Evaluation of the effects of five QTL regions onFusarium head blight resistance and agronomic traits in spring wheat (Triticum aestivumL.). Breeding Sci.,2012,62:11-17
    Teardo E., Formentin E., Segalla A., Giacometti G.M., Marin O., Zanetti M., Schiavo F.L.,Zoratti M., Szabò I.. Dual localization of plant glutamate receptor AtGLR3.4to plastidsand plasma membrane. Biochim. Biophys. Acta,2011,1807:359-367
    Thomma B.P., Penninckx I.A., Broekaert W.F., and Cammue B.P.. The complexity of diseasesignaling in Arabidopsis. Curr. Opin. Immunol.,2001,13:63-68
    Trail F., Xu H., Loranger R. and Gadoury D.. Physiological and environmental aspects ofascospore discharge in Gibberella zeae. Mycologia,2002,94:181-189
    Turner J.G., Ellis C., and Devoto A.. The jasmonate signal pathway. Plant Cell,2002,14(Suppl): S153-S164
    Ueno Y., Ishii K., Sato N., Shimada N., Tsunoda H., Sawano M., Enomoto M.. Screening oftrichothecenes producing fungi and the comparative toxicity of isolated mycotoxins.Japanese Journal of Pharmacology,1973,23:133
    Ueno Y.. The toxicology of mycotoxins. Critical Reviews in Toxicology,1985,(14):99-133
    Van Loon L.C., Geraats B.P., and Linthorst H.J.. Ethylene as a modulator of diseaseresistance in plants. Trends Plant Sci.,2006,11:184-191
    Van Wees S., de Swart E.A.M., van Pelt J., van Loon L.C., and Pieterse Co.M.J..Enhancement of induced disease resistance by simultaneous activation of salicylate-andjasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci.USA,2000,97(15):8711-8716
    Von Dahl C.C. and Baldwin I.T. Deciphering the role of ethylene in plant-herbivoreinteractions. J. Plant Growth Regul.,2007,6:201-209
    Von der ohe C., Ebmeyer E., Korzun V. and Miedaner T.. Agronomic and qualityperformance of winter wheat backcross populations carrying non-adapted Fusarium headblight resistance QTL. Crop Sci.,2010,50:2283-2290
    Voss H.H., Holzapfel J., Hartl L., Korzun V., Rabenstein F., Ebmeyer E., Coester H., KempfH., Miedaner T.. Effect of the Rht-D1dwarfing locus on Fusarium head blight rating inthree segregating populations of winter wheat. Plant Breeding,2008,127:333-339
    Waldron B.L., Moreno-Sevilla B., Anderson J.A., Stack R.W. and Frohberg R.C.. RFLPmapping of QTL for Fusarium head blight resistance in wheat. Crop Sci.,1999,39:805-811
    Walter S. and Doohan F.. Transcript profiling of the phytotoxic response of wheat to theFusarium mycotoxin deoxynivalenol. Mycotox Res.,2011,27:221-230
    Wan Y.F., Yen C., Yang J.L., and Liu F.Q.. Evaluation of Roegneria for resistance to headscab caused by Fusarium graminearum Schwabe. Genetic Resour. Crop Ev.,1997,44(3):211-215
    Wang K.L., Li H., Ecker J.R.. Ethylene biosynthesis and signaling networks. Plant Cell,2002,14:S131-S151
    Wang Y., Yang L.M., Xu H.B., Li Q.F., Ma Z.Q., Chu C.G.. Differential proteomic analysisof proteins in wheat spikes induced by Fusarium graminearum. Proteomics,2005,5:4496-4503
    Wilde F., Miedaner T.. Selection for Fusarium head blight resistance in early generationsreduces the deoxynivalenol (DON) content in grain of winter and spring wheat. PlantBreeding,2006,125:96-98
    Wróbel-Kwiatkowska M., Lorenc-Kukula K., Starzycki M., Oszmiański J., Kepczyńska E.,Szopa E.. Expression of β-1,3-glucanase in flax causes increased resistance to fungi.Physiol. Mol. Plant P.,2004,65:245-256
    Xiao J., Jin X.H., Jia X.P., Wang H.Y., Cao A.Z., Zhao W.P., Pei H.P., Xue Z.K., He L.Q.,Chen Q.G., Wang X.E.. Transcriptome-based discovery of pathways and genes related toresistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics,2013,14:197
    Xu S.S., Oliver R.E., Cai X., Friesen T.L., Halley S. and Elias E.M.. Searching for newsources of FHB resistance in the relatives of wheat. Proceedings of the2007nationalfusarium head blight forum
    Xue S.L., Li G.Q., Jia H.Y., Lin F., Cao Y., Xu F., Tang M.Z., Wang Y., Wu X.Y., ZhangZ.Z., Zhang L.X., Kong Z.X. and Ma Z.Q.. Marker-assisted development and evaluationof near-isogenic lines for scab resistance QTLs of wheat. Mol. Breeding,2010a,25:397-405
    Xue S.L., Li G.Q., Jia H.Y., Xu F., Lin F., Tang M.Z., Wang Y., An X., Xu H.B., Zhang L.X.,Kong Z.X. and Ma Z.Q.. Fine mapping Fhb4, a major QTL conditioning resistance toFusarium infection in bread wheat (Triticum aestivum L.). Theor. Appl. Genet.,2010b,121:147-156
    Xue S.L., Xu F., Tang M.Z., Zhou Y., Li G.Q., An X., Lin F., Xu H.B., Jia H.Y., Zhang L.X,Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection inbread wheat (Triticum aestivum L.). Theor. Appl. Genet.,2011,123:1055-1063
    Yan W., Li H.B., Cai S.B., Ma H.X., Rebetzke G.J. and Liu C.J.. Effects of plant height ontype I and type II resistance to Fusarium head blight in wheat. Plant Pathol.,2011,60:506-512
    Yang F., Jacobsen S., J rgensen H.J.L., Collinge D.B., Svensson B., Finnie C.. Fusariumgraminearum and its interactions with cereal heads: studies in the proteomics era. FrontPlant Sci.,2013,4:37
    Yang F., Jensen J.D., Svensson B., J rgensen H.J., Collinge D.B., Finnie C.. Analysis of earlyevents in the interaction between Fusarium graminearum and the susceptible barley(Hordeumvulgare) cultivar Scarlett. Proteomics,2010,10:3748-3755
    Yang Z.P., Gilbert J., Somers D.J., Fedak G., Procunier J.D. and McKenzie R.. Marker-assisted selection of fusarium head blight resistance genes in two doubled-haploidpopulations of wheat. Mol. Breeding,2003,12:309-317
    Yang Z., Gilbert J., Fedak G. and Somers D.J.. Genetic characterization of QTL associatedwith resistance to Fusarium head blight in a doubled-haploid spring wheat population.Genome,2005,48:187-196
    Yazaki K., Inushima K., Kataoka M.,Tabata M.. Intracellular localization of UDPG: p-hydroxybenzoate glucosyltransferase and its reaction product in lithospermum cellcultures. Phytochemistry,1995,8:1127-1130
    Zhang X., Bai G., Bockus W., Ji X. and Pan H.. Quantitative trait loci for Fusarium headblight resistance in U.S. hard winter wheat cultivar Heyne. Crop Sci.,2012,52:1187-1194
    Zhang X., Shen X., Hao Y., Cai J., Ohm H.W., Kong L.. A genetic map of Lophopyrumponticum chromosome7E, harboring resistance genes to Fusarium head blight and leafrust. Theor. Appl. Genet.,2011,122:263-270
    Zhou W.C., Kolb F.L., Bai G., Shaner G. and Domier L.L.. Genetic analysis of scabresistance QTL in wheat with microsatellite and AFLP markers. Genome,2002,45:719-727
    Zhou W.C., Kolb F.L., and Riechers D.E.. Identification of proteins induced or upregulatedby Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum).Genome.2005,48:770-780

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700