热管式光伏光热综合利用系统的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能光伏光热综合利用(PV/T)技术将太阳能光伏发电技术与太阳能集热技术有机结合,一方面,可以将太阳能转化为电能和热能,同时获得两种能量的收益,提高了系统太阳能的综合利用率;另一方面,冷却流体可以将光伏电池的热量带走,从而达到对电池的冷却作用,提高其光电转换效率。另外,在PV/T系统中,由于光伏组件与集热模块是复合成一个整体的,因此易于标准化、模块化生产制作,非常适合与建筑相结合,可以充分利用建筑外表面所接收到的太阳能。
     根据冷却工质的不同,PV/T系统一般可划分为水冷型和风冷型PV/T系统。据研究表明,水冷型PV/T系统可获得比风冷型PV/T系统更好的太阳能综合利用效率,且更具有应用前景。但是传统的水冷型PV/T系统容易受到冻结,且冻结时会破坏PV/T模块板芯,导致系统不能正常运行,因此不能在高纬、寒冷地区使用。针对这一问题,本文提出了一种热管式PV/T系统(HP-PV/T)。该系统将热管传热技术与PV/T技术相结合,利用热管良好的防冻性能和超导热性能,间接地将PV/T模块内的热量传给冷却水,从而解决了PV/T模块的防冻问题,同时还可避免由于长期直接通水冷却而导致PV/T模块板芯遭受杂质的腐蚀,大大延长了模块的使用寿命。另外,本文还对热管式PV/T系统进行了拓展研究,提出了光伏-太阳能热泵/热管复合系统(PV-SAHP/HP)。该系统具有太阳能-热管制热水、太阳能-热泵制热水、太阳能-热泵采暖、空气源-热泵制冷、空气源-热泵辅助制热水和空气源-热泵辅助采暖等6种运行模式,可根据外界环境气象参数(太阳辐照、环境温度)以及用户的需求,进行单个模式的运行或多个模式的耦合运行,可以弥补传统太阳能利用系统中由于太阳能的间歇性特点而导致系统不能连续、稳定运行的不足,大大提高了系统的设备利用率和增强系统的实用性。
     本文的研究工作主要包括以下几个方面:
     (1)设计和搭建了热管式PV/T系统实验测试平台,并对系统分别采用两种不同热管间距(80mm和140mm)、两种不同集热器安装倾角(32°和45°)以及两种不同循环水流量(3.7L/min和10.0L/min)时的光电、光热以及综合性能进行对比测试研究。研究表明,热管式PV/T系统具有良好的光电、光热性能,其全天平均光热效率可达45.8%,平均光电效率可达11.2%,平均光电光热综合效率达到52.3%;减小热管间距和增大循环水流量有助于提高系统的光电光热综合性能;对于合肥地区,在相同的实验条件下,系统在32°的集热器安装倾角下获得比在45°的安装倾角下更高的综合性能。
     (2)建立热管式PV/T系统动态数学模型,对系统的全天动态性能进行模拟计算,并与实验结果相对比。对比结果显示,理论计算结果与实验测量结果基本吻合。此外,利用验证后系统模型,对系统在不同循环水流量、不同光伏电池覆盖因子、不同热管间距以及不同电池基板涂层材料下的性能进行优化计算和研究分析,并对系统分别在香港、拉萨和北京地区使用时的全年性能进行模拟预测和研究分析。
     (3)设计和搭建PV-SAHP/HP系统实验测试平台,对系统分别在东莞和香港地区运行时的性能进行测试研究,讨论和分析系统在热管运行模式和热泵运行模式下的瞬时动态性能变化以及全天的综合性能,并基于热力学第一能源效率和热力学第二能源效率的分析方法,对系统在这两种运行模式下的能源效率和火用效率进行研究分析,探讨最佳的系统耦合运行方式。
     (4)建立PV-SAHP/HP系统动态数学模型,对不同太阳辐照强度下系统PVT集热器-蒸发器的动态参数变化情况进行模拟计算和研究分析,并对系统全天的动态性能变化情况进行仿真和研究分析。
The hybrid photovoltaic/thermal (PV/T) technology refers to a technology that integrates a PV module and a solar thermal collector into one unit. A hybrid PV/T system can simultaneously generate electrical and thermal energies; hence, the effective rate of solar energy utilization per unit collecting area can be increased in this PV/T system. In addition, heat carriers, such as water or air, take up the heat extracted from PV cells and cool them, thereby improving the yield of electricity. Moreover, the PV module and the solar thermal collector are integrated into a PV/T collector. Hence, they can readily be made in standardized and module product, and are quite fit for the integration with the building.
     According to type of the coolant, Hybrid PV/T systems are classified as the water-type and the air-type PV/T system. The previous investigations showed that, the water-type PV/T system can achieve higher total PV/T efficiency compared with that of the air-type PV/T system, and have an extensive future. However, a traditional water-type system is unsuitable to be used in the cold regions because of the freezing of the water, which will damage the PV/T collectors. Based on this account, a novel heat-pipe photovoltaic/thermal (HP-PV/T) system is presented here. In the HP-PV/T system, the heat pipes with very high thermal conduction are used to transfer the heat from the collectors to the water. As the heat pipe use the low boiling point refrigerant as its working fluid, thus freezing can be eliminated and corrosion can be reduced as well. Further more, a novel system named photovoltaic solar assisted heat pump/heat pipe (PV-SAHP/HP) system is also presented here. To focus on both actual demand and energy savings, the PV-SAHP/HP system is designed to be capable of operating in six different modes, namely, the heat-pipe solar water heating, solar-assisted heat pump water heating and space heating, air-source heat-pump water heating, space heating and cooling. According to the user's demand and the ambient parameters (such as solar radiation and ambient temperature), the system operates in an optimal mode, hence it can be considered to be a significant technology for energy savings. In addition, an air-cooled heat exchanger was used as an auxiliary evaporator of the heat pump, on overcast or rainy days, when the solar radiation is weak, the system can absorb energy from ambient air, hence offsetting the weaknesses of the traditional solar system.
     The main works of this paper are summarized as follows:
     (1) A HP-PV/T system test rig was designed and constructed, and comparative tests were performed to study the performance of the system under different conditions, such as tube spaces of heat pipes at80mm and140mm, tilt angles of the collectors installed at32°and45°, and volume flow rate of the circulating water of3.7L/min and10.0L/min. Experimental results showed that, the daily thermal efficiency, daily electrical efficiency and total PV/T efficiency of the HP-PV/T system can reach45.8%,11.2%and52.3%, respectively; the total PV/T efficiency of the system can be improved by reducing the tube space of the heat pipes or increasing the water flow rate; the collector installed at a tilt angle of32°yielded a better results than the collector installed at45°for the HP-PV/T system used in Hefei, China.
     (2) A dynamic model was presented to predict the instantaneous performance of the HP-PV/T system. Experiments were also conducted to validate the simulation results, and the comparative result demonstrated that the simulated values agreed with the experimental results. Based on the validated model, the performances of the heat pipe PV/T system were studied under different parametric conditions, such as water flow rates, PV cell covering factor, tube space of heat pipes, and solar absorptive coatings materials of the absorber plate. Moreover, using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, were also predicted and analyzed.
     (3) A PV-SAHP/HP system test rig was designed and constructed. A series of experiments were conducted in Dongguan and Hong Kong to study the instantaneous system performance when this system was operated in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system and the optimum operation mode of the system.
     (4) A dynamic model of the PV-SAHP/HP system was presented. Using this model, the dynamic parameters of the PV/T collector/evaporator were predicted and analyzed under different intensities of solar irradiation. In addition, the instantaneous performances of the system were also simulated and studied.
引文
1.陈凤英,赵宏图.2005.全球能源大棋观[M].北京:时事出版社.
    2.陈则韶.2008.高等工程热力学[M].北京:高等教育出版社.
    3.崔民选.2010.中国能源发展报告2010[M].北京:社会科学文献出版社.
    4.丁国良,张春路,赵力.2003.制冷空调新工质:热物理性质的计算方法与实用图表[M].上海:上海交通大学出版社.
    5.何汉峰.2008.光伏太阳能热泵的动态分布参数模拟与实验研究[D]:[博士].合肥:中国科学技术大学.
    6.蒋爱国,季杰,裴刚等.2011.3种工况下多功能太阳能热泵的热泵制热水性能[J].中国科学技术大学学报,41:890-894.
    7.京特莱纳,汉斯卡尔著.1991.太阳能的光伏利用[M].余世杰,何慧若,译.合肥:合肥工业大学出版社.
    8.罗运俊,何梓年,王长贵.2008.太阳能利用技术[M].北京:化学工业出版社.
    9.雷玉成,陈希章,杨继昌.2002.集中供热热管太阳能集热系统[J].太阳能学报,23(6):725-761.
    10.刘继者.2007.热管平板式太阳能集热器和太阳能热水系统的研究[D]:[硕士].天津:天津大学.
    11.马同泽,侯增祺,吴銧.1983.热管[M].北京:科学出版社.
    12.阙光辉.2007.中国能源:可持续战略[M].北京:外文出版社.
    13.王世锋.2004.真空玻璃盖板热管平板式太阳能热水器的理论与实验研究[D]:[硕士].杭州:浙江大学.
    14.王海涛,季杰,裴刚等.2009.电子膨胀阀开度对PV/T-SAHP系统性能的影响[J].太阳能学报,30:201-205.
    15.文玉良.2005.重力回路热管式太阳集热器的理论研究[D]:[硕士].云南:云南师范大学.
    16.吴志刚,丁国良.2006a.制冷剂热力性质的快速计算Ⅰ.计算方法[J].上海交通大学学报,40:297-300.
    17.吴志刚,丁国良,苪银波.2006b.制冷剂热力性质的快速计算Ⅱ.计算方法[J].上海交通大学学报,40:301-305.
    18.余延顺,廉乐明.2003.寒冷地区太阳能—土壤源热泵系统运行方式的探讨[J].太阳能学报,24(1):111-115.
    19.杨卫波,施明恒,董华等.2005.太阳能-土壤源热泵系统联合供暖运行模式的探讨[J].暖 通空调,35(8):25-31.
    20.阳季春,季杰,裴刚等.2008.间接膨胀式太阳能多功能热泵单独制热水性能实验研究[J].太阳能学报,29:678-683.
    21.闫素英,田瑞,后尚等.2008.玻璃真空管内插热管式集热器非稳态效率分析[J].太阳能学报,29(9):323-326.
    22.闫长乐,张永泽等.2007.中国能源发展报告2007[M].北京:中国水利水电出版社.
    23.尹淞.2009.太阳能光伏发电主要技术与进展[M].中国电力论坛论文集,1-10.
    24.姚行健,孙利生,张昌.1996.空气调节用制冷技术[M].第1版.北京:中国建筑工业出版社.
    25.中国气象局太阳能风能资源评估中心http://cwera.cma.gov.cn/cn/.
    26.赵军,刘立平,李丽新等.2000.R134a应用于直接膨胀式太阳能热泵系统[J].天津大学学报,33(3):301-305.
    27. Azad E.2008. Theoretical and experimental investigation of heat pipe solar collector[J]. Experimental Thermal and Fluid Science,32:1666-1672.
    28. Bong TY, Ng KC, Bao H.1993. Thermal Performance of a Flat-Plate Heat-Pipe Collector Array[J]. Solar Energy,50:491-498.
    29. Badescu V.2002. First and second law analysis of a solar assisted heat pump based heating system[J]. Energy Conversion and Management,43:2539-2552.
    30. Bergene T, Lovvik OM.1995. Model calculations on a flat-plate solar heat collector with integrated solar cells[J]. Solar Energy,55:453-462.
    31. Chun W, Kang YH, Kwak HY, et al.1999. An experimental study of the utilization of heat pipes for solar water heaters[J]. Applied Thermal Engineering,19:807-817.
    32. Chaturvedi SK, Abazeri M.1987. Transient Simulation of a Capacity-Modulated, Direct-Expansion, Solar-Assisted Heat-Pump[J]. Solar Energy,39:421-428.
    33. Chaturvedi SK, Chen DT, Kheireddine A.1998. Thermal performance of a variable capacity direct expansion solar-assisted heat pump[J]. Energy Conversion and Management,39: 181-191.
    34. Cox CH, Raghuraman P.1985. Design Considerations for Flat-Plate-Photovoltaic Thermal Collectors[J]. Solar Energy,35:227-241.
    35. Chow TT.2003. Performance analysis of photovoltaic-thermal collector by explicit dynamic model[J]. Solar Energy,75:143-152.
    36. Chow TT, Pei G, Fong KF, et al.2009. Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover[J]. Applied Energy,86:310-316.
    37. Charalambous PG, Maidment GG, Kalogirou SA, et al.2007. Photovoltaic thermal (PV/T) collectors:A review[J]. Applied Thermal Engineering,27:275-286.
    38. Cleland AC.1994. Polynomial Curve-Fits for Refrigerant Thermodynamic Properties-Extension to Include R134a[J]. International Journal of Refrigeration-Revue Internationale Du Froid,17:245-249.
    39. Duffie JA, Beckman WA.1991. Solar Engineering of Thermal Processes[M]. Second ed., John Wiley & Sons, New York.
    40. Dittus FW, Boelter LMK.1930. Heat transfer in automobile radiators of the tubular type[M]. University of California Publications on Engineering,2:443.
    41. Freeman TL, Mitchell JW, Audit TE.1979. Performance of Combined Solar-Heat Pump Systems[J]. Solar Energy,22:125-135.
    42. Florschuetz LW.1979. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors[J]. Solar Energy,22 (4):361-366.
    43. Fujisawa T, Tani T.1997. Annual exergy evaluation on photovoltaic-thermal hybrid collector[J]. Solar Energy Materials and Solar Cells,47:135-148.
    44. Gan GH.1998. A parametric study of Trombe walls for passive cooling of buildings[J]. Energy and Buildings,27:37-43.
    45. Garg HP, Adhikari RS.1997. Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors:Steady-state simulation[J]. Renewable Energy,11:363-385.
    46. Garg HP, Adhikari RS.1998. Transient simulation of conventional hybrid photovoltaic/thermal (PV/T) air heating collectors[J]. International Journal of Energy Research,22:547-562.
    47. Hammad M.1995. Experimental-Study of the Performance of a Solar Collector Cooled by Heat Pipes[J]. Energy Conversion and Management,36:197-203.
    48. Hussein HMS, Mohamad MA, El-Asfouri AS.1999. Optimization of a wickless heat pipe flat plate solar collector[J]. Energy Conversion and Management,40:1949-1961.
    49. Hawlader MNA, Jahangeer KA.2006. Solar heat pump drying and water heating in the tropics[J]. Solar Energy,80:492-499.
    50. Huang BJ, Du S.1991. A performance test method of solar thermosyphon systems[J]. Journal of solar energy engineering,113:172-179.
    51. Huang BJ, Chyng JP.1999. Integral-type solar-assisted heat pump water heater[J]. Renewable Energy,16:731-734.
    52. Huang BJ, Lin TH, Hung WC, et al.2001. Performance evaluation of solar photovoltaic/thermal systems[J]. Solar Energy,70:443-448.
    53. Huang BJ, Chyng JP.2001. Performance characteristics of integral type solar-assisted heat pump[J]. Solar Energy,71:403-414.
    54. Hottel HC, Willier A.1958. Evaluation of flat-plate solar collector performance[J]. In Transactions of the Conference on the Use of Solar Energy, University of Arizona Press, Tucson, Arizona.
    55. He W, Zhang YX, Sun W, et al.2011. Experimental and numerical investigation on the performance of amorphous silicon photovoltaics window in East China[J]. Building and Environment,46:363-369.
    56. Hollands KGT, Unny TE, Raithby GD, et al.1976. Free convection heat transfer across inclined air layers. Transactions of the American Society of Mechanical Engineers, Journal of Heat Transfer,98:189-193.
    57. Imessad K, Messaoudene NA, Belhamel M.2004. Performances of the Barra-Costantini passive heating system under Algerian climate conditions[J]. Renewable Energy,29: 357-367.
    58. Ito S, Miura N, Wang K.1999. Performance of a heat pump using direct expansion solar collectors[J]. Solar Energy,65:189-196.
    59. Ji J, Pei G, Chow TT, et al.2005. Performance of multi-functional domestic heat-pump system[J]. Applied Energy,80:307-326.
    60. Ji J, Han J, Chow TT, et al.2006. Effect of flow channel dimensions on the performance of a box-frame photovoltaic/thermal collector[J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,220:681-688.
    61. Ji J, Yi H, Pei G, et al.2007a. Study of PV-Trombe wall assisted with DC fan[J]. Building and Environment,42:3529-3539.
    62. Ji J, Yi H, Pei G, et al.2007b. Study of PV-Trombe wall installed in a fenestrated room with heat storage[J]. Applied Thermal Engineering,27:1507-1515.
    63. Ji J, Lu JP, Chow TT, et al.2007. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation[J]. Applied Energy,84:222-237.
    64. Ji J, Liu KL, Chow TT, et al.2007. Thermal analysis of PV/T evaporator of a solar-assisted heat pump[J]. International Journal of Energy Research,31:525-545.
    65. Ji J, Jiang B, Yi H, et al.2008. An experimental and mathematical study of efforts of a novel photovoltaic-Trombe wall on a test room[J]. International Journal of Energy Research,32: 531-542.
    66. Ji J, Pei G, Chow TT, et al.2008. Experimental study of photovoltaic solar assisted heat pump system[J]. Solar Energy,82:43-52.
    67. Ji J, He HF, Pei G, et al.2008. Distributed dynamic modelling with experimental validation on a photovoltaic solar-assisted heat pump[J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,222:443-454.
    68. Ji J, He HF, Chow T, et al.2009. Distributed dynamic modeling and experimental study of PV evaporator in a PV/T solar-assisted heat pump[J]. International Journal of Heat and Mass Transfer,52:1365-1373.
    69. Ji J, Luo CL, Sun W, et al.2010. Effect of a dual-function solar collector integrated with building on the cooling load of building in summer[J]. Chinese Science Bulletin,55: 3626-3632.
    70. Ji J, Luo CL, Chow TT, et al.2011. Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation[J]. Energy,36: 566-574.
    71. Jabardo JMS, Mamani WG,Ianella MR.2002. Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor[J]. International Journal of Refrigeration-Revue Internationale Du Froid,25:1157-1172.
    72. Jung D, Park C, Park B.1999. Capillary tube selection for HCFC22 alternatives[J]. International Journal of Refrigeration-Revue Internationale Du Froid,22:604-614.
    73. Kern ECJ, Russell MC.1978. Combined photovoltaic and thermal hybrid collector systems[C]. In Proc IEEE photovoltaic specialists conference, Washington, DC, USA.
    74. Kaygusuz K, Ayhan T.1999. Experimental and theoretical investigation of combined solar heat pump system for residential heating[J]. Energy Conversion and Management,40: 1377-1396.
    75. Kalogirou SA, Tripanagnostopoulos Y.2006. Hybrid PV/T solar systems for domestic hot water and electricity production[J]. Energy Conversion and Management,47:3368-3382.
    76. Karagiorgas M, Galatis K, Tsagouri M, et al.2010. Solar assisted heat pump on air collectors:A simulation tool[J]. Solar Energy,84:66-78.
    77. Kuang YH, Wang RZ.2006. Performance of a multi-functional direct-expansion solar assisted heat pump system[J]. Solar Energy,80:795-803.
    78. Li YW, Wang RZ, Wu JY, et al.2007. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater[J]. Energy,32:1361-1374.
    79. Liu KL, Ji J, Chow TT, et al.2009. Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor-A case study in Tibet[J]. Renewable Energy,34: 2680-2687.
    80. Liang CH, Zhang XS, Li XW, et al.2011. Study on the performance of a solar assisted air source heat pump system for building heating[J]. Energy and Buildings,43:2188-2196.
    81. Lalovic B, Kiss Z, Weakliem H.1986. A Hybrid Amorphous-Silicon Photovoltaic and Thermal Solar Collector[J]. Solar Cells,19:131-138.
    82. Ma JW, Sun W, Ji J, et al.2011. Experimental and theoretical study of the efficiency of a dual-function solar collector[J]. Applied Thermal Engineering,31:1751-1756.
    83. Macarthur JW, Palm WJ, Lessmann RC.1978. Performance Analysis and Cost Optimization of a Solar-Assisted Heat Pump System[J]. Solar Energy,21:1-9.
    84. Mohanraj M, Jayaraj S, Muraleedharan C.2009. Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks[J]. Applied Energy,86: 1442-1449.
    85. Muller-Steinhagen H, Heck K.1986. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering Progress,20:297-308.
    86. Onbasioglu H, Egrican AN.2002. Experimental approach to the thermal response of passive systems[J]. Energy Conversion and Management,43:2053-2065.
    87. Pei G, Ji J, Chow TT, et al.2008. Performance of the hotovoltaic solar-assisted heat pump system with and without glass cover in winter:a comparative analysis[J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,222:179-187.
    88. Prakash J.1994. Transient analysis of a photovoltaic/thermal solar collector for co-generation of electricity and hot air/water[J]. Energy Conversion and Management,35:967-972.
    89. Raghuraman P.1981. Analytical Predictions of Liquid and Air Photo-Voltaic-Thermal, Flat-Plate Collector Performance [J]. Journal of Solar Energy Engineering-Transactions of the Asme,103:291-298.
    90. Riffat SB, Zhao X, Doherty PS.2005. Developing a theoretical model to investigate thermal performance of a thin membrane heat-pipe solar collector[J]. Applied Thermal Engineering, 25:899-915.
    91. Sporn P, Ambrose ER.1955. The heat pump and solar energy[J]. In:Proceedings of the world symposium on applied solar energy, Phoenix, AZ.159-70.
    92. Shah MM.1979. A general correlation for heat transfer during film condensation inside pipes[J]. International Journal of Heat and Mass Transfer,22:547-556.
    93. Sopian K, Yigit KS, Liu HT, et al.1996. Performance analysis of photovoltaic thermal air heaters[J]. Energy Conversion and Management,37:1657-1670.
    94. Sandnes B, Rekstad J.2002. A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model[J]. Solar Energy,72:63-73.
    95. Saitoh H, Hamada Y, Kubota H, et al.2003. Field experiments and analyses on a hybrid solar collector[J]. Applied Thermal Engineering,23:2089-2105.
    96. Sun W, Ji J, Luo CL, et al.2011. Performance of PV-Trombe wall in winter correlated with south facade design[J]. Applied Energy,88:224-231.
    97. Tripanagnostopoulos Y, Nousia T, Souliotis M, et al.2002. Hybrid photovoltaic/thermal solar systems[J]. Solar Energy,72:217-234.
    98. Tyagi VV, Buddhi D.2007. PCM thermal storage in buildings:A state of art[J]. Renewable & Sustainable Energy Reviews,11:1146-1166.
    99. Thomas HP, Hayter SJ, Martin RL, et al.2000. PV and PV/Hybrid products for buildings[M]. In 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, UK,5:1-5.
    100. Thomas HP, Pierce LK.2001. Building integrated PV and PV/hybrid products-the PV: BONUS experience[M]. In the NCPV Program Review Meeting, Lakewood, Colorado,14-17.
    101. US Department of Energy,2008..
    102. Van Helden WGJ, Zondag HA.2002. Photovoltaic Thermal panels:on the brink of demonstration[M]. In Proceedings of PV in Europe-From PV Technology to Energy Solutions Conference and Exhibition, Rome, Italy,825-828.
    103. While DD.1935. The measurement of expansion valve capacity [J]. Refrigeration Engineering,8:108-111.
    104. Wang H, Touber S.1991. Distributed and Non-Steady-State Modeling of an Air Cooler[J]. International Journal of Refrigeration-Revue Internationale Du Froid,14:98-111.
    105. Warrington RO, Ameel TA.1995. Experimental Studies of Natural-Convection in Partitioned Enclosures with a Trombe Wall Geometry[J]. Journal of Solar Energy Engineering-Transactions of the Asme,117:16-21.
    106. Wang X, Zhang YP, Xiao W, et al.2009. Review on thermal performance of phase change energy storage building envelope[J]. Chinese Science Bulletin,54:920-928.
    107. Wang Q, Liu YQ, Liang GF, et al.2011. Development and experimental validation of a novel indirect-expansion solar-assisted multifunctional heat pump[J]. Energy and Buildings,43: 300-304.
    108. Xu GY, Zhang XS, Deng SM.2011. Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system[J]. Applied Thermal Engineering,31:3689-3695.
    109. Zalewski L, Chantant M, Lassue S, et al.1997. Experimental thermal study of a solar wall of composite type[J]. Energy and Buildings,25:7-18.
    110. Zakharchenko R, Licea-Jimenez L, Perez-Garcia SA, et al.2004. Photovoltaic solar panel for a hybrid PV/thermal system[J]. Solar Energy Materials and Solar Cells,82:253-261.
    111. Zondag HA, van Helden WGJ, Bakker M, et al.2005. PVT roadmap:a European guide for the development and market introduction of PVT technology. In the 6th Framework Programme,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700