功能材料结构与性能若干问题的计算机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与计算机技术相结合的计算材料和材料设计是现代材料科学研究的重要方面,本论文应用计算机模拟方法对功能材料的结构和性能等若干问题进行了研究,具体包括以下三个内容:运用第一性原理的方法研究了锂离子电池正极材料的电子结构、导电性能以及它们之间的关系;运用分子动力学方法研究了嵌入轻质小原子或者分子层状石墨体系的热学行为;运用第一性原理的方法研究了单分子科学领域内人工控制化学键的形成及其特性。
     一.能源材料是材料科学的一个重要分支,也是目前材料科学领域的研究热点之一。本文运用局域密度近似框架内的基于密度泛函理论的第一性原理方法,研究了LiCoO_2及其被非钴金属元素掺杂后LiCo_(0.92)M_(0.08)O_2(M=Ni,Zn,Mg,Al,Cr,Mn,Fe,Cu)的电子结构,然后加大了非钴元素掺杂的量,运用相同的方法研究了LiCo_(0.67)M_(0.33)O_2(M=Mg,Mn,Ni)的电子结构。计算结果表明,与LiCoO_2的相比,LiCo_(0.92)M_(0.08)O_2(M=Ni,Zn,Mg,Cr,Mn,Fe)的态密度和能带结构分布发生了有利于电导率提升的变化;LiCo_(0.92)M_(0.08)O_2(M=Al,Cu)的电导率没有得到提升;如果加大非钴元素的掺杂量,LiCo_(0.67)Mg_(0.33)O_2相对于LiCoO_2的电导率没有提升,LiCo_(0.67)Mn_(0.33)O_2或者LiCo_(0.67)Ni_(0.33)O_2相对于LiCoO_2的电导率依旧得到了提升。主要的计算结果与实验事实相符合,因而从理论上证明了掺杂适当数量的非钴原子Ni,Zn,Mg,Cr,Mn或者Fe可以改善LiCoO_2的导电性能;而LiCo_(0.92)M_(0.08)O_2(M=Al,Cu)的电导率并没有提高;如果引入非钴元素Mn或者Ni的量至0.33,则LiCoO_2的电导率也可以得到改善。我们把改进的、结合了氧离子的电荷平衡和补偿机制首次用于以上锂离子电池电极材料计算结果的讨论和解释,对探索和开发新的具有优异性能的正极材料具有启发和理论指导意义。
     二.石墨材料也是一种优质的电极材料,对石墨材料的理论和实验研究一直是电极材料研究领域的热点。本文的第二部分主要内容是运用分子动力学的方法研究了嵌入轻质原子Li和H的层状石墨体系的热学行为,发现:(1).Li和H在扩散过程中表现出不一样的特性,Li的行为更加复杂;(2).分别计算了LI-GIC和H-GIC的导带带隙,发现Li-GIC的导带带隙没有发生明显变化,相反,H-GIC的导带带隙变宽了0.1eV,这意味着H-GIC的电导率下降。这些计算结果表明,作为锂离子二次电池电极材料,层状石墨有更大的优势和潜力,是比较好的储锂材料。这些与实验事实也相符合,同时解释了石墨等炭材料储锂有较大的不可逆Li容量的原因。另外,我们还运用分子动力学方法研究了其它轻质小分子如CO_2、H_2O、NH_3等在层状石墨中的热运动,发现这些轻质小分子在层状石墨中的热学行为与H原子在层状石墨中的热学行为非常相似;当层状石墨中的小分子的数目有明显增加时,石墨的晶体结构将会遭到不可逆转的破坏,这一计算结果是与实际情况相符合的。上述计算结果对寻求具有更加优异性能的石墨类电极材料具有指导和启发意义。
     三.人工控制原子或分子组装成具有复杂功能的材料和器件是人们孜孜以求的目标,其基础科学—单原子分子科学备受关注。受到使用STM人工控制形成化学键的实验事实,也就是借助STM控制CO分子与吸附在Ag(110)表面的过渡金属元素原子Fe和Cu形成化学键的实验事实的启发,在团簇结构模型下,运用第一性原理的方法验证了该实验结果并探求了受控形成化学键的机制和特征,理论计算结果与实验事实完全一致。我们把这一模型推广到其它元素原子,即Sc,V,Cr,Mn,Co,Ni,Zn,Zr,Ag,Au以及一些稀土金属元素原子等。发现所形成的化学键实际上可以被分成下面的三大类。第一类:对于Fe,Co,Ni,Cr等这些d轨道没有全占的原子,形成M(CO)/Ag(110)体系的时候,对应的是S_1结构;形成M(CO)_2/Ag(110)体系的时候,对应的是SS_2结构。对M(CO)/Ag(110)体系而言,没有发现稳定的S_2结构;第二类:对于Cu,Zn,Ag,Au等这些d轨道全被占的原子,吸附在Ag(110)面上的时候,无论是M(CO)/Ag(110)体系还是M(CO)_2/Ag(110)体系,结构都与Cu原子的情形一样,都是S_3类型;第三类:对应于那些具有f轨道的稀土金属原子,它们形成化学键依赖与f轨道上的电子,而由于它们的f轨道在空间的伸展方向极其复杂,所以这类元素原子与CO分子成键后表现出来的情况也就复杂一些,其中的机理还需要进一步的探求。但是通过以上计算,有助于了解和揭示Fe,Cu,Sc,V,Cr,Mn,Co,Ni,Zn,Zr,Ag,Au以及一些稀土金属元素原子在Ag(110)面上与CO分子成键的过程和机理,对人工控制、操纵单原子或者单分子具有理论指导意义。特别需要指出的是,对于在Ag(110)表面稀土金属元素原子和CO分子成键的情况比较复杂,需要在选择适当的方法的基础上对这些体系做更加深入的研究。
Computational materials and materials design combined with computer techniques are important contents in materials science. Here three main aspects of the dissertation have been achieved by computer simulations and modeling using first principle theory or molecular dynamics methods: electronic structures, conductive properties and their relationship of the cathode material LiCoO_2 and its doped compounds used in Li-ion rechargeable batteries; thermal behaviors of the systems of layered graphite intercalated with H, Li and other small molecules; the controlled formations of chemical bonds and their characteristics.
    1. Energy material is an important branch of materials science, and is also a research hotspot. In this dissertation, the electronic structures of LiCoO_2 and its doped compounds LiCo_(0.92)M_(0.08)O_2 (M=Ni, Zn, Mg, Al, Cr, Mn, Fe, Cu) have been studied using first principle theory based on density-functional theory (DFT) in local density approximation (LDA), based on the results of which, the electronic structures of LiCo_(0.67)M_(0.33)O_2 (M=Mg, Mn, Ni) have been also studied in the same methods. As the calculated results shown, compared with LiCoO_2, the band structures and the distributions of density of states (DOS) of the doped compounds have been changed for LiCo_(0.92)M_(0.08)O_2 (M=Ni, Zn, Mg, Cr, Mn, Fe), which indicated that the electronic conductivities of these doped compounds have been improved, while the electronic conductivities of LiCo_(0.92)M_(0.08)O_2 (M=Al, Cu) have not been improved. The same method is used for LiCoo.67Mo.33O2 (M=Mg, Mn, Ni) with more non-Co atoms doped to LiCoO_2. It is found that the electronic conductivities of the gained LiCo_(0.67)Mn_(0.33)O_2 and LiCo_(0.67)Ni_(0.33)O_2 have been improved compared with LiCoO_2, while the electronic conductivities of LiCo_(0.67)Mg_(0.33)O_2 have not. These facts are in accord with the experimental results. Thus it has been theoretically testified that after doped with Ni, Zn, Mg, Cr, Mn, and Fe in a proper amount, the electronic conductivity of the cathode material LiCoO_2 can be improved, while doped with Al and Cu the electronic conductivity of LiCoO_2 will not be improved. And it is proved that the electronic conductivities of LiCo_(0.67)Mn_(0.33)O_2 and LiCo_(0.67)Ni_(0.33)O_2 are higher than that of LiCoO_2. The improved mechanism of charge balance and compensation with Oxygen ions taken into account is firstly adopted to explain for these changes of cathode materials used in Li-ion rechargeable batteries and the calculated results may afford enlightenment and guidance for exploring and developing new type cathode materials with high properties and performances.
    2. Graphite is also a kind of electrode material with high quality and attracts much research attention experimentally and theoretically. The thermal behaviors for the system of graphite intercalated with small atoms or molecules like H and Li have been studied using molecular dynamics (MD) method in this dissertation. And the conductive band gaps for them have been calculated using the extended Huckel method. It is found that the rates of diffusion of both Li and H atoms increase with the increase of the simulation temperature: from 50K to 200K, and the specific diffusive behaviors and rates for Li and H are different according to their trajectories. The thermal behaviors of Li are more complex than that of H. The conductive gap is broadened by about 0.1eV for H-GIC, but it remains unchanged for Li-GIC, which indicates that the addition of Li does not influence the conduction characteristic of graphite while that of H does. These results tell the fact that Li-GIC is proposed to be a favorable material for the electrode, which is consistent with the experimental facts. At the same time, these calculated results have explained why there exists a fairly irreversible capacity of Li for graphite and other carbonaceous materials. Besides, systems of layered graphite intercalated with CO_2, H_2O and NH_3 etc. have also been studied by MD method, the results of which show that the thermal behaviors of these small molecules are similar to those of H and the lattice structures of layered graphite will be destroyed irreversibly if the quantity of these small molecules increases. This is coincident with facts.
    3. It is a great goal to control atoms or molecules to build up functional structures and devices. The third part of our work is following an experimental fact of the controlled formations of chemical bonds between CO and Fe/Cu adsorbed on Ag (110) using STM. The experimental fact is testified and characterized by the first principle method. And we have extended this method to other series of metal atoms adsorbed on Ag (110), such as Sc, V, Cr, Mn, Co, Ni, Zn, Zr, Ag, Au and some lanthanons. It is found that according to their electron number in the outermost layer orbital, the calculated results can be classified into three kinds, (i). With an unfully occupied d orbital, such as Fe, Co, Ni and C, structures for M(CO)/Ag(110) are corresponding to S_1 and structures for M(CO)_2 /Ag(110) are corresponding to SS_2, no stable S_2 structures are found for m(CO)/Ag(110); (ii). With a fully occupied d orbital, such as Cu, Zn, Ag and Au, the structures for both m(CO) / Ag (110) and M(CO)_2/Ag(110) are corresponding to S_3; (iii). With f orbital, such as those lanthanons, the structures for M(CO)/Ag(110) and M(CO)_2/Ag(110) are very complex because of the complicated space extending directions for f and more and deeper investigations into the
    mechanisms for chemical bond formations between lanthanons and CO should be undertaken. The calculated results also show that the chemical bonds between these metal atoms and CO appear different characteristics, for example, different bond angles, different bond energy and different torsions because of their different space extending directions of outmost layer orbital. The frontier orbital theory (FOT) has been adopted to explain these results. All of these results help us to understand the procedures for controlled chemical bond formations and may provide enlightenments in controlling and manipulating single atoms or molecules.
引文
[1].吕鸣祥,黄长保,宋玉瑾编著。化学电源[M],天津大学出版社,1992
    [2].夏熙。中国化学电源50年(2)[J],电池,1999,29(6):236-242
    [3].周震,阎杰,叶世海等。泡沫型氢氧化镍正极的研究进展[J],高技术通讯,1997,7(8):58-62
    [4].李国华。与二次锂电池正极活性物质开发相关的基础研究。博士学位论文,.天津大学,1996
    [5].唐致远,高飞,薛建军,杨廷明。锂离子电池聚合物电解质的研究进展[J],化工进展,2004,23(12):1308-1311
    [6]. T. Nagaura and K. Tazawa. Lithium ion rechargeable battery. Prog. Battery Sol. Cells[J], 1999, 9: 209
    [7]. A. S. Gozdz, J. M. Tarascon, P. C. Warren. Method of making an electrolyte activatable lithium ion rechargeable battery cell. U.S. patent, 54560000, 1995
    [8]. A. S. Gozdz, J. M. Tarascon, P. C. Warren. Electrolyte activatable lithium ion rechargeable battery cell. U.S. patent, 5460904, 1995
    [9]. http://chinalithium.51.net/204.htm
    [10]. B. Scrosati. Lithium rocking chair batteries: an old concept?[J], J. Electrochem. Soc., 1992, 139(10): 2776
    [11].钟俊辉。锂离子电池及其材料[J],电池,1996,26(2):91—95
    [12]. http://www.polystor.com/publish/paper3 Lithium-ionPart1.PDF
    [13].夏熙。中国化学电源50年(4)[J],电池,2001,31(1):29-35
    [14]. T. Ohzuku, Y. Iwakoshi, and K. Sawai. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion(Shuttlecock) cell[J]. J. Electrochem. Soc., 1993, 140: 2490
    [15]. R. Fong, U. V. Sacken and J. R. Dahn. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J]. J. Electrochem. Soc., 1990, 137: 2009
    [16]. A. Mabuci, K. Tokumity, H. Fujimoto, et al. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperature[J]. J. Electrochem. Soc., 1995, 142; 1041
    [17]. K. Tatsumi, K. Zaghi, and T. Sanada. Anode performance of vapor-grown carbon fibers in secondary lithium ion batteries[J]. J. Electrochem. Soc., 1995, 142: 1090
    [18]. N. Takami, A, Satoh, M. Hara, et al. Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes[J]. J. Electrochem. Soc., 1995, 142: 2564
    [19]. M. Jean, C, Menachem, D. Bar-Row, et al. Electrochemical and structural studies petroleum coke in carbonate- based electrolytes[J]. J. Electrochem. Soc., 1996, 142: 2122
    [20]. M. W. Verbrugge, and B. J. Koch. Lithium intercalation of petroleum coke[J]. J. Electrochem. Soc., 1996, 143: 24
    [21].唐致远,庄新国。锂离子电池负极材料研究进展[J]。电源技术,2000,32:108
    [22].江志裕。锂离子电池的某些研究进展[J]。电池,1997,27(6):255-258
    [23]. M. Brousely, P. Biensan, B. Simon. Lithium Insertion into host materials: the key to success for lithium ion batteries[J]. Electrochimica Acta. 1999, 45: 3
    [24]. D. Aurbach, Y. Ein-Eli, B. Markovsky, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries[J]. J. Electrochem. Soc., 1995, 142: 2882
    [25].钟俊辉。锂离子电池的正极材料[J]。电源技术,1997,21(4)174-177
    [26]. Yazami R. High performance LiCoO2 positive electrode material[J]. J. Power Sources, 1995, 54(2): 389-392
    [27]. Larcher D. Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions[J]. J. Electrochem. Soc., 1997,144(2): 408-417
    [28]. Yamada S. Synthesis and properties of LiNiO_2 as cathode material for secondary batteries[J]. J. Power Sources, 1995, 54: 209-213
    [29]. Broissely M. LiNiO_2- a promising cathode for rechargeable lithium batteries[J]. J. Power Sources, 1995, 54: 101-114
    [30]. Tarascon J M. Li metal-free rechargeable batteries based on Li_(1-x)Mn_2O_4 cathode and carbon anodes[J]. J. Electrochem. Soc., 1991, 138: 2864
    [31]. Yang, Mu-Rong; Ke, Wei-Hsin; Wu, She-Huang, Preparation of LiFePO_4 powders by co-precipitation[J], Journal of Power Sources Volume: 146, Issue: 1-2, August 26, 2005, pp. 539-543
    [32]. Zhang, S. S.; Allen, J. L.; Xu, K.; Jow, T. R., Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes[J], Journal of Power Sources Volume: 147, Issue: 1-2, September 9, 2005, pp. 234-240
    [33]. Kim, Cheol Woo; Lee, Moon Hee; Jeong, Woon Tae; Lee, Kyung Sub, Synthesis of olivine LiFePO_4 cathode materials by mechanical alloying using iron(Ⅲ) raw material[J], Journal of Power Sources 146(1-2) (2005) 534-538
    [34]. http://www.uscar.org/pngv/technical/power.htm
    [35]. Mizushima K. Li_xCoO_2(0<x<1): A new cathode material for batteries of high energy density[J]. Solid State Ionics, 3/4 (1981) 171
    [36]. Nakamura T, Kajiyama A. Synthesis of LiCoO_2 particles with uniform size distribution using hydrothermally precipitated Co_3O_4 fine particles[J]. Solid State Ionics, 123(1999) 95
    [37]. Yoshio M, Tanaka H, Tominaga K, et al. Synthesis of LiCoO_2 from cobaly-organic acid complexes and its electrode behavior in a lithium secondary battery[J]. J. Power Sources, 40(1992) 237
    [38]. Peng Z S, Wan C R, Jiang C Y. Synthesis by sol-gel progress and characterization of LiCoO_2 cathode materials[J]. J. Power Sources, 72(1998) 215
    [39]. Kang S G, Kang S Y, Ryu K S. Electrochemical and structure properties of HT-LiCoO2 and LT-LiCoO_2 prepared ny the citrate sol-gel method[J]. Solid State Ionics, 120 (1999) 155
    [40]. Kanamura K, Goto A, Umegaki T. Preparation of LiCoO2 cathode material for rechargeable lithium batteries using supercritical water synthesis. Abstract No.186, in meeting Abstracts, Vol. 99-2. The 1999 Joint International Meeting, Hawaii, October 17-22, 1999
    [41]. Kim J, Fulmer P, Manthiram A. Synthesis of LiCoO_2 cathode by an oxidation reaction in solution and their electrochemical properties[J]. Materials Research Bulletin, 34(1999) 571
    [42].李阳性,吴宇平,万春荣等。LiCoO_2超细粉的制备和结构研究。China International Battery Fair,Beijing,1999
    [43]. Imanishi N, Fujiyoshi M, Takeda Y. Preparation and ~7Li-NMR study of chemically delithiated Li_(1-x)CoO_2 (0<x<0.5) [J]. Solid State Ionics, 1999, 118: 121
    [44].张开明,顾昌鑫。《计算物理学》,复旦大学出版社,1987年,ISBN:7-309-00026-9/O·05
    [45]. G. Ceder et al., Identification of cathode materials for lithium batteries guided by first-principles calculations[J], Nature 392 (1998) 694-696
    [46]. C. T. Kaiser, V. W. J. Verhoeven, P. C. M. Gubbens, E M. Mulder, I. de Schepper, A. Yaouanc, P. Dalmas de Reotier, S. P. Cottrell, E. M. Kelder, and J. Schoonman, Li mobility in the battery cathode material Li_xMn_(1.96)Li_(0.04)O_4 studied bymuon-spin relaxation[J], Physical Review B, Volume 62, Number 14, 9236-9239
    [47]. Yanna NuLi, Baofeng Wang, Jun Yang , Xianxia Yuan, Zifeng Ma, Gu_5Si/C composites for lithium-ion battery anodes[J], Journal of Power Sources 153 (2006) 371-374
    [48]. Jisuk Kim, Mijung Noh, Jaephil Cho, Improvement of 12V overcharge behavior of LiCoO_2 cathode material by LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 addition in a Li-ion cell[J], Journal of Power Sources 153 (2006) 345-349
    [49]. H. Schranzhofer, J. Bugajski, H.J. Santner, C. Korepp, K.-C. M¨oller, J.O. Besenhard, M. Winter, W. Sitte, Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes[J], Journal of Power Sources 153 (2006) 391-395
    [50]. Pritpal Singh, Ramana Vinjamuri, Xiquan Wang, David Reisner, Fuzzy logic modeling of EIS measurements on lithium-ion batteries[J], Electrochimica Acta 51(2006)1673-1679
    [51]. Masanobu Nakayama, Mayumi Kaneko, Yoshiharu Uchimoto, MasatakaWakihara, and Katsuyuki Kawamura, Molecular Dynamics Simulations of LiCo_yMn_(2-y)O_4 Cathode Materials for Rechargeable Li Ion Batteries[J], J. Phys. Chem. B 2004,108, 3754-3759
    [52]. Robert A. Huggins, Lithium electrode reactants containing hydrogen or water[J], Journal of Power Sources 153 (2006) 365-370
    [53]. Patrik Johansson, Per Jacobsson, Rational design of electrolyte components by ab initio calculations[J], Journal of Power Sources 153 (2006) 336-344
    [54]. Mark W. Verbrugge, Daniel R. Baker, Brian J. Koch Mathematical modeling of high-power-density insertion electrodes for lithium ion batteries[J], Journal of Power Sources 110 (2002) 295-309
    [55]. Heinz Wenzl, Ian Baring-Gould, Rudi Kaiser, Bor Yann Liaw, Per Lundsager, Jim Manwell, Alan Ruddell, Vojtec Svoboda, Life prediction of batteries for selecting the technically most suitable and cost effective battery [J], Journal of Power Sources 144 (2005) 373-384
    [56]. Bor Yann Liaw, Rudolph G. Jungst, Ganesan Nagasubramanian, Herbert L. Case,Daniel H. Doughty, Modeling capacity fade in lithium-ion cells[J], Journal of Power Sources 140 (2005) 157-161
    [57]. S.H. Garofalini, Molecular dynamics simulations of Li transport between cathode crystals[J], Journal of Power Sources 110 (2002) 412-415
    [58]. Kamalnayan Kantilal Patel, Jens M. Paulsen, Johann Desilvestro, Numerical simulation of porous networks in relation to battery electrodes and separators[J], Journal of Power Sources 122 (2003) 144-152
    [59]. J.W. Halley, Yuhua Duan, Role of atomic level simulation in development of batteries[J], Journal of Power Sources 110 (2002) 383-388
    [60]. F. Soldera, A. Lasagni, F. Mucklich, T. Kaiser, K. Hrastnik, Determination of the cathode erosion and temperature for the phases of high voltage discharges using FEM simulations[J], Computational Materials Science 32 (2005):123 - 139
    [61]. Masatoshi Majimaa, Satoshi Ujiieb, Eriko Yagasakib, Shinji Inazawaa, Kenji Miyazaki, Development of 1 kW h class lithium ion battery for power storage[J], Journal of Power Sources 92 (2001): 108-119
    [62]. Keizo Yamada, Ken-ichi Maeda, Kazuya Sasaki, Tokiyoshi Hirasawa, Computer-aided optimization of grid design for high-power lead-acid batteries[J], Journal of Power Sources 144 (2005) 352-357
    [63]. B. Wu, R.E. White, A procedure for serial simulation of electrochemical processes: cycling of electrodes and batteries[J], Journal of Power Sources 92 (2001) 177-186
    [64]. G. Ceder and A. Van der Ven, Phase diagrams of lithium transition metal oxides: investigations from first principles[J], Electrochim Acta 45 (1999) 131-150
    [65]. B. Ammundsen and J. Paulsen, Novel Lithium-Ion Cathode Materials Based on Layered Manganese Oxides [J], Adv. Mater.13 (2001):943-956
    [66]. D.D. MacNeil, Z. Lu, and J.R. Dahn, Structure and Electrochemistry of Li[Ni_xCo_(1-2x)Mn)x]O)2 (0≤ x ≤ 1/2) [J], J. Electrochem. Soc. 149, A1332 (2002)
    [67]. T. Ohzuku and Y. Makimura, [J] Chem. Lett. 8 (2001) 744
    [68]. A. Van der Ven, M.K. Aydinol, G. Ceder,G. Kresse, and J. Hafner, First-principles investigation of phase stability in Li_xCoO_2[J], Phys. Rev. B 58 (1998) 2975-2987
    
    [69]. J.N. Reimers and J.R. Dahn, [J] J. Electrochem. Soc. 139 (1992) 2091
    [70]. A. Van der Ven and G. Ceder, Lithium Diffusion in Layered Li_xCoO_2[J], Electrochem. Solid-State Lett. 3(7) (2000) 301-307
    [71]. H. Wang, Y. I. Jang, B. Huang, D.R. Sadoway, and Y. M. Chiang, Electrochemical Cycling-Induced Spinel Formation in High-Charge-Capacity Orthorhombic LiMnO_2[J], J. Electrochem. Soc. 146 (1999) 3217-3223
    [72]. A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions[J], Rev. Mod. Phys. 68 (1996) 13-125
    [73]. J. Newman and W. Tiedemann, [J] AIChE J. 21 (1975) 25
    [74]. www.mrs.org/publications/bulletin
    [75]. M. Doyle, J.P. Meyers, and J. Newman, Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries[J], J. Electrochem. Soc. 147 (2000) 99-110
    [76]. M. Doyle and J. Newman, The use of mathematical modeling in the design of lithium/polymer battery systems[J], Electrochim. Acta 40 (1995) 2191-2196
    [77]. G.G. Botte, V.R. Subramanian, and R.E. White, Mathematical modeling of secondary lithium batteries[J], Electrochim. Acta 45 (2000) 2595-2609
    [78]. K.E. Thomas, J. Newman, and R.M. Darling, in Advances in Lithium-Ion Batteries, edited by W. van Schalkwijk and B. Scrosati (Kluwer Academic/Plenum Publishers, New York, 2002) 345
    [79]. John Christensen, Venkat Srinivasan, John Newman, Optimization of Lithium Titanate Electrodes for High-Power Cells[J] J. Electrochem. Soc. 153 (2006) A560-A565
    [80]. Venkat Srinivasan, John Newman, Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell[J], J. Electrochem. Soc. 151(10) (2004) A1530-A1538
    [81]. H. Wang, Y. I. Jang, B. Huang, D.R. Sadoway, and Y. M. Chiang, Electrochemical Cycling-Induced Spinel Formation in High-Charge-Capacity Orthorhombic LiMnO_2[J], J. Electrochem. Soc. 146 (1999) 3217-3223
    [82]. A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions[J], Rev. Mod. Phys. 68 (1996) 13-125
    [83]. J. Newman and W. Tiedemann, [J] AIChE J. 21 (1975) 25
    [84]. G.G. Botte, V.R. Subramanian, and R.E. White, Mathematical modeling of secondary lithium batteries[J], Electrochim. Acta 45 (2000) 2595
    [85]. M. Doyle, J.P. Meyers, and J. Newman, Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries[J] J. Electrochem. Soc. 147 (2000) 99-110
    [86]. M. Doyle and J. Newman, The use of mathematical modeling in the design of lithium/polymer battery systems[J], Electrochim. Acta40 (1995) 2191
    [87]. K.E. Thomas, J. Newman, and R.M. Darling, in Advances in Lithium-Ion Batteries, edited by W. van Schalkwijk and B. Scrosati (Kluwer Academic/Plenum Publishers, New York, 2002) 345.
    [88]. Chung S. Y., Bloking J. T., Chiang Y. M., Electronically conductive phospho-olivines as lithium storage electrodes[J], Nature Materials, 1 (2002) 123
    [89]. Shi S Q, Liu L J et al., Enhancement of electronic conductivity of LiFePO_4 by Cr doping and its identification by first-principles calculations[J], Phys. Rev., 68 (2003) 195108-195112
    
    [90]. M. Born, J. R. Oppenheimer, [J] Ann. Phys. 87(1927) 457
    [91]. D.R. Hartree, [J] Proc. Cam. Phil. Soc. 24 (1928) 89
    [92]. V. Fock, [J] Z. Phys. 61 (1930) 209
    [93]. J. C. Slater, Quantum Theory of Atomic Structure, Mc Graw-Hill, New York, 1960
    
    [94]. P. Hohenberg, W. Khon, [J] Phys. Rev. 136 (1964) B864
    [95]. W. Khon, L. J. Sham, [J] Phys. Rev. 140 (1965) A1133
    [96]. L. Hedin, B. I. Lundquist, [J] J. Phys. C4 (1971) 2064
    [97]. D. J. Chadi, M. L. Cohen, Special Points in the Brillouin Zone[J], Phys. Rev. B, 8 (1973) 5747-5753
    [98]. H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations[J], Phys. Rev. B, 13 (1976) 5188-5192
    [99]. C. H. Chen, [J] Solid State Commun. 48 (1983) 235
    [100]. Zhang, L.L., Zhou, L.X., Zhang, J.H., Statistical method for molecular dynamics in mixed crystals[J], Solid State Communications, 128 (2003) 375-379
    [101]. Antolini Ermete, LiCoO_2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties[J], Solid State Ionics 170 (2004), 159-171
    [102]. Zhao Hailei, Gao Ling, Qiu Weihua, Zhang Xiuhua, Improvement of electrochemical stability of LiCoO_2 cathode by a nano-crystalline coating[J], J. of Power Sources 132 (2004), 195-200
    [103]. Chen Zhanhui, Dahn J. R., Methods to obtain excellent capacity retention in LiCoO_2 cycled to 4.5 V[J], Electrochemica Acta 49 (2004), 1079-1090
    [104]. Ozawa Yasunori, Yazami Rachid, Fultz Brent, Self-discharge study of LiCoO_2 cathode materials[J], J. of Power Sources 119-121 (2003) 918-923
    [105]. Fuel Cell Bulletin 13 (2003)
    
    [106]. Cho Jaephil, [J] Electrochemistry Communications 5 (2003), 146-148
    
    [107]. Liu Lijun, Wang Zhaoxiang, Li Hong, Chen Liquan, Huang Xuejie,Al_2O_3-coated LiCoO_2 as cathode material for lithium ion batteries[J], Solid State Ionics 152-153 (2002), 341-346
    [108]. Kim Mun-Kyu, Park Kyu-Sung, Son Jong-Tae, Kim Jim-Gyum, The electrochemical properties of thin-film LiCoO_2 cathode prepared by sol-gel process[J], Solid State Ionics 152-153 (2002), 267-272
    [109]. Fujiwara Takeshi, Nakagawa Yoshinori, Nakaue Takuya, Song Seung-Wan, Watanabe Tomoaki, Direct fabrication of crystallized LiCoO_2 films on paper by artificial biomineralization with electrochemically activated interfacial reactions[J], Chemical Physics Letters 365 (2002) 369-373
    [110]. Zhou Yingke, Shen Chengmin, Li Hulin, Synthesis of high-ordered LiCoO_2 nanowire arrays by AAO template[J], Solid State Ionics 146(2002), 81-86
    [111]. G Ceder et al, First-principles alloy theory in oxides[J], Modeling Simul. Mater. Sci. Eng. 8 (2000) 311-321
    [112]. Ramadass P, Haran Bala, White Ralph, Popov Branko N, Performance study of commercial LiCoO_2 and spinel-based Li-ion cells[J], J. of Power Sources 111(2002) 210-220
    [113]. Park Sung-Chul, Improvement of the rate capability of LiMn_2O_4 by surface coating with LiCoO_2[J], J. of Power Sources 103 (2001) 86-92
    [114]. Belharouak I, Sun Y K, Liu J, Amine K, Li(Ni_(1/3)Co(1/3)Mn_(1/3))O_2 as a suitable cathode for high power applications [J], J. of Power Sources 123 (2003) 247-252
    [115]. livshits V, Blum A, Strauss E, Adel G, Golodnitsky D, Peled E, Development of a bipolar Li/composite polymer electrolyte/pyrite battery for electric vehicles[J], J. of Power Sources 97-98 (2001) 782-785
    [116]. Kim C, Nishimura K, Fujino T, Miyashita K, Recent development of carbon materials for Li ion batteries[J], Carbon 38 (2000) 183-197
    [117]. C.M. Julien, M. Massot, Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel[J], Materials Science &Engineering B 97 (2003) 217-230
    [118]. Ki Soo Park, Hyung Hun Cho, Sang Ho Park, The effects of Ni and Li doping on the performance of lithium manganese oxide material for lithium secondary batteries[J], Electrochimica Acta 47 (2002), 2937-2942
    [119]. Tukamoto, H., West, A. R., Electronic Conductivity of LiCoO_2 and Its Enhancement by Magnesium Doping[J], J. Electrochem. Soc. 144 (1997), 3164-3169
    [120]. X. G. Xu, C. Li, J. X. Li, U. Kolb, F. Wu, G. Chen, Electronic Structure of Li(Co, Mg)O_2 Studied by Electron Energy-Loss Spectrometry and First-Principles Calculation[J], J. Phys. Chem. B 107 (2003), 11648-11651
    [121]. Czyzuyk, M. T., Potze, R., Sawatzky, G. A., Band-theory description of high-energy spectroscopy and the electronic structure of LiCoO_2[J], Phys. Rev. B, 46(1992) 3729-3735
    [122]. Arroyoyde Dompablo M E , Marianetti C , Van der Ven A and Ceder G., Jahn-Teller mediated ordering in layered Li_xMO_2 compounds[J], Phys. Rev. B, 63 (2003) 144107-144115
    [123]. Marianetti C A, Morgan D and Ceder G, First-principles investigation of the cooperative Jahn-Teller effect for octahedrally coordinated transition-metalions[J], Phys. Rev. B, 63 (2001) 224304-224318
    [124]. Payne M. C., Teter M. P., Alan D. C., Arias T. A., Joannopoulos J. D., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J], Rev. Mod. Phys. 64 (1992) 1045-1097
    [125]. Yang Shan-Horn, Laurence Croguennec, Claude Delmas, E. Chris Nelson, Michael A. O'Keefe, Atomic resolution of lithium ions in LiCoO_2[J], Nature Materials 2 (2003), 464-467
    [126]. Aydinol, M. K., Kohan, A. F., Ceder G, Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides[J], Phys. Rev. B, 56 (1997) 1354-1365
    [127]. R. V. Chebiam, F. Prado, A. Manthiram, Soft Chemistry Synthesis and Characterization of Layered Li_(1-x)Ni_(1-y)Co_yO_(2-δ) (0 ≤x ≤1 and 0 ≤y ≤1)[J], Chem. Mater. 13(2001) 2951-2957
    [128]. Joongpyo Shim, Striebel, K.A., The dependence of natural graphite anode performance on electrode density[J], Journal of Power Sources Vol.130(l-2) (2004) 247-253
    [129]. Levi, M. D., Wang, C., Aurbach, D., Self-discharge of graphite electrodes at elevated temperatures studied by CV and electrochemical impedance spectroscopy[J], J Electrochem. Soc. 151(5) (2004) A781-A790
    [130]. Dong, H., Ai, X.P., Yang, H.X., Carbon/Ba-Fe-Si alloy composite as high capacity anode materials for Li-ion batteries[J], Electrochemistry Communications Vol.5 (2003) 952-957
    [131]. Naichao Li, Mitchell, D.T., Kyu-Pil Lee, et al., A nanostructured honeycomb carbon anode[J], Journal of the Electrochemical Society, Vol.150 (2003) A979-984
    [132]. Markevich, E, Levi, MD, Aurbach, D, New insight into studies of the cycling performance of Li-graphite electrodes[J], J Electrochem. Soc., 152 (2005) A778-A786
    [133]. Tan, WT, Teu, SF, Electrochemical oxidation of ascorbic acid mediated by a carbon nanotubes/Li+ modified graphite electrode[J], Proceedings Of The IEEE Sensors 2004, Vol. 1-3 (2004) 697-700
    [130]. Tachikawa, H, Shimizu, A Diffusion dynamics of the Li+ ion on a model surface of amorphous carbon: A direct molecular orbital dynamics study[J], J Phys. Chem. B 109 (2005) 13255-13262
    [131]. Yazici MS, Krassowski D, Prakash J. Flexible graphite as battery anode and current collector[J], Journal Of Power Sources 141 (2005) 171-176
    [132]. Beguin, F, Chevallier, F, Vix-Guterl, C, et al.Correlation of the irreversible lithium capacity with the active surface area of modified carbons[J], Carbon 43 (2005) 2160-2167
    [133]. Eguchi, K, Hatano, H, Reduction of irreversible capacity by coating with polymeric amine compound over artificial graphite for anode of lithium ion secondary batteries[J], Electrochemistry 73 (6): 429-434 Jun 2005
    [134]. K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, [J] Science 264 (1994) 556
    
    [135]. Watanabe, K.; Austin, N.; Stapleton M. R., [J] Molec. Sim. 15(1995) 197-221
    [136]. Brown, D.; Clark, J. H. R., [J] Molecular Physics 51(1984) 1243-1252
    [137]. Yashonath, S.; Thomas, J. M.; Nowak, A. K.; Cheetham, A. K., [J] Nature 331 (1988)601
    [138]. Zaghib, K, Song, X, Guerfi, A, et al., Effect of particle morphology on lithium intercalation rates in natural graphite[J], J Power Sources 124 (2): 505-512 Nov 24 2003
    [139]. A. Marquez, A. Vargas, P.B. Balbuena, Computational Studies of Lithium Intercalation in Model Graphite in the Presence of Tetrahydrofuran[J], J. Electrochem. Soc. 145 (1998) 3328-3334
    [140].周耐根,周浪,外延生长薄膜中失配位错形成条件的分子动力学模拟研究[J],物理学报,54(7),2005,3278-3283
    [141]. Godehard Sutmann, Classical Molecular Dynamics, NIC Series, Vol. 10, ISBN 3-00-009057-6, p211-254, 2002
    [142]. Mark E. Tuckerman, Ab lnitio Molecular Dynamics and Ab Initio Path Integrals, NIC Series, Vol. 10, ISBN 3-00-009057-6, p299-324, 2002
    [143]. Dominik Marx and Jürg Hutter, Ab Initio Molecular Dynamics: Theory and Implementation, NIC Series, Vol. 3, ISBN 3-00-005834-6, p329-477, 2000
    [144]. Furio Ercolessi, A Molecular Dynamics Primer, Spring College in Computational Physics, ICTP, Trieste, June 1997 15-16
    [145]. Jaana Ennari, Vibrational spectra as experimental probes for molecular models of ion-conducting polyether systems[J], Polymer 38 (1997) 3733-3744
    [146]. Kostecki, R., McLarnon, E, Microprobe study of the effect of Li intercalation on the structure of graphite[J], Journal of Power Sources Vol.119-121: 550-41 June 2003
    [147]. Sawai, K., Ohzuku, T., Factors affecting rate capability of graphite electrodes for lithium-ion batteries[J], Journal of the Electrochemical Society Vol.150(6): A674-678 June 2003
    [148]. Jortner J, Ratner, eds. Molecular Electronics: A Chemistry for the 21st Century, International Union of Pure and Applied Chemistry, Blackwell Science, 1997
    [149]. Jung T. A. et al. Controlled room-temperature positioning of individual molecules: Molecular Flexure and Motion[J], Science, 271 (1996) 181-184
    [150]. Yakobson B. I., Smalley R. E. Fullerene Nanotubes C1000000 and Beyond[J]. American Scientist, 85 (1997) 324
    [151].白春礼.原子和分子的观察与操纵.长沙:湖南教育出版社,1994:119—138[BAI Chun2Li.Observation and Manipulation of Atoms and Molecules.Changsha:Hunan Education Press,1994:119—138(in Chinese)]
    [152]. Uppenbrink J, Clery D., Single Molecules[J], Science, 283 (1999) 1667
    [153].李银妹.光镊原理、技术和应用.合肥:中国科学技术大学出版社,1996:3—15[L I Yin2Mei.Principle,Technology and Application of Optical Tweezers.Hefei:Press of University ofScience and Technology of China,1996:3—15(in Chinese)]
    [154]. F. F. Crim, [J] Science 249, (1990) 1387
    [155]. A. P. Peirce, M. A. Dahleh, and H. Rabitz, Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications[J], Phys. Rev. A 37 (1988) 4950-4964
    
    [156]. G. Binnig, H. Rohrer, and E. Weibel, [J] Phys. Rev. Lett. 49, 52(1982)
    [157]. D. M. Eigler and E. K. Schweizer, [J] Nature 344 (1990) 524
    [158]. M. F. Crommie, C. P. Lutz, and D. M. Eigler, [J] Science 262, (1993) 218
    [159]. L. Bartels, G. Meyer, K.H. Rieder, Basic Steps of Lateral Manipulation of Single Atoms and Diatomic Clusters with a Scanning Tunneling Microscope Tip[J], Phys. Rev. Lett., 79 (1997) 697-700
    [160]. J. K. Gimzewski and C. Joachim, Nanoscale Science of Single Molecules Using Local Probes[J], Science 283, (1999) 1683-1688
    [161]. R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, Atomic-scale conversion of clean Si(111):H-1×1 to Si(111)-2xl by electron-stimulated desorption[J], Phys.Rev. Lett., 65 (1990) 1917-1920
    [162]. D. M. Eigler, C. P. Lutz, and W. E. Rudge, [J] Nature 352, 600(1991)
    [163]. L. Bartels, M. Wolf, T. Klamroth, P. Saalfrank, A. Kuhnle, G. Meyer, and K.H. Rieder, Atomic-scale chemistry: Desorption of ammonia from Cu(111) induced by tunneling electrons[J], Chem. Phys. Lett. 313 (1999) 544-552
    [164]. B. C. Stipe, M. A. Rezaei, and W. Ho, Inducing and Mewing the Rotational Motion of a Single Molecule[J], Science 279, (1998) 1907-1909
    [165]. B. C. Stipe, M. A. Rezaei, and W. Ho, Coupling of Vibrational Excitation to the Rotational Motion of a Single Adsorbed Molecule[J], Phys. Rev. Lett., 81 (1998) 1263-1266
    [166]. B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, and B. I. Lundqvist, Single-Molecule Dissociation by Tunneling Electrons[J], Phys. Rev. Lett. 78 (1997) 4410-4413
    
    [167]. G. Dujardin, R. E. Walkup, and Ph. Avouris, [J] Science 255, (1992) 1232
    [168]. B. C. Stipe, M. A. Rezaei, and W. Ho, Single-Molecule Vibrational Spectroscopy and Microscopy[J], Science 280, (1998) 1732-1735
    [169]. B. C. Stipe, M. A. Rezaei, and W. Ho, Localization of Inelastic Tunneling and the Determination of Atomic-Scale Structure with Chemical Specificity[J], Phys. Rev. Lett. 82 (1999) 1724-1727
    [170]. H. J. Lee and W. Ho, Single-Bond Formation and Characterization with a Scanning Tunneling Microscope[J], Science 286, (1999) 1719-1722
    [171]. H. J. Lee and W. Ho, Structural determination by single-molecule vibrational spectroscopy and microscopy: Contrast between copper and iron carbonyls[J], Phys. Rev. B 61 (2000) R16347-R16350
    
    [172]. S. H. Vosko, L. Wilk, and M. Nusair, [J] Can. J. Phys. 58,1200(1980)
    [173]. A. D. Becke, A multicenter numerical integration scheme for polyatomic molecules[J], J. Chem. Phys. 88 (1988) 2547-2553
    [174]. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy[J], Phys. Rev. B 45 (1992) 13244-13249
    [175]. DMOL Density Functional Theory electronic structure program, Accelrys Inc. (1996)
    [176]. P. S. Bagus and C. Wo¨11, Orientational effects in molecule-surface interactions: bonding directionality versus steric repulsion[J], Chem. Phys. Lett. 294 (1998) 599-604
    [177]. M. A. van Daelen, Y. S. Li, J. M. Newsam, and R. A. van Santen, Energetics and Dynamics for NO and CO Dissociation on Cu(100) and Cu(lll) [J], J. Phys. Chem., 100 (1996) 2279-2289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700