含碳硼烷/金属碳硼烷化合物的电子结构和非线性光学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多面体硼簇化合物是一类通过共价键构成的具有特殊结构和非常规成键的化合物,因其丰富的形成种类、特殊的电子结构以及良好的化学稳定性,而具有很多的潜在应用,例如金属离子萃取、医药、催化、离子选择电极以及工业生产等。另外,由于其高的热稳定性,并在紫外光区有很好的透明性,以及其高度离域和大量的可极化电子,使得这类簇合物能够满足非线性光学(NLO)材料的很多要求。多面体硼烷、杂硼烷以及金属杂硼烷的二阶NLO性质已经受到了人们的关注,并进行了实验和理论上的研究。然而,对含多面体硼烷类化合物的NLO性质研究还是相对较少,正处在起步阶段。而寻找有效的方法提高分子的二阶NLO响应,以及增强其物理性能,一直以来都是NLO材料研究的核心问题之一。随着NLO材料的多功能化,具有开关效应的NLO材料成为目前的研究热点。而硼簇化合物,尤其是金属杂硼烷的电化学性质使得这类化合物可以通过氧化还原途径控制NLO响应的开关。极化率值、超极化率值是直接衡量NLO材料性能优劣的标准,因此运用合适的量子化学方法以及寻找合理的泛函和基组计算NLO分子的极化率和超极化率值是非常重要的。基于多面体硼簇灵活可调的电子性质和独特的成键方式,通过对多体面碳硼烷和金属碳硼烷分子电子结构和二阶NLO性质进行系统的研究,从理论上揭示此类化合物产生二阶NLO响应的微观机理,为优化其二阶NLO响应,以及筛选具有较大二阶NLO响应的多功能材料提供可靠的理论依据,同时指导实验合成。
     本论文以碳硼烷、金属碳硼烷为模版设计系列NLO分子体系,采用密度泛函理论(DFT)和含时密度泛函理论(TDDFT)方法,结合有限场(FF)或解析求导法对其NLO性质进行理论研究。目的在于:(1)了解碳硼烷和金属碳硼烷的电子结构和化学键性质;(2)寻找合适的DFT方法计算含有碳硼烷或金属碳硼烷化合物的NLO响应;(3)讨论这类化合物的氧化还原过程引起NLO性质变化的规律,指导实验对NLO响应进行调节,以实现NLO的开关效应。
     本论文第一章对硼簇化合物的骨架结构、电子结构,以及相关的潜在应用进行了简要介绍,同时也对NLO的原理、实验研究、理论设计的发展现状进行了总结。第二章对计算NLO系数的方法做了简要的介绍和说明,以及对理论设计NLO材料应注意的问题进行简单总结。之后是本论文工作的主要部分,包括以下四个方面:
     (1)设计系列卟啉或扩展卟啉桥连夹心金属碳硼烷和电子给受体基团的化合物,采用DFT方法和TDDFT方法对其NLO性质进行计算。由于扩展卟啉可以发生可逆的氧化还原反应,因此还计算了体系还原态的NLO响应。为了寻找合理计算NLO系数的方法,并采用DFT方法中的纯泛函、杂化泛函长程校正泛函、以及从头算(ab initio)方法进行比较。
     2.由于二维NLO材料具有比一维NLO材料更优秀的性能设计了具有二维电子结构(D-π-A-π-D和A-π-D-π-A)的双层夹心金属碳硼烷Cp2Co2C2B3H5衍生物。由于电子给受体基团的位置不同,使得这类化合物的构型有Λ-型和W-型,文中主要讨论不同构型引起的NLO响应。
     3.采用DFT方法和TDDFT方法,对花生型金属碳硼烷[Ni(C2B9H11)2]的NLO性质进行理论研究。由于这类化合物可以通过光激发或氧化还原发生结构旋转,重点研究了结构旋转对NLO响应带来的影响进而是否具有NLO开关效应。为了增强体系的NLO开关效应,在实验合成的基础上,对其C和B位置上的功能化衍生物的NLO性质也做了相关探索。
     4.由有机胺桥连(碳)硼烷和六钼酸盐两个无机簇合物得到的系列化合物,由于碳硼烷上的不同B和C顶点和有机胺相连时引起的电子效应不同,采用ADF程序中的RESPONSE模块,利用TDDFT方法对其二阶NLO响应进行计算,并与六钼酸盐的有机胺衍生物进行比较来寻找它们之间的差异起源。另外,B-碳硼烷基和C-碳硼烷基化合物之间NLO性质差异也被研究并解释。
Boron cluster compounds represent distinctive covalent species with a uniquemolecular architecture, nonconventional cluster bonding, and unusual chemistry. Dueto the rich variety, unique electronic structure, and excellent chemical stability,potential applications of this species are enormous, such as solvent extraction ofradionuclides, electrolyte, homogeneous catalysts, medicine, and so on. Addition ofhigh thermal stability, transparency in UV region, high delocalization and polarizableelectron, the boron cluster can be the candidate of nonlinear optical (NLO) materials.Especially, the NLO properties of polyhedral borane, heterborane andmetalloheterborane have been concerned and studied experimentally and theoretically.However, this respect is few and still in early stage. Importantly, one of core issues ofNLO materials is searching good methods to enhance the molecular second-orderNLO response and physical performance. With the development of multi-function ofNLO materials, the switchable effect becomes a research focus. For the boron cluster,especially the metalloheterborane, the electrochemical characters determine theirpotential ability on switchable NLO materials controlled by redox. Because the valueof hyperpolarizability is the criterion of measuring the NLO materials, rationalcomputational techniques and functionals are important for evaluating thehyperpolarizability. Based on the electronic properties and unique bonding of thepolyhedral carboranes and metallocarboranes, we will investigate the electronicstructures and NLO properties of this species to have an insight into the mechanism ofNLO responses. This work should provide rational theoretical reasons for optimizingthe NLO responses and further selecting the excellent multi-functional NLO materials,and guide the experimental synthesis.
     In the present thesis, designing and evaluating the NLO molecules containingcarborane or metallocarborane by employing density functional theory (DFT) andtime-dependent DFT (TDDFT) combined with finite field (FF) or analytic derivatemethods. The purpose of this thesis is that:(1) to understand the electronic structuresand properties of polyhedral carboranes and metallocarboranes.(2) to explore rationalDFT functionals to calculate the NLO responses of polyhedral carboranes andmetallocarboranes.(3) to obtain the switchable NLO molecules based on the experiment methods.
     The first part of this thesis is a review of skeleton structure, electronic structure,and related potential applications for boron cluster compounds, addition of theprinciple, experimental and theoretical studies of NLO property. The second part is anbrief introduction of computational methods calculating NLO coefficients, and somequestions needing attention on theoretical design of NLO materials. Subsequent partis the main body of this thesis, and it includes the following four sections:
     (1) We have designed a series of pull-push Cp*CoEt2C2B4H3-expanded(metallo)porphyrins compounds and employed DFT and TDDFT methods to calculatethe NLO properties. Due to the reversible redox of expanded (metallo)porphyrins, wehave also the NLO responses of reduced forms. To determine the rational functionalfor evaluating NLO coefficients, pure DFT, hybrid DFT, long-range (LC) DFTfunctionals and ab initio were used.
     (2) Two-dimensional (2D) NLO materials possess more excellent performancethan one-dimensional NLO materials. We thus designed a series of2D NLOmolecules containing sandwich metallocarborane Cp2Co2C2B3H5with D-π-A-π-D orA-π-D-π-A model. According to the positions of acceptor and donor, we named thestudied molecules as Λ-and W-shaped and discussed their NLO responses.
     (3) Using DFT and TDDFT methods, we have theoretically investigated the NLOproperties of sandwich metallocarboranes [Ni(C2B9H11)2]. The rotation ofconfigurations of this species can be controlled by redox or photon excitation, andthus we studied the switchable effect on NLO response. To obtain a remarkableswitchable effect, we also explored the NLO responses of C, B-functionalizedderivates based on experimental synthesis.
     (4) A series of novel hybrid have been designed by organoimido bridging the(car)borane and hexamolybdate clusters. The electronic effects of the carboranylgroup depend on the position of the substituent in the carborane cage. We employedthe RESPONSE model in ADF program to calculate the second-order NLO responsesof studied compounds. The NLO properties of the hybrids were compared with that ofhexamolybdate-organoimido, and the differences between C-carboranyl andB-carboranyl on NLO responses were also discussed.
引文
[1] Bregadze V I. Dicarba-closo-dodecaboranes C2B10H12and their derivatives [J]. ChemRev,1992,92(2):209-223.
    [2] Hermanek S. Boron chemistry: Introduction [J]. Chem Rev,1992,92(2):175-175.
    [3] Ple ek J. Potential applications of the boron cluster compounds [J]. Chem Rev,1992,92(2):269-278.
    [4] Wade K, Structural and Bonding Patterns in Cluster Chemistry, in Advances in InorganicChemistry and Radiochemistry [M]. H.J. Emeléus and A.G. Sharpe, Editors.1976,Academic Press. p.1-66.
    [5] Lipscomb W N. Structures of the boron hydrides [J]. J Chem Phys,1954,22(6):985-988.
    [6] Hawthorne M F, Young D C, Wegner P A. Carbametallic boron hydride derivatives. I.Apparent analogs of ferrocene and ferricinium ion [J]. J Am Chem Soc,1965,87(8):1818-1819.
    [7]唐敖庆,李前树.原子簇的结构规则和化学键[M].山东科学技术出版社,1998.
    [8] Dickerson R E, Lipscomb W N. Semitopological approach to boron‐hydride structures [J].J Chem Phys,1957,27(1):212-217.
    [9] Rais J, Kyr M, He mánek S.[P]. Chem Abstr,1975,82:23370c.
    [10] Koryta J, Vanysek P, B ezina M. Electrolysis with electrolyte dropping electrode: II.Basic properties of the system [J]. J Electroanal Chem Interfacial Electrochem,1977,75(1):211-228.
    [11] Johnson J W, Whittingham M S. Lithium closoboranes as electrolytes in solid cathodelithium cells [J]. J Electrochem Soc,1980,127(7):1653-1654.
    [12] Johnson J W, Thompson A H. Lithium Closoboranes II. Stable nonaqueous electrolytesfor elevated temperature lithium cells [J]. J Electrochem Soc,1981,128(4):932-933.
    [13] Yen D, Linholm L W, Buehler M G. A cross‐bridge test structure for evaluating thelinewidth uniformity of an integrated circuit lithography system [J]. J Electrochem Soc,1982,129(10):2313-2318.
    [14] Ple ek J, Ba e K, Mare F, et al. Potential uses of metallocarborane sandwich anions foranalysis, characterization and isolation of various cations and organic bases [J]. CollectCzech Chem Commun,1984,49(12):2776-2789.
    [15] Grimes R N. Carboranes [M]. Academic Press: New York,1970.
    [16] Williams Robert E, Carborane polymers [M]. in Pure Appl Chem.1972. p.569.
    [17] Mayes N, Green J, Cohen M S. Carborane polymers. IV. Polysiloxanes [J]. J Polymer SciPart A-1: Polymer Chemistry,1967,5(2):365-379.
    [18] Hawthorne M. In Advances in boron and the boranes [M]. VCH Publishers, Inc.: NewYork1988.
    [19] Hart F A, Owen D W. Chlorocarbonyl-1,2-bisdiphenylphosphino-1,2–dicarbadodecaborane rhodium(I) and chloro-1,2-bisdiphenylphosphino-1,2-dicarbadodecaboranetriphenyl-phosphinerhodium(I): Preparation and catalytic properties[J]. Inorg Chim Acta,1985,103(1): L1-L2.
    [20] Morandini F, Longato B, Bresadola S. Homogeneous hydrogenation of alk-1-enes andalkynes catalyzed by the1-[Ir(CO)(PhCN)(PPh3)]-7-C6H5-1,7-(σ-C2B10H10) complex [J].J Organomet Chem,1982,239(2):377-384.
    [21] Yan H, Beatty A M, Fehlner T P. Reactivity of dimetallapentaboranes nido-[Cp*2M2B3H7]with alkynes: insertion to form a ruthenacarborane (M=RuH) versus catalyticcyclotrimerization to form arenes (M=Rh)[J]. Angew Chem Int Ed,2001,40(23):4498-4501.
    [22] Yan H, Beatty A M, Fehlner T P. Metallaborane reaction chemistry.nido-dirhodapentaborane isomer structures and stabilities and utilization ofdirhodaboranes as catalysts for alkyne cyclotrimerization [J]. Organometallics,2002,21(23):5029-5037.
    [23] Miku ek J, He mánek S, Ple ek J.[P]. Chem Abstr,1970,75:72394r.
    [24] Miku ek J, He mánek S, Ple ek J.[P]. Chem Abstr,1970,74:69440p.
    [25] Rees W S, Seyferth D. High-yield synthesis of B4C/BN ceramic materials by pyrolysis ofpolymeric lewis base adducts of decaborane(14)[J]. J Am Ceram Soc,1988,71(4):C-194-C-196.
    [26] Mirabelli M G L, Sneddon L G. Synthesis of boron carbide via poly(vinylpentaborane)precursors [J]. J Am Chem Soc,1988,110(10):3305-3307.
    [27] Yogo T, Naka S. Synthesis of boron nitride from triammoniadecaborane and hydrazineunder pressure [J]. J Mater Sci,1990,25(1):374-378.
    [28] Kane R R, Lee C S, Drechsel K, et al. Solution-phase synthesis of boron-rich phosphates[J]. J Org Chem,1993,58(12):3227-3228.
    [29] Kane R R, Drechsel K, Hawthorne M F. Automated syntheses of carborane-derivedhomogeneous oligophosphates: reagents for use in the immunoprotein-mediated boronneutron capture therapy (BNCT) of cancer [J]. J Am Chem Soc,1993,115(19):8853-8854.
    [30] Chen C J, Kane R R, Primus F J, et al. Synthesis and characterization of oligomericnido-carboranyl phosphate diester conjugates to antibody and antibody fragments forpotential use in boron neutron capture therapy of solid tumors [J]. Bioconjugate Chem,1994,5(6):557-564.
    [31] Hawthorne M F, Maderna A. Applications of radiolabeled boron clusters to the diagnosisand treatment of cancer [J]. Chem Rev,1999,99(12):3421-3434.
    [32] Kueffer P J, Maitz C A, Khan A A, et al. Boron neutron capture therapy demonstrated inmice bearing EMT6tumors following selective delivery of boron by rationally designedliposomes [R]. Proceedings of the National Academy of Sciences,2013,110(16):6512-6517.
    [33] Murphy D M, Mingos D M P, Forward J M. Synthesis of icosahedral carboranes forsecond-harmonic generation. Part1[J]. J Mater Chem,1993,3(1):67-76.
    [34] Murphy D M, Mingos D M P, Haggitt J L, et al. Synthesis of icosahedral carboranes forsecond-harmonic generation. Part2[J]. J Mater Chem,1993,3(2):139-148.
    [35] Tsuboya N, Lamrani M, Hamasaki R, et al. Nonlinear optical properties of novelcarborane-ferrocene conjugated dyads. Electron-withdrawing characteristics ofcarboranes [J]. J Mater Chem,2002,12(9):2701-2705.
    [36] Hamasaki R, Ito M, Lamrani M, et al. Nonlinear optical studies of fullerene-arylethynehybrids [J]. J Mater Chem,2003,13(1):21-26.
    [37] Taylor J, Caruso J, Newlon A, et al. Polyhedral-based nonlinear optical materials.3.1Synthetic studies of cyclopentadiene-and cycloheptatriene-substituted polyhedralcompounds: Synthesis of1,12-[(C7H7)C2B10H10(C5H3Me2)] and related species [J].Inorg Chem,2001,40(14):3381-3388.
    [38] Allis D G, Spencer J T. Polyhedral-based nonlinear optical materials.2.1Theoreticalinvestigation of some new high nonlinear optical response compounds involvingpolyhedral bridges with charged aromatic donors and acceptors [J]. Inorg Chem,2001,40(14):3373-3380.
    [39] Muhammad S, Xu H, Liao Y, et al. Quantum mechanical design and structure of theLi@B10H14basket with a remarkably enhanced electro-optical response [J]. J Am ChemSoc,2009,131(33):11833-11840.
    [40] Goswami L, Ma L, Kueffer P, et al. Synthesis and relaxivity studies of a DOTA-basednanomolecular chelator assembly supported by an icosahedral closo-B212-core for MRI:A click chemistry approach [J]. Molecules,2013,18(8):9034-9048.
    [41] Bondarev O, Khan A A, Tu X, et al. Synthesis of [closo-B12(OH)11NH3]: A newheterobifunctional dodecaborane scaffold for drug delivery applications [J]. J Am ChemSoc,2013,135(35):13204-13211.
    [42] Bondarev O, Sevryugina Y V, Jalisatgi S S, et al. Acid-induced opening of
    [closo-B10H10]2–as a new route to6-substituted nido-B10H13decaboranes and relatedcarboranes [J]. Inorg Chem,2012,51(18):9935-9942.
    [43] Qiu Z, Quan Y, Xie Z. Palladium-catalyzed selective fluorination of o-carboranes [J]. JAm Chem Soc,2013,135(33):12192-12195.
    [44] Zhang J, Xie Z. Reaction of13-vertex carborane μ-1,2-(CH2)4-1,2-C2B11H11withnucleophiles: Linkage effect on product formation [J]. Inorg Chem,2013,52(18):10677-10684.
    [45] Xiang L, Mashima K, Xie Z. Reaction of [η1: η5-(Me2NCH2CH2)C2B9H10]TaMe3witharyl isonitriles: tantallacarborane-mediated facile cleavage of C-N multiple bonds [J].Chem Comm,2013,49(79):9039-9041.
    [46] Quan Y, Zhang J, Xie Z. Three-component [2+2+1] cross-cyclotrimerization of carboryne,unactivated alkene, and trimethylsilylalkyne Co-mediated by Zr and Ni [J]. J Am ChemSoc,2013,135(50):18742-18745.
    [47] Zhang J, Xie Z. Reaction of13-vertex carborane μ-1,2-(CH2)3-1,2-C2B11H11withnucleophiles: Scope and mechanism [J]. Inorg Chem,2012,51(23):12976-12987.
    [48] Ren S, Qiu Z, Xie Z. Transition-metal-promoted or-catalyzed exocyclic alkyne insertionvia zirconacyclopentene with carborane auxiliary: Formation of symmetric orunsymmetric benzocarboranes [J]. J Am Chem Soc,2012,134(6):3242-3254.
    [49] Yao Z J, Xu B, Huo X K, et al. Homonuclear half-sandwich iridium and rhodiumcomplexes containing dichalcogenolato-functionalized o-carboranyl ligands [J]. JOrganomet Chem,2013,747(0):85-89.
    [50] Yao Z J, Lin Y J, Li Z H, et al. C–C bond cleavage of zwitterionic carboranes promotedby a half-sandwich iridium(III) complex [J]. Chem Eur J,2013,19(8):2611-2614.
    [51] Hu P, Qiao Y-L, Li Z-H, et al. Ethylene polymerization by new chromium catalysts basedon carborane [SSO] ligands [J]. Dalton Trans,2013,42(25):9089-9095.
    [52] Yao Z J, Huo X K, Jin G X. Zwitterionic half-sandwich Rh and Ir complexes containing adiphosphine nido-carborane ligand: synthesis, structure transformation and application inH2activation [J]. Chem Comm,2012,48(53):6714-6716.
    [53] Zhang R, Zhu L, Liu G, et al. Cobalt-promoted B–H and C–H activation: Facile B–Ccoupling of carboranedithiolate and cyclopentadienyl [J]. J Am Chem Soc,2012,134(25):10341-10344.
    [54] Zhong W, Yang Q, Shang Y, et al. Synthesis and reactivity of the imido-bridgedmetallothiocarboranes CpCo(S2C2B10H10)(NSO2R)[J]. Organometallics,2012,31(18):6658-6668.
    [55] Wang Z, Ye H, Li Y, et al. Unprecedented boron-functionalized carborane derivatives byfacile and selective cobalt-induced B–H activation [J]. J Am Chem Soc,2013,135(30):11289-11298.
    [56] Farras P, Vinas C, Sillanpaa R, et al. The nature of the chlorination reaction in[1-C6H5-1-CB9H9]-boron clusters [J]. Dalton Transactions,2010,39(33):7684-7691.
    [57] Farràs P, Juarez-Perez E J, Lepsik M, et al. Metallacarboranes and their interactions:theoretical insights and their applicability [J]. Chem Soc Rev,2012,41(9):3445-3463.
    [58] Farràs P, Olid-Britos D, Vi as C, et al. Unprecedented B–H activation throughPd-catalysed B–cvinyl bond coupling on borane systems [J]. Eur J Inorg Chem,2011,2011(16):2525-2532.
    [59] Piazza Z A, Li W-L, Romanescu C, et al. A photoelectron spectroscopy and ab initiostudy of B21: Negatively charged boron clusters continue to be planar at21[J]. J ChemPhys,2012,136(10):104310.
    [60] Romanescu C, Sergeeva A P, Li W L, et al. Planarization of B7and B12clusters byisoelectronic substitution:: AlB6and AlB11[J]. J Am Chem Soc,2011,133(22):8646-8653.
    [61] Romanescu C, Galeev T R, Li W L, et al. Aromatic metal-centered monocyclic boronrings: Co@B8and Ru@B9[J]. Angew Chem Int Ed,2011,50(40):9334-9337.
    [62] Li W L, Romanescu C, Galeev T R, et al. Aluminum avoids the central position in AlB9–and AlB10–: Photoelectron spectroscopy and ab initio study [J]. J Phys Chem A,2011,115(38):10391-10397.
    [63] Galeev T R, Ivanov A S, Romanescu C, et al. Molecular wheel to monocyclic ringtransition in boron-carbon mixed clusters C2B6-and C3B5[J]. Phys Chem Chem Phys,2011,13(19):8805-8810.
    [64] Fan M, Sun S L, Qiu Y Q, et al. DFT study on the second-order nonlinear opticalproperty of12-vertex close-carborane derivatives [J]. Int J Quantum Chem,2011,111(5):1039-1047.
    [65] Ma N, Liu C, Qiu Y, et al. Theoretical investigation on redox-switchable second-ordernonlinear optical responses of push–pull Cp*CoEt2C2B4H3-expanded (metallo)porphyrins[J]. J Comput Chem,2012,33(2):211-219.
    [66] Ma N, Yan L, Guan W, et al. Theoretical investigation on electronic structure andsecond-order nonlinear optical properties of novelhexamolybdate-organoimido-(car)borane hybrid [J]. Phys Chem Chem Phys,2012,14(16):5605-5612.
    [67] Zou H Y, Ma N N, Sun S L, et al. Structures and redox-switchable second-ordernonlinear optics properties of N-legged piano stool shaped12-vertex rhenacarboranehalf-sandwich complexes [J]. J Organomet Chem,2013,728(0):6-15.
    [68] Li X Q, Wang C H, Zhang M Y, et al. Tuning second-order nonlinear optical propertiesof the two-dimensional benzene/carborane compounds with phenyl carbazoles:Substituent effect and redox switch [J]. J Organomet Chem,2014,749(0):327-334.
    [69] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics [J]. Phys RevLett,1961,7(4):118-119.
    [70] Zyss J. Molecular nonlinear optics [J]. Academic Press: New York,1994.
    [71] Ledoux I, Zyss J. In Novel optical materials and applications [J]. Wiley&Sons, NewYork,1997.
    [72] Dalton L R, Harper A W, Ghosn R, et al. Synthesis and processing of improved organicsecond-order nonlinear optical materials for applications in photonics [J]. Chem Mater,1995,7(6):1060-1081.
    [73] Terenziani F, D'Avino G, Painelli A. Multichromophores for nonlinear optics: Designingthe material properties by electrostatic interactions [J]. ChemPhysChem,2007,8(17):2433-2444.
    [74] Datta A, Pati S K. Dipolar interactions and hydrogen bonding in supramolecularaggregates: understanding cooperative phenomena for1st hyperpolarizability [J]. ChemSoc Rev,2006,35(12):1305-1323.
    [75] Senge M O, Fazekas M, Notaras E G A, et al. Nonlinear optical properties of porphyrins[J]. Adv Mater,2007,19(19):2737-2774.
    [76]封继康.非线性光学材料的分子设计研究[J].化学学报,2005,63(14):1245-1256.
    [77]史作森.新型二阶非线性光学生色团和材料的设计、制备与性能研究[D].吉林大学博士论文,2009.
    [78] Levine B F, Bethea C G. Second and third order hyperpolarizabilities of organicmolecules [J]. J Chem Phys,1975,63(6):2666-2682.
    [79] Meredith G R. Small computer‐based system for determination of second‐and third‐orderoptical nonlinearities [J]. Rev Sci Instrum,1982,53(1):48-53.
    [80] Hendrickx E, Clays K, Persoons A. Hyper-rayleigh scattering in isotropic solution [J].Acc Chem Res,1998,31(10):675-683.
    [81] Oudar J L. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highlypolar aromatic compounds [J]. J Chem Phys,1977,67(2):446-457.
    [82] Oudar J L, Chemla D S. Hyperpolarizabilities of the nitroanilines and their relations to theexcited state dipole moment [J]. J Chem Phys,1977,66(6):2664-2668.
    [83] Birge R R. Photophysics of light transduction in rhodopsin and bacteriorhodopsin [J].Annu Rev Biophys and Bioengineer,1981,10(1):315-354.
    [84] Birge R R. Photophysics and molecular electronic applications of the rhodopsins [J].Annu Rev Phys Chem,1990,41(1):683-733.
    [85] Clays K, Hendrickx E, Triest M, et al. Nonlinear optical properties of proteins measuredby Hyper-Rayleigh scattering in solution [J]. Science,1993,262(5138):1419-1422.
    [86] Song Q, Wan C, Johnson C K. Time-resolved second harmonic generation in therandomly oriented purple membrane [J]. J Phys Chem,1994,98(8):1999-2001.
    [87] Loucif-Saibi R, Nakatani K, Delaire J A, et al. Photoisomerization and second harmonicgeneration in disperse red one-doped and-functionalized poly(methyl methacrylate) films[J]. Chem Mater,1993,5(2):229-236.
    [88] Irie M, Miyatake O, Uchida K, et al. Photochromic diarylethenes with intralocking arms[J]. J Am Chem Soc,1994,116(22):9894-9900.
    [89] Gilat S L, Kawai S H, Lehn J-M. Light-triggered molecular devices: Photochemicalswitching of optical and electrochemical properties in molecular wire type diarylethenespecies [J]. Chem Eur J,1995,1(5):275-284.
    [90] Houbrechts S, Clays K, Persoons A, et al. Hyper-Rayleigh scattering investigation ofnitrobenzyl pyridine model compounds for optical modulation of the hyperpolarisability[J]. Chem Phys Lett,1996,258(3–4):485-489.
    [91] Nakatani K, Delaire J A. Reversible photoswitching of second-order nonlinear opticalproperties in an organic photochromic crystal [J]. Chem Mater,1997,9(12):2682-2684.
    [92] Lindeman S V, Andrianov V G, Kravcheni S G, et al. Crystal and molecular structures ofthe two crystalline modifications of N-salicylidene-pentafluoroaniline [J]. J Struct Chem,1981,22(4):578-585.
    [93] Coe B J, Houbrechts S, Asselberghs I, et al. Efficient, reversible redox-switching ofmolecular first hyperpolarizabilities in Ruthenium(II) complexes possessing largequadratic optical nonlinearities [J]. Angew Chem Int Ed,1999,38(3):366-369.
    [94] Di Bella S. Second-order nonlinear optical properties of transition metal complexes [J].Chem Soc Rev,2001,30(6):355-366.
    [95] Liu C G, Qiu Y Q, Sun S L, et al. DFT study on second-order nonlinear optical propertiesof a series of mono Schiff-base M(II)(M=Ni, Pd, Pt) complexes [J]. Chem Phys Lett,2006,429(4–6):570-574.
    [96] Liu C G, Qiu Y Q, Sun S L, et al. DFT Studies on second-order nonlinear opticalproperties of mono (salicylaldiminato) Nickel(II) polyenyl Schiff base metal complexes[J]. Chem Phys Lett,2007,443(1–3):163-168.
    [97] Chen W, Li Z R, Wu D, et al. The structure and the large nonlinear optical properties ofLi@Calix[4]pyrrole [J]. J Am Chem Soc,2005,127(31):10977-10981.
    [98] Chen W, Li Z R, Wu D, et al. Nonlinear optical properties of alkalidesLi+(calix[4]pyrrole)M-(M=Li, Na, and K): Alkali anion atomic number dependence[J]. J Am Chem Soc,2006,128(4):1072-1073.
    [99] Xu H L, Li Z R, Wu D, et al. Structures and large NLO responses of new electrides:Li-doped fluorocarbon chain [J]. J Am Chem Soc,2007,129(10):2967-2970.
    [100] Brown E C, Marks T J, Ratner M A. Nonlinear response properties of ultralargehyperpolarizability twisted π-system donor acceptor chromophores. dramaticenvironmental effects on response [J]. J Phys Chem B,2007,112(1):44-50.
    [101] Liu C G, Guan W, Song P, et al. Redox-switchable second-order nonlinear opticalresponses of push pull monotetrathiafulvalene-metalloporphyrins [J]. Inorg Chem,2009,48(14):6548-6554.
    [102] Muhammad S, Xu H, Janjua M R S A, et al. Quantum chemical study of benzimidazolederivatives to tune the second-order nonlinear optical molecular switching by protonabstraction [J]. Phys Chem Chem Phys,2010,12(18):4791-4799.
    [103] Wang C H, Ma N N, Sun X X, et al. Modulation of the second-order nonlinear opticalproperties of the two-dimensional pincer Ru(II) complexes: Substituent effect and protonabstraction switch [J]. J Phys Chem A,2012,116(43):10496-10506.
    [104] Coe B J, Harris J A, Jones L A, et al. Syntheses and properties of two-dimensionalcharged nonlinear optical chromophores incorporating redox-switchablecis-tetraammineruthenium(II) centers [J]. J Am Chem Soc,2005,127(13):4845-4859.
    [105] Lee H, An S Y, Cho M. Nonlinear optical (NLO) properties of the octupolar molecule:Structure function relationships and solvent effects [J]. J Phys Chem B,1999,103(24):4992-4996.
    [106] Champagne B, Plaquet A, Pozzo J L, et al. Nonlinear optical molecular switches asselective cation sensors [J]. J Am Chem Soc,2012,134(19):8101-8103.
    [107] Kurtz H A, Stewart J J P, Dieter K M. Calculation of the nonlinear optical properties ofmolecules [J]. J Comput Chem,1990,11(1):82-87.
    [108] Dykstra C E, Jasien P G. Derivative Hartree-Fock theory to all orders [J]. Chem Phys Lett,1984,109(4):388-393.
    [109] Karna S P, Dupuis M, Perrin E, et al. Theoretical and experimental studies of opticalnonlinearities of haloforms CHX3, X=F, Cl, Br, I [J]. J Chem Phys,1990,92(12):7418-7425.
    [110] Sekino H, Bartlett R J. Frequency dependent nonlinear optical properties of molecules [J].J Chem Phys,1986,85(2):976-989.
    [111] Karna S P, Dupuis M. Frequency dependent nonlinear optical properties of molecules:Formulation and implementation in the HONDO program [J]. J Comput Chem,1991,12(4):487-504.
    [112] Karna S P, Talapatra G B, Wijekoon W M K P, et al. Frequency dependence of linear andnonlinear optical properties of conjugated polyenes: An ab initio time-dependent coupledHartree-Fock study [J]. Phys Rev A,1992,45(5):2763-2770.
    [113] Orr B J, Ward J F. Perturbation theory of the non-linear optical polarization of an isolatedsystem [J]. Mol Phys,1971,20(3):513-526.
    [114] Morley J O, Pavlides P, Pugh D. On the calculation of the hyperpolarizabilities of organicmolecules by the sum over virtual excited states method [J]. Int J Quantum Chem,1992,43(1):7-26.
    [115] Sekino H, Bartlett R J. Molecular hyperpolarizabilities [J]. J Chem Phys,1993,98(4):3022-3037.
    [116] O'Neill D P, Kállay M, Gauss J. Calculation of frequency-dependent hyperpolarizabilitiesusing general coupled-cluster models [J]. J Chem Phys,2007,127(13):134109.
    [117] Maroulis G. On the bond-length dependence of the static electric polarizability andhyperpolarizability of F2[J]. Chem Phys Lett,2007,442(4–6):265-269.
    [118] Qiu Y Q, Fan H L, Sun S L, et al. Theoretical study on the relationship between spinmultiplicity effects and nonlinear optical properties of the pyrrole radical (C4H4N·)[J]. JPhys Chem A,2007,112(1):83-88.
    [119] Wheatley R J. Time-dependent coupled-cluster calculations of polarizabilities anddispersion energy coefficients [J]. J Comput Chem,2008,29(3):445-450.
    [120] Maroulis G. How large is the static electric (hyper)polarizability anisotropy in HXeI?[J].J Chem Phys,2008,129(4):044314.
    [121] Hanauer M, K hn A. Response properties with explicitly correlated coupled-clustermethods using a Slater-type correlation factor and cusp conditions [J]. J Chem Phys,2009,131(12):124118.
    [122] Sun S L, Yang G C, Qin C S, et al. The influence of M…M attraction on nonlinear opticalproperties of (XMPH3)2(X=F, Cl; and M=Au, Ag and Cu): A theoretical study [J]. IntJ Quantum Chem,2010,110(4):865-873.
    [123] Baranowska A, Sadlej A J. Polarized basis sets for accurate calculations of static anddynamic electric properties of molecules [J]. J Comput Chem,2010,31(3):552-560.
    [124] Pecul M, Paw owski F, J rgensen P, et al. High-order correlation effects on dynamichyperpolarizabilities and their geometric derivatives: A comparison with densityfunctional results [J]. J Chem Phys,2006,124(11):114101.
    [125] Levine B F. Donor-acceptor charge transfer contributions to the second orderhyperpolarizability [J]. Chem Phys Lett,1976,37(3):516-520.
    [126] Clays K, Persoons A. Hyper-Rayleigh scattering in solution [J]. Phys Rev Lett,1991,66(23):2980-2983.
    [127] Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of opticalnonlinearities using a single beam [J]. Quantum Electronics, IEEE Journal of,1990,26(4):760-769.
    [128] Williams D J. Organic polymeric and non-polymeric materials with large opticalnonlinearities [J]. Angew Chem Int Ed,1984,23(9):690-703.
    [129] Burland D M, Miller R D, Walsh C A. Second-order nonlinearity in poled-polymersystems [J]. Chem Rev,1994,94(1):31-75.
    [130] LeCours S M, Guan H W, DiMagno S G, et al. Push pull arylethynyl porphyrins: Newchromophores that exhibit large molecular first-order hyperpolarizabilities [J]. J AmChem Soc,1996,118(6):1497-1503.
    [131] R. Dalton L, H. Steier W, H. Robinson B, et al. From molecules to opto-chips: organicelectro-optic materials [J]. J Mater Chem,1999,9(9):1905-1920.
    [132] Xiao D, Bulat F A, Yang W, et al. A donor nanotube paradigm for nonlinear opticalmaterials [J]. Nano Letters,2008,8(9):2814-2818.
    [133] Ma F, Zhou Z J, Li Z R, et al. Lithium salt of end-substituted nanotube: Structure andlarge nonlinear optical property [J]. Chem Phys Lett,2010,488(4–6):182-186.
    [134] Suslick K S, Chen C T, Meredith G R, et al. Push-pull porphyrins as nonlinear opticalmaterials [J]. J Am Chem Soc,1992,114(17):6928-6930.
    [135] Ricciardi G, Rosa A, van Gisbergen S J A, et al. A density functional study of the opticalspectra and nonlinear optical properties of heteroleptic tetrapyrrole sandwichcomplexes: The porphyrinato porphyrazinato zirconium(IV) complex as a case study[J]. J Phys Chem A,1999,104(3):635-643.
    [136] Zhang T G, Zhao Y, Asselberghs I, et al. Design, synthesis, linear, and nonlinear opticalproperties of conjugated (porphinato)zinc(II)-based donor acceptor chromophoresfeaturing nitrothiophenyl and nitrooligothiophenyl electron-accepting moieties [J]. J AmChem Soc,2005,127(27):9710-9720.
    [137] Jasat A, Dolphin D. Expanded porphyrins and their heterologs [J]. Chem Rev,1997,97(6):2267-2340.
    [138] Sessler J L, Davis J M. Sapphyrins: Versatile anion binding agents [J]. Acc Chem Res,2001,34(12):989-997.
    [139] Ahn T K, Kwon J H, Kim D Y, et al. Comparative photophysics of [26]-and[28]hexaphyrins(1.1.1.1.1.1): Large two-photon absorption cross section of aromatic[26]hexaphyrins(1.1.1.1.1.1)[J]. J Am Chem Soc,2005,127(37):12856-12861.
    [140] Lim J M, Yoon Z S, Shin J Y, et al. The photophysical properties of expanded porphyrins:Relationships between aromaticity, molecular geometry and non-linear optical properties[J]. Chem Comm,2009(3):261-273.
    [141] Cheng L T, Tam W, Stevenson S H, et al. Experimental investigations of organicmolecular nonlinear optical polarizabilities.1. Methods and results on benzene andstilbene derivatives [J]. J Phys Chem,1991,95(26):10631-10643.
    [142] Stephan M, Davis J H, Meng X, et al. Organotransition-metal metallacarboranes.25.Redox chemistry and electronic studies of mono-and dinuclear iron(II)-iron(III)sandwich complexes [J]. J Am Chem Soc,1992,114(13):5214-5221.
    [143] Stephan M, Hauss J, Zenneck U, et al. Organotransition-metal metallacarboranes.35.Electrochemistry, ESR, and correlated NMR spectroscopy of paramagnetic mono-anddinuclear Cp*CoC2B4clusters [J]. Inorg Chem,1994,33(19):4211-4215.
    [144] Fabrizi de Biani F, Corsini M, Zanello P, et al. Electronic properties of mononuclear,dinuclear, and polynuclear cobaltacarboranes: Electrochemical andspectroelectrochemical studies [J]. J Am Chem Soc,2004,126(36):11360-11369.
    [145] Yao H, Sabat M, Grimes R N, et al. Alkynyl-linked poly(cobaltacarboranes). Directedsynthesis, structures, and electrochemistry of linear complexes and benzene-centeredpinwheels1[J]. Organometallics,2003,22(13):2581-2593.
    [146] Mori S, Osuka A. Aromatic and antiaromatic gold(III) hexaphyrins with multiplegold carbon bonds [J]. J Am Chem Soc,2005,127(22):8030-8031.
    [147] Mori S, Kim K S, Yoon Z S, et al. Peripheral fabrications of a bis-Gold(III) complex of[26]hexaphyrin(1.1.1.1.1.1) and aromatic versus antiaromatic effect on two-photonabsorption cross section [J]. J Am Chem Soc,2007,129(37):11344-11345.
    [148] Muranaka A, Matsushita O, Yoshida K, et al. Application of the perimeter model to theassignment of the electronic absorption spectra of gold(III) hexaphyrins with [4n+2] and[4n] π-Electron Systems [J]. Chem Eur J,2009,15(15):3744-3751.
    [149] Coe B J. Switchable nonlinear optical metallochromophores with pyridinium electronacceptor groups [J]. Acc Chem Res,2006,39(6):383-393.
    [150] Green K A, Cifuentes M P, Corkery T C, et al. Switching the cubic nonlinear opticalproperties of an electro-, halo-, and photochromic ruthenium alkynyl complex across sixstates [J]. Angew Chem Int Ed,2009,48(42):7867-7870.
    [151] Paul F, Costuas K, Ledoux I, et al. Redox-switchable second-order molecularpolarizabilities with electron-rich iron σ-aryl acetylides [J]. Organometallics,2002,21(24):5229-5235.
    [152] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Revision C.02: Gaussian, Inc.:Wallingford, CT,2003.
    [153] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09, Revision A.02: Gaussian, Inc.:Wallingford, CT,2009.
    [154] Schwerdtfeger P, Dolg M, Schwarz W H E, et al. Relativistic effects in gold chemistry. I.Diatomic gold compounds [J]. J Chem Phys,1989,91(3):1762-1774.
    [155] Dolg M, Wedig U, Stoll H, et al. Energy‐adjusted abinitio pseudopotentials for the firstrow transition elements [J]. J Chem Phys,1987,86(2):866-872.
    [156] Shimizu S, Osuka A. Metalation chemistry of meso-aryl-substituted expanded porphyrins[J]. Eur J Inorg Chem,2006,2006(7):1319-1335.
    [157] Stratmann R E, Scuseria G E, Frisch M J. An efficient implementation of time-dependentdensity-functional theory for the calculation of excitation energies of large molecules [J].J Chem Phys,1998,109(19):8218-8224.
    [158] Hirata S, Head-Gordon M. Time-dependent density functional theory for radicals: Animproved description of excited states with substantial double excitation character [J].Chem Phys Lett,1999,302(5–6):375-382.
    [159] Adamo C, Barone V. Accurate excitation energies from time-dependent densityfunctional theory: assessing the PBE0model for organic free radicals [J]. Chem Phys Lett,1999,314(1–2):152-157.
    [160] Adamo C, Barone V. Toward reliable density functional methods without adjustableparameters: The PBE0model [J]. J Chem Phys,1999,110(13):6158-6170.
    [161] Dreuw A, Weisman J L, Head-Gordon M. Long-range charge-transfer excited states intime-dependent density functional theory require non-local exchange [J]. J Chem Phys,2003,119(6):2943-2946.
    [162] Kobayashi R, Amos R D. The application of CAM-B3LYP to the charge-transfer bandproblem of the zincbacteriochlorin–bacteriochlorin complex [J]. Chem Phys Lett,2006,420(1–3):106-109.
    [163] Yu J S K, Chen, Yu C H. Time-dependent density functional study of electroluminescentpolymers [J]. J Phys Chem A,2003,107(21):4268-4275.
    [164] Kanis D R, Ratner M A, Marks T J. Design and construction of molecular assemblieswith large second-order optical nonlinearities. Quantum chemical aspects [J]. Chem Rev,1994,94(1):195-242.
    [165] Dehu C, Meyers F, Bredas J L. Donor-acceptor diphenylacetylenes: geometric structure,electronic structure, and second-order nonlinear optical properties [J]. J Am Chem Soc,1993,115(14):6198-6206.
    [166] Sim F, Chin S, Dupuis M, et al. Electron correlation effects in hyperpolarizabilities ofp-nitroaniline [J]. J Phys Chem,1993,97(6):1158-1163.
    [167] Lin J, Wu K, Zhang M. A new hybrid DFT approach to electronic excitation and firsthyperpolarizabilities of transition metal complexes [J]. J Comput Chem,2009,30(13):2056-2063.
    [168] Sekino H, Maeda Y, Kamiya M, et al. Polarizability and second hyperpolarizabilityevaluation of long molecules by the density functional theory with long-range correction[J]. J Chem Phys,2007,126(1):014107.
    [169] Jacquemin D, Perpéte E A, Ciofini I, et al. Revisiting the relationship between the bondlength alternation and the first hyperpolarizability with range-separated hybrid functionals[J]. J Comput Chem,2008,29(6):921-925.
    [170] Jacquemin D, André J M, Perpète E A. Geometry, dipole moment, polarizability and firsthyperpolarizability of polymethineimine: An assessment of electron correlationcontributions [J]. J Chem Phys,2004,121(9):4389-4396.
    [171] van Gisbergen S J A, Schipper P R T, Gritsenko O V, et al. Electric field dependence ofthe exchange-correlation potential in molecular chains [J]. Phys Rev Lett,1999,83(4):694-697.
    [172] Champagne B, Perpète E A, Jacquemin D, et al. Assessment of conventional densityfunctional schemes for computing the dipole moment and (hyper)polarizabilities ofpush pull π-conjugated systems [J]. J Phys Chem A,2000,104(20):4755-4763.
    [173] Jacquemin D, Perpète E A, Medved’ M, et al. First hyperpolarizability ofpolymethineimine with long-range corrected functionals [J]. J Chem Phys,2007,126(19):191108.
    [174] Lu S I. Computational study of static first hyperpolarizability of donor–acceptorsubstituted (E)-benzaldehyde phenylhydrazone [J]. J Comput Chem,2011,32(4):730-736.
    [175] Iikura H, Tsuneda T, Yanai T, et al. A long-range correction scheme forgeneralized-gradient-approximation exchange functionals [J]. J Chem Phys,2001,115(8):3540-3544.
    [176] Yanai T, Tew D P, Handy N C. A new hybrid exchange–correlation functional using theCoulomb-attenuating method (CAM-B3LYP)[J]. Chem Phys Lett,2004,393(1–3):51-57.
    [177] Moylan C R, Ermer S, Lovejoy S M, et al.(Dicyanomethylene)pyran derivatives withC2v Symmetry: An unusual class of nonlinear optical chromophores [J]. J Am ChemSoc,1996,118(51):12950-12955.
    [178] Petit L, Quartarolo A, Adamo C, et al. Spectroscopic properties of porphyrin-likephotosensitizers: insights from theory [J]. J Phys Chem B,2006,110(5):2398-2404.
    [179] Di Bella S, Fragalà I. Second-order nonlinear optical properties of tetraaza-coordinatednickel(II) complexes [J]. Eur J Inorg Chem,2003,2003(14):2606-2611.
    [180] Zhou X, Pan Q J, Xia B H, et al. DFT and TD-DFT calculations on the electronicstructures and spectroscopic properties of cyclometalated platinum(II) complexes [J]. JPhys Chem A,2007,111(25):5465-5472.
    [181] Sun S L, Qin C S, Qiu Y Q, et al. Theoretical investigation of structures, electronicspectra and nonlinear optical properties of gold-pentacene (Au2C22H14) complexes [J]. JOrganomet Chem,2009,694(9–10):1266-1272.
    [182] Karakas A, Elmali A, Unver H. Linear optical transmission measurements andcomputational study of linear polarizabilities, first hyperpolarizabilities of a dinucleariron(III) complex [J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2007,68(3):567-572.
    [183] Meyers F, Marder S R, Pierce B M, et al. Electric field modulated nonlinear opticalproperties of donor-acceptor polyenes: Sum-over-states investigation of the relationshipbetween molecular polarizabilities (α, β, and γ) and bond length alternation [J]. J AmChem Soc,1994,116(23):10703-10714.
    [184] Marks T J, Ratner M A. Design, synthesis, and properties of molecule-based assemblieswith large second-order optical nonlinearities [J]. Angew Chem Int Ed,1995,34(2):155-173.
    [185] Di Bella S, Fragalà I, Ledoux I, et al. Synthesis, characterization, optical spectroscopic,electronic structure, and second-order nonlinear optical (NLO) properties of a novel classof donor acceptor bis(salicylaldiminato)nickel(II) schiff base NLO chromophores [J]. JAm Chem Soc,1997,119(40):9550-9557.
    [186] Lin W, Wang Z, Ma L. A novel octupolar metal organic NLO material based on a chiral2D coordination network [J]. J Am Chem Soc,1999,121(48):11249-11250.
    [187] Bourgogne C, Fur Y L, Juen P, et al. Tetra(4-methoxyphenyl)phosphonium iodide: Atwinned crystal built up with three-dimensional octupolar nonlinear optical chromophores[J]. Chem Mater,2000,12(4):1025-1033.
    [188] Liu C G, Qiu Y Q, Su Z M, et al. Computational study on second-order nonlinearresponse of a series of two-dimensional carbazole-cored chromophores [J]. J Phys ChemC,2008,112(17):7021-7028.
    [189] Yamamoto H, Katogi S, Watanabe T, et al. New molecular design approach fornoncentrosymmetric crystal structures:Λ‐shaped molecules for frequency doubling [J].Appl Phys Lett,1992,60(8):935-937.
    [190] Kuo W J, Hsiue G H, Jeng R J. Novel guest host NLO poly(ether imide) based on atwo-dimensional carbazole chromophore with sulfonyl acceptors [J]. Macromolecules,2001,34(7):2373-2384.
    [191] Cui Y Z, Fang Q, Huang Z L, et al. Synthesis, structure, and intense second harmonicgeneration of Λ-shaped s-triazine derivative [J]. Opt Mater,2005,27(10):1571-1575.
    [192] Ostroverkhov V, Petschek R G, Singer K D, et al. Λ-like chromophores for chiralnon-linear optical materials [J]. Chem Phys Lett,2001,340(1–2):109-115.
    [193] Di Bella S, Fragalà I, Ledoux I, et al. Dipolar donor–acceptor-substituted schiff basecomplexes with large off-diagonal second-order nonlinear optical tensor components [J].Chem Eur J,2001,7(17):3738-3743.
    [194] Elshocht S V, Verbiest T, Kauranen M, et al. Chiral1,1′-binaphthyl-based helicalpolymers as nonlinear optical materials [J]. Chem Phys Lett,1999,309(5–6):315-320.
    [195] Wortmann R, Kr mer P, Glania C, et al. Deviations from Kleinman symmetry of thesecond-order polarizability tensor in molecules with low-lying perpendicular electronicbands [J]. Chem Phys,1993,173(1):99-108.
    [196] Liu Y, Liu Y, Zhang D, et al. Theoretical investigation on second-order nonlinear opticalproperties of (dicyanomethylene)-pyran derivatives [J]. J Mol Struct,2001,570(1–3):43-51.
    [197] Rao V P, Jen A K Y, Cai Y. Achieving excellent tradeoffs among optical, chemical andthermal properties in second-order nonlinear optical chromophores [J]. Chem Comm,1996(10):1237-1238.
    [198] Wortmann R, Glania C, Kr mer P, et al. Nondipolar structures with threefold symmetryfor nonlinear optics [J]. Chem Eur J,1997,3(11):1765-1773.
    [199] Srinivas K, Sitha S, Jayathirtha Rao V, et al. Second-order nonlinear response in mono-and di-substituted triazine derivatives: A combined experimental and theoretical analysis[J]. Opt Mater,2006,28(8–9):1006-1012.
    [200] Coe B J, Harris J A, Brunschwig B S, et al. Three-dimensional nonlinear opticalchromophores based on metal-to-ligand charge-transfer from ruthenium(II) or iron(II)centers [J]. J Am Chem Soc,2005,127(38):13399-13410.
    [201] Tedim J, Patrício S, Bessada R, et al. Third-Order Nonlinear Optical Properties ofDA-salen-Type Nickel(II) and Copper(II) Complexes [J]. Eur J Inorg Chem,2006,2006(17):3425-3433.
    [202] Robinson W T, Grimes R N. Crystal and molecular structure of2-methyl-1,7-bis(η5-cyclopentadienyl)-1,7,2,4-dicobaltadicarbaheptaborane(7), a triple-decked sandwich compound [J]. Inorg Chem,1975,14(12):3056-3059.
    [203] Grimes R N, Beer D C, Sneddon L G, et al. Small cobalt and nickel metallocarboranesfrom2,3-dicarbahexaborane(8) and1,6-dicarbahexaborane(6). Sandwich complexes ofthe cyclic C2-4-2B3H7and C2B3H5ligands [J]. Inorg Chem,1974,13(5):1138-1146.
    [204] Grimes R N. Metal–carborane multidecker sandwich complexes as building blocks fornew materials [J]. Appl Organomet Chem,1996,10(3-4):209-225.
    [205] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J].Phys Rev Lett,1996,77(18):3865-3868.
    [206] Brennan D E, Geiger W E. Redox properties of small metallocarborane clusters:electrochemistry of cobalt triple-decker sandwich compounds [J]. J Am Chem Soc,1979,101(12):3399-3400.
    [207] Beer D C, Miller V R, Sneddon L G, et al. Triple-decked sandwich compounds. PlanarC4–2B3H5cyclocarborane ligands analogous to C5H5[J]. J Am Chem Soc,1973,95(9):3046-3048.
    [208] Pipal J R, Grimes R N. Crystal structure of a novel triple-decked sandwichmetallocarborane, μ(2,3)-1,3-C53H4-1,7,2,3-(η-C5H5)2Co2C2B3H3, a complex containing abicyclic planar carborane ligand related to pentalene. Partial incorporation of acyclopentadienyl ring into a polyhedral borane cage [J]. Inorg Chem,1978,17(1):10-14.
    [209] Champagne B. Vibrational versus electronic first hyperpolarizabilities of mono-anddisubstituted benzenes: An ab initio coupled Hartree–Fock investigation [J]. Int JQuantum Chem,1997,65(5):689-696.
    [210] Kirtman B, Bonness S, Ramirez-Solis A, et al. Calculation of electric dipole(hyper)polarizabilities by long-range-correction scheme in density functional theory: Asystematic assessment for polydiacetylene and polybutatriene oligomers [J]. J Chem Phys,2008,128(11):114108.
    [211] Yang M, Champagne B. Large off-diagonal contribution to the second-Order opticalnonlinearities of Λ-shaped molecules [J]. J Phys Chem A,2003,107(19):3942-3951.
    [212] Varanasi P R, Jen A K Y, Chandrasekhar J, et al. The important role of heteroaromatics inthe design of efficient second-order nonlinear optical molecules: theoreticalinvestigation on push pull heteroaromatic stilbenes [J]. J Am Chem Soc,1996,118(49):12443-12448.
    [213] Verbiest T, Houbrechts S, Kauranen M, et al. Second-order nonlinear optical materials:recent advances in chromophore design [J]. J Mater Chem,1997,7(11):2175-2189.
    [214] Ward M D. Metal-metal interactions in binuclear complexes exhibiting mixed valency;molecular wires and switches [J]. Chem Soc Rev,1995,24(2):121-134.
    [215] Coe B J. Molecular materials possessing switchable quadratic nonlinear optical properties[J]. Chem Eur J,1999,5(9):2464-2471.
    [216] Lacroix P G, Lepetit C, Daran J C. Switching nonlinear optical properties by protontransfer in hydrogen-bonded merocyanine dyes: a theoretical investigation at thesemi-empirical level [J]. New J Chem,2001,25(3):451-457.
    [217] Spassova M, Kolev T, Kanev I, et al. Structure and nonlinear electrical properties ofsquaric acid derivatives: a theoretical study of the conformation and deprotonation effects[J]. J Mol Struct: THEOCHEM,2000,528(1–3):151-159.
    [218] Costes J P, Lamère J F, Lepetit C, et al. Synthesis, crystal structures, and nonlinearoptical (NLO) properties of new schiff-base nickel(II) complexes. toward a new type ofmolecular switch?[J]. Inorg Chem,2005,44(6):1973-1982.
    [219] Samoc M, Gauthier N, Cifuentes M P, et al. Electrochemical switching of the cubicnonlinear optical properties of an aryldiethynyl-linked heterobimetallic complex betweenthree distinct states [J]. Angew Chem Int Ed,2006,45(44):7376-7379.
    [220] Hawthorne M F, Zink J I, Skelton J M, et al. Electrical or photocontrol of the rotarymotion of a metallacarborane [J]. Science,2004,303(5665):1849-1851.
    [221] St. Clair D, Zalkin A, Templeton D H. Crystal structure of3,3'-commo-bis[undecahydro-1,2-dicarba-3-nickela-closo-dodecaborane], a nickel(IV)complex of the dicarbollide ion [J]. J Am Chem Soc,1970,92(5):1173-1179.
    [222] Warren L F, Hawthorne M F. Chemistry of the bis[π-(3)-1,2-dicarbollyl] metalates ofnickel and palladium [J]. J Am Chem Soc,1970,92(5):1157-1173.
    [223] Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on soluteelectron density and on a continuum model of the solvent defined by the bulk dielectricconstant and atomic surface tensions [J]. J Phys Chem B,2009,113(18):6378-6396.
    [224] Chopra P, Carlacci L, King H F, et al. Ab initio calculations of polarizabilities and secondhyperpolarizabilities in organic molecules with extended π-electron conjugation [J]. JPhys Chem,1989,93(20):7120-7130.
    [225] Zhao Y, Truhlar D. The M06suite of density functionals for main group thermochemistry,thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and12otherfunctionals [J]. Theor Chem Acc,2008,120(1-3):215-241.
    [226] Chai J D, Head-Gordon M. Systematic optimization of long-range corrected hybriddensity functionals [J]. J Chem Phys,2008,128(8):084106.
    [227] Hawthorne M F, Dunks G B. Metallocarboranes that exhibit novel chemical features: Avirtually unlimited variety of structural and dynamic features are observed inmetallocarborane chemistry [J]. Science,1972,178(4060):462-471.
    [228] Kennedy R D, Knobler C B, Hawthorne M F. Toward unidirectional rotary motion innickelacarboranes: characterization of diastereomeric nickel bis(Dicarbollide) complexesderived from the [Nido-7-CH3-7,8-C2B9H11] anion [J]. Inorg Chem,2009,48(19):9377-9384.
    [229] Spokoyny A M, Li T C, Farha O K, et al. Electronic tuning of nickel-basedbis(dicarbollide) redox shuttles in dye-sensitized solar cells [J]. Angew Chem Int Ed,2010,49(31):5339-5343.
    [230] Bühl M, Holub J, Hnyk D, et al. Computational studies of structures and properties ofmetallaboranes.2. transition-metal dicarbollide complexes [J]. Organometallics,2006,25(9):2173-2181.
    [231] Winget P, Weber E J, Cramer C J, et al. Computational electrochemistry: aqueousone-electron oxidation potentials for substituted anilines [J]. Phys Chem Chem Phys,2000,2(6):1231-1239.
    [232] Baik M H, Silverman J S, Yang I V, et al. Using density functional theory to design DNAbase analogues with low oxidation potentials [J]. J Phys Chem B,2001,105(27):6437-6444.
    [233] Patterson E V, Cramer C J, Truhlar D G. Reductive dechlorination of hexachloroethane inthe environment: mechanistic studies via computational electrochemistry [J]. J Am ChemSoc,2001,123(9):2025-2031.
    [234] Baik M H, Friesner R A. Computing redox potentials in solution: Density functionaltheory as a tool for rational design of redox agents [J]. J Phys Chem A,2002,106(32):7407-7412.
    [235] Fu Y, Liu L, Wang Y M, et al. Quantum-chemical predictions of redox potentials oforganic anions in dimethyl sulfoxide and reevaluation of bond dissociation enthalpiesmeasured by the electrochemical methods [J]. J Phys Chem A,2006,110(17):5874-5886.
    [236] Fu Y, Liu L, Yu H Z, et al. Quantum-chemical predictions of absolute standard redoxpotentials of diverse organic molecules and free radicals in acetonitrile [J]. J Am ChemSoc,2005,127(19):7227-7234.
    [237] Kelly C P, Cramer C J, Truhlar D G. Single-ion solvation free energies and the normalhydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide [J]. J PhysChem B,2006,111(2):408-422.
    [238] Rice J E, Amos R D, Colwell S M, et al. Frequency dependent hyperpolarizabilities withapplication to formaldehyde and methyl fluoride [J]. J Chem Phys,1990,93(12):8828-8839.
    [239] Nakano M, Fujita H, Takahata M, et al. Theoretical study on second hyperpolarizabilitiesof phenylacetylene dendrimer: toward an understanding of structure property relationin NLO responses of fractal antenna dendrimers [J]. J Am Chem Soc,2002,124(32):9648-9655.
    [240] Brédas J L, Adant C, Tackx P, et al. Third-order nonlinear optical response in organicmaterials: theoretical and experimental aspects [J]. Chem Rev,1994,94(1):243-278.
    [241] Powell C E, Humphrey M G. Nonlinear optical properties of transition metal acetylidesand their derivatives [J]. Coord Chem Rev,2004,248(7–8):725-756.
    [242] Rhule J T, Hill C L, Judd D A, et al. Polyoxometalates in medicine [J]. Chem Rev,1998,98(1):327-358.
    [243] Yin C X, Sasaki Y, Finke R G. Autoxidation-product-initiated dioxygenases:vanadium-based, record catalytic lifetime catechol dioxygenase catalysis [J]. Inorg Chem,2005,44(23):8521-8530.
    [244] Proust A. Functionalized polyoxometalates: A new generation of soluble oxides [M]. Lespolyoxométallates fonctionnalisés: Une nouvelle génération d'oxydes solubles,2000(7-8):55-61.
    [245] Strong J B, Ostrander R, Rheingold A L, et al. Ensheathing a polyoxometalate:convenient systematic introduction of organoimido ligands at terminal oxo sites in[Mo6O19]2[J]. J Am Chem Soc,1994,116(8):3601-3602.
    [246] Stark J L, Young V G, Maatta E A. A Functionalized Polyoxometalate Bearing aFerrocenylimido Ligand: Preparation and Structure of [(FcN)Mo6O18]2[J]. Angew ChemInt Ed,1995,34(22):2547-2548.
    [247] B. Strong J, S. Haggerty B, L. Rheingold A, et al. A superoctahedral complex derivedfrom a polyoxometalate: the hexakis(arylimido)hexamolybdate anion [Mo6(NAr)6O13H][J]. Chem Comm,1997(12):1137-1138.
    [248] Strong J B, Yap G P A, Ostrander R, et al. A new class of functionalizedpolyoxometalates: synthetic, structural, spectroscopic, and electrochemical studies oforganoimido derivatives of [Mo26O19][J]. J Am Chem Soc,2000,122(4):639-649.
    [249] Wei Y, Xu B, Barnes C L, et al. An efficient and convenient reaction protocol toorganoimido derivatives of polyoxometalates [J]. J Am Chem Soc,2001,123(17):4083-4084.
    [250] Peng Z. Rational synthesis of covalently bonded organic–inorganic hybrids [J]. AngewChem Int Ed,2004,43(8):930-935.
    [251] Kang J, Nelson J A, Lu M, et al. Charge-transfer hybrids containing covalently bondedpolyoxometalates and ferrocenyl units [J]. Inorg Chem,2004,43(20):6408-6413.
    [252] Kang J, Xu B, Peng Z, et al. Molecular and polymeric hybrids based on covalently linkedpolyoxometalates and transition-metal complexes [J]. Angew Chem Int Ed,2005,44(42):6902-6905.
    [253] Xia Y, Wu P, Wei Y, et al. Synthesis, crystal structure, and optical properties of apolyoxometalate-based inorganic organic hybrid solid,(n-Bu4N)2[Mo6O17(≡NAr)2](Ar=o-CH3OC6H4)[J]. Crystal Growth&Design,2005,6(1):253-257.
    [254] Proust A, Thouvenot R, Chaussade M, et al. Phenylimido derivatives of [Mo26O19]:syntheses, X-ray structures, vibrational, electrochemical,95Mo and14N NMR studies [J].Inorg Chim Acta,1994,224(1–2):81-95.
    [255] Stark J L, Rheingold A L, Maatta E A. Polyoxometalate clusters as building blocks:Preparation and structure of bis(hexamolybdate) complexes covalently bridged byorganodiimido ligands [J]. J Chem Soc, Chem Commun,1995(11):1165-1166.
    [256] Clegg W, Errington R J, Fraser K A, et al. Functionalisation of [Mo26O19] with aromaticamines: Synthesis and structure of a hexamolybdate building block with lineardifunctionality [J]. J Chem Soc, Chem Commun,1995(4):455-456.
    [257] Yan L K, Su Z M, Guan W, et al. Why does disubstituted hexamolybdate with arylimidoprefer to form an orthogonal derivative? analysis of stability, bonding character, andelectronic properties on molybdate derivatives by density functional theory (DFT) study[J]. J Phys Chem B,2004,108(45):17337-17343.
    [258] Yan L, Jin M, Song P, et al. Electronic properties of unprecedented bridgingorganoimido-substituted hexamolybdate: new insights from density functional theorystudy [J]. J Phys Chem B,2010,114(11):3754-3758.
    [259] Yang G, Guan W, Yan L, et al. Theoretical study on the electronic spectrum and theorigin of remarkably large third-order nonlinear optical properties of organoimidederivatives of hexamolybdates [J]. J Phys Chem B,2006,110(46):23092-23098.
    [260] Yan L K, Jin M S, Zhuang J, et al. Theoretical study on the considerable second-ordernonlinear optical properties of naphthylimido-substituted hexamolybdates [J]. J PhysChem A,2008,112(40):9919-9923.
    [261] Janjua M R S A, Liu C G, Guan W, et al. Prediction of remarkably large second-ordernonlinear optical properties of organoimido-substituted hexamolybdates [J]. J Phys ChemA,2009,113(15):3576-3587.
    [262] Williams R E. The polyborane, carborane, carbocation continuum: architectural patterns[J]. Chem Rev,1992,92(2):177-207.
    [263] Jiang W, Chizhevsky I T, Mortimer M D, et al. Carboracycles: macrocyclic compoundscomposed of carborane icosahedra linked by organic bridging groups [J]. Inorg Chem,1996,35(19):5417-5426.
    [264] Abe J, Nemoto N, Nagase Y, et al. A new class of carborane compounds for second-ordernonlinear optics: Ab initio molecular orbital study of hyperpolarizabilities for1-(1',X'-dicarba-closo-dodecaborane-1'-yl)-closo-dodecaborate dianion (X=2,7,12)[J].Inorg Chem,1998,37(2):172-173.
    [265] Allis D G, Spencer J T. Polyhedral-based nonlinear optical materials.: Part1. Theoreticalinvestigation of some new high nonlinear optical response compounds involvingcarboranes and charged aromatic donors and acceptors [J]. J Organomet Chem,2000,614–615(0):309-313.
    [266] Ma N N, Yang G C, Sun S L, et al. Computational study on second-order nonlinearoptical (NLO) properties of a novel class of two-dimensional Λ-and W-shaped sandwichmetallocarborane-containing chromophores [J]. J Organomet Chem,2011,696(11–12):2380-2387.
    [267] ADF2009.01SCM T C, Vrije Universiteit, Amsterdam, http://www.scm.com.2009.
    [268] Guan W, Yang G, Liu C, et al. Reversible redox-switchable second-order opticalnonlinearity in polyoxometalate: a quantum chemical study of [PW11O39(ReN)]n (n=37)[J]. Inorg Chem,2008,47(12):5245-5252.
    [269] Liu C G, Guan W, Song P, et al. Second-order nonlinear optical properties oftrisubstituted Keggin and Wells Dawson polyoxometalates: density functional theoryinvestigation of the inorganic donor-conjugated bridge acceptor structure [J]. InorgChem,2009,48(17):8115-8119.
    [270] Becke A D. Density-functional exchange-energy approximation with correct asymptoticbehavior [J]. Phys Rev A,1988,38(6):3098-3100.
    [271] Perdew J P. Density-functional approximation for the correlation energy of theinhomogeneous electron gas [J]. Phys Rev B,1986,33(12):8822-8824.
    [272] Lenthe E v, Baerends E J, Snijders J G. Relativistic regular two‐component Hamiltonians[J]. J Chem Phys,1993,99(6):4597-4610.
    [273] Klamt A, Schuurmann G. COSMO: a new approach to dielectric screening in solventswith explicit expressions for the screening energy and its gradient [J]. J Chem Soc, PerkinTrans2,1993(5):799-805.
    [274] Klamt A. Conductor-like screening model for real solvents: a new approach to thequantitative calculation of solvation phenomena [J]. J Phys Chem,1995,99(7):2224-2235.
    [275] Klamt A, Jonas V. Treatment of the outlying charge in continuum solvation models [J]. JChem Phys,1996,105(22):9972-9981.
    [276] Pye C C, Ziegler T. An implementation of the conductor-like screening model ofsolvation within the Amsterdam density functional package [J]. Theor Chem Acc,1999,101(6):396-408.
    [277] Bassi M, Becciani U, Lombardo U, et al. A parallel code for the kinetic Landau—Vlasovtransport equation [J]. Comput Phys Commun,1999,118(2–3):110-118.
    [278] van Leeuwen R, Baerends E J. Exchange-correlation potential with correct asymptoticbehavior [J]. Phys Rev A,1994,49(4):2421-2431.
    [279] Schipper P R T, Gritsenko O V, van Gisbergen S J A, et al. Molecular calculations ofexcitation energies and (hyper)polarizabilities with a statistical average of orbital modelexchange-correlation potentials [J]. J Chem Phys,2000,112(3):1344-1352.
    [280] Grüning M, Gritsenko O V, van Gisbergen S J A, et al. Shape corrections toexchange-correlation potentials by gradient-regulated seamless connection of modelpotentials for inner and outer region [J]. J Chem Phys,2001,114(2):652-660.
    [281] van Gisbergen S J A, Snijders J G, Baerends E J. Calculating frequency-dependenthyperpolarizabilities using time-dependent density functional theory [J]. J Chem Phys,1998,109(24):10644-10656.
    [282] van Gisbergen S J A, Snijders J G, Baerends E J. Accurate density functional calculationson frequency-dependent hyperpolarizabilities of small molecules [J]. J Chem Phys,1998,109(24):10657-10668.
    [283] van Gisbergen S J A, Snijders J G, Baerends E J. Time-dependent density functionalresults for the dynamic hyperpolarizability of C60[J]. Phys Rev Lett,1997,78(16):3097-3100.
    [284] van Gisbergen S J A, Snijders J G, Baerends E J. Implementation of time-dependentdensity functional response equations [J]. Comput Phys Commun,1999,118(2–3):119-138.
    [285] Ziegler T, Rauk A. Carbon monoxide, carbon monosulfide, molecular nitrogen,phosphorus trifluoride, and methyl isocyanide as σ donors and π acceptors. A theoreticalstudy by the Hartree-Fock-Slater transition-state method [J]. Inorg Chem,1979,18(7):1755-1759.
    [286] Ziegler T, Rauk A. On the calculation of bonding energies by the Hartree Fock Slatermethod [J]. Theor Chim Acta,1977,46(1):1-10.
    [287] A. Landrum G, Goldberg N, Hoffmann R. Bonding in the trihalides (X–3), mixedtrihalides (X2Y–) and hydrogen bihalides (X2H–). The connection between hypervalent,electron-rich three-center, donor-acceptor and strong hydrogen bonding [double dagger][J]. J Chem Soc, Dalton Trans,1997(19):3605-3613.
    [288] Wei Y, Lu M, Cheung C F C, et al. Functionalization of [MoW5O19]2–with aromaticamines: synthesis of the first arylimido derivatives of mixed-metal polyoxometalates [J].Inorg Chem,2001,40(22):5489-5490.
    [289] Gavrilenko V I. Differential reflectance and second-harmonic generation of the Si/SiO2interface from first principles [J]. Physical Review B,2008,77(15):155311.
    [290] Kanis D R, Ratner M A, Marks T J. Calculation and electronic description of quadratichyperpolarizabilities. Toward a molecular understanding of NLO responses inorganotransition metal chromophores [J]. J Am Chem Soc,1992,114(26):10338-10357.
    [291] Karna S P, Dupuis M. Frequency-dependent hyperpolarizabilities of haloforms from abinitio SCF calculations [J]. Chem Phys Lett,1990,171(3):201-208.
    [292] Karna S P, Prasad P N, Dupuis M. Nonlinear optical properties of p‐nitroaniline: Anabinitio time‐dependent coupled perturbed Hartree–Fock study [J]. J Chem Phys,1991,94(2):1171-1181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700