过渡金属配合物激发态和光谱性质的量子理论研究:Pt配合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属配合物作为功能材料应用于通讯、信息、显示等许多领域,是当前国际上的一个研究热点。过渡金属配合物的吸收发射电子转移一般与金属中心原子的d轨道-电子到金属或配体的s/p-轨道或s/p-轨道的电荷转移有关,电子吸收在紫外区而电子发射在可见区的可能性较大,是可见区发光材料的上佳选择。理论研究过渡金属配合物激发态性质是实验研究的有力补充,其优点是独立性、前瞻性和经济性。
     在本文中,我们综述了Pt(II)配合物的实验研究背景、理论发展现状以及本文研究的理论和实际意义。总结以往理论方法和计算经验,研究了几类铂配合物的基态和最低能激发态的几何结构、激发态势能面以及吸收发射光谱等性质。通过对结构-性质之间关系的探索,为功能材料的发展提供理论支持。主要内容有一下几方面:
     (1)通过含时密度泛函方法(TD-DFT)计算了一系列基于碳联非对称二亚胺配体的Pt(II)配合物的电子结构和光谱性质。使用密度泛函方法(DFT)和单电子激发组态相互作用(CIS)分别对基态和激发态电子结构进行优化。光谱研究结果表明:这类配合物的最低能吸收具有1,3MLCT/1,3ILCT混合电荷转移跃迁特点。与吡唑配体无取代基配合物比较,吡唑片段引入吸电子基团(-CF3; -C3F7)使配合物最低能吸收蓝移,反之给电基团(-Me; -tBu)等的引入使得配合物最低能吸收发生红移。当共轭配体骨架引入N杂原子,配体共轭作用增强。MO能量改变的结果使配合物最低能电荷跃迁的能级发生变化,同样导致了光谱的移动。基于配体的不对称性和边界轨道特征可通过取代基效应和杂原子效应来调整等特点,总结了配合物低能电荷跃迁的特点。取代基变化影响配合物跃迁能大约0.3 eV,而N杂原子影响配合物跃迁能大约0.4 eV。
     (2)利用DFT和TD-DFT方法对Pt(II)σ-炔基低聚物重复单元骨架为基础合成的一类配合物进行激发态特征量子化学计算。讨论了配合物基态和激发态的结构,电子性质,电子亲合能和电离势等结果。配合物的最低能吸收具有LLCT结合MLCT跃迁特征。比起单核配合物,相应双核配合物最低能吸收的振子强度有显著的增强,这是因为双核配合物增强的非局域化作用和更加平面化的分子几何。计算得出配合物在CH2Cl2溶剂中磷光发射为配合物的最低能吸收跃迁的逆过程,当分子增强了电子局域化效应和伴随的三态溶剂相互作用时,自身具有了3[π*?π]/3MLCT跃迁特征。另外,此配合物具有较大的第一超极化率(β0)值,可做为潜在非线性光学材料应用。其中的双核类配合物因为拥有较大的跃迁距和较小的跃迁能而使得β0值相对于单核配合物在更高的水平上。
     (3)利用开壳层和闭壳层DFT方法和TD-DFT方法对铂N杂卡宾(NHC)配合物的几何构型,电子态结构以及光学性质进行计算,着眼于配合物激发态的寿命和量子效率的分子本质原因展开研究。利用开壳层密度泛函方法优化[Pt(meim)2]2+, [Pt(meim)(cyim)]2+和[Pt(cyim)2]2+的d-d三重激发态几何构型。综合利用基态激发态势能面理论定性研究得出同系列配合物取代基对激发态能级的影响。密度泛函方法分析表明,配合物量子效率变低是因为配体场影响分子T1态和d-d态间的能垒的降低,更小的结构形变和弱化的体系d-d重组能。
As functional materials, transition metal complexes materials have become a fascinating field in the world for their diverse potential applications in communication, information, and flat-panel displays, and their absorption and emission transitions usually are related to the charge transfer between d orbitals of metal and s/p orbitals of metal or ligand. Because such an electronic absorption in the ultraviolet region usually conducts the corresponding emission in the visible region, transition metal complexes are one of the most excellent candidates to serve as visible-region optical material. Theoretical studies on the excited state properties of transition metal complexes are the strong complement for experimental investigation. The electronic absorption and emission of molecules are complicated microscopic processes between the ground- and excited-state transitions. With the development of quantum chemistry and computational technique, especially the successful application of density functional method, the electronic structures and properties of molecules in the ground state have been fully understood in theory and widely applied in chemistry. However, the studies on the excited-state properties still remain infant and excited states themselves are related to many photoelectric phenomena in the modern chemistry and physics. Therefore, quantum chemistry related to the electronic excited states should be one of the most major research directions in the future. The advantages of theoretical study are retrenchment, indicative of theoretical forward looking and independence.
     The electronic excited states of molecules have higher energy and unsteady characteristics, which easily emit the energy to recur the steady ground state in a short time. So it is difficult for experiment to obtain reliable information about the excited states of molecules. Theoretical chemists attempt various electronic structure theories of excited states to seek the method that can accurately predict excited-state electronic structures and be applied in the calculations of relatively large molecules without consuming excess computational resources. So far, CIS (Single excitation configuration interaction), unrestricted DFT and TD-DFT (Time-dependent density functional theory) methods have been widely used to treat the electronic excited states of large molecular systems. It has been established that the solvents affect the luminescence of complexes. Many theoretical methods were employed to treat properties of complexes in solution. The first strategy puts the attention on the microscopic interactions of the solute with a limited number of solvent molecules; the whole system (the“supermolecule”) is studied with quantum mechanical methods usually employed for single molecules, and the effects of specific solute-solvent interactions are brought in evidence. An increasing number of solvent molecules can be added to this model, thus gaining supplementary (and detailed) information about solvent effects. The second strategy tries to directly introduce statistically averaged information on the solvent effect by replacing the microscopic description of the solvent with a macroscopic continuum medium with suitable properties (dielectric constant, thermal expansion coefficient etc.). Recently, QM/MM (Quantum mechanical and molecular mechanical) method has been developed to account for the solvent effects.
     In this paper, combining the benefits of various quantum chemical computational methods and considering the solvent effects, we systematically studied on the ground- and excited-state conformations, excited state potential energy curves (PEC), absorption and emission spectra of several kind of platinum complexes. Through the exploration between structure and property, it can help to improve the performance of the functional materials. The following is the main results:
     1. Electronic structures and spectroscopic properties of a series of platinum(II) complexes based on C-linked asymmetrical diimine ligand have been studied by the time-dependent density functional theory (TD?DFT) calculations. The ground- and excited-state structures were optimized by the DFT and single-excitation configuration interaction (CIS) methods, respectively. The calculated structures and spectroscopic properties are in agreement with the corresponding experimental results. The results of the spectroscopic investigations revealed that the lowest-energy absorptions have 1,3MLCT/1,3ILCT mixing characters. When the electron-withdrawing groups (-CF3, 1a1; -C3F7, 1a2) are introduced into the pyrazolate fragment, the lowest-energy absorptions are blue-shifted compared to that without substituents on the pyrazolate fragment, while the opposite case is observed for the electron-donating groups (-Me, 1a3; -tBu, 1a4). The conjugation of the C-linked diimine ligand is enhanced through introducing more N heteroatoms into this segment. As a results of MO energy change, the lowest-energy absorptions are blue-shifted in the order 1 < 1b1 < 1b2. With the replacement of pyridyl by pyrazine, the HOMO energy of 1b3 is comparable to 1, but the LUMO energy is decreased by 0.8 eV, and the lowest-energy absorptions are red-shifted to 2.36 eV. Otherwise, the phosphorescent emissions of these complexes have the 3MLCT/3ILCT character, and should be originated from the lowest-energy absorptions. When the pyrazolate fragment is replaced by the indazole group(1a6), the HOMO and LUMO orbitals of the pyridyl-indazolate ligand platinum(II) complexes have obviousπandπ* orbital characters. Therefore, there is no evident MLCT character in the lowest energy absorption and emission.
     2. We report a combinational DFT and TD-DFT study of the electronic and optical properties of several tridentate cyclometalated mononuclear [Pt(C^N^N)(C≡CR)] (1-3), [Pt(C^N^N)(C≡CRC≡CH)] (4), and dinuclear [Pt(C^N^N)(C≡CRC≡C)Pt(C^N^N)] (5 (C2 symmetry) and 5′(Cs symmetry)) platinum(II) complexes withσ-acetylide ligand bearing fluorene substituents, where HC^N^N = 6-aryl-2,2'-bipyridine, R = fluorene-2,7-diyl 1, 4, 5 and 5′, R = 9,9-dimethylfluorene-2,7-diyl 2, R = 9,9-diethylfluorene-2,7-diyl 3. The structural and electronic properties of the ground- and lowest triplet state and the EA and IP values of the complexes are discussed. It is found that all of the lowest-lying absorptions are categorized as the LLCT combined with the MLCT transitions. The oscillator strengths of the lowest energy absorptions get a remarkable enhancement for the dinuclear complexes 5 and 5′compared to 1-4 due to the increase of electronic delocalization on the more planar molecular geometry. In general, the phosphorescent emissions of these complexes in CH2Cl2 are the reverse process of their lowest energy absorption transitions, except that of 4 is assigned as 3[π* ?π]/3MLCT transition because of the strengthened electronic localization effect and the interaction with the solvent in the lowest triplet state. In addition, these complexes hold promise as a new kind of nonlinear optical material owing to their large static first hyperpolarizabilities (β0). Theβ0 value has increased in the dinuclear complexes in contrast to those of the mononuclear ones owing to their larger transition moment and smaller transition energy.
     3. We present a full density functional theory (DFT) and time-dependent density theory (TDDFT) investigation of the geometry, electronic structures, and optical properties of N-heterocyclic platinum(II) tetracarbene complexes aiming at providing a definitive characterization of the photophysical properties of this system. Density functional analysis show that the absorption spectra and emission wavelengths of [Pt(meim)2]2+, [Pt(meim)(cyim)]2+, and [Pt(cyim)2]2+ are analogical, and the reason of a significantly decrease in quantum efficiency for [Pt(cyim)2]2+ is which reaches the nonradiative deactivation dd excited state with lower thermal barrier in contrast with [Pt(meim)2]2+.
     The results presented here demonstrate that photophysical properties, in particular excited-state lifetimes, can be strongly affected by ligands. Access to such information is fundamental for a rational design of new metal complexes with tunable photochemical features. Combining photophysical measurements with emerging capabilities to investigate excited-state potential energy surfaces using quantum chemical calculations is seen to offer in-depth information about such effects. Only a correct description of orbital energies and shapes, and a full comprehension of the role played by different excited states in light-induced electronic transitions, can guide the introduction of advantageous structural changes on photoactivable metal species.
引文
[1]唐小真,杨宏秀,丁马太.材料化学导论[M].北京:高等教育出版社, 1997.
    [2]李文连.有机/无机光电功能材料及其应用[M].北京:科学出版社,2005.
    [3]赵成大.固体量子化学-材料化学的理论基础[M].北京:高等教育出版社, 1997.
    [4] RAO C N R, FRS, GOPALAKRISHNAN J著,刘新生译。固体化学的新方向-结构、合成、性质、反应性材料设计[M].长春:吉林大学出版社,1990.
    [5] TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51: 913-915.
    [6] MARCUS R A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I [J]. J. Chem. Phys., 1956, 24: 966-978.
    [7] MARCUS R A. Electron transfer reactions in chemistry. Theory and experiment [J]. Rev. Mod. Phys., 1993, 65: 599-610.
    [8] CHO K C, CHE C M, CHENG F C, et al. Photoinduced electron transfer between cytochrome c and ruthenium/osmium bipyridine and phenanthroline complexes [J]. J. Am. Chem. Soc., 1984, 106: 6843-6844.
    [9] WOODWARD R B, HOFFMANN R.著,王志中、杨忠志译.轨道对称守恒[M].北京:科学出版社,1978.
    [10]福井谦一著,李荣森译.化学反应与电子轨道[M].北京:科学出版社,1985.
    [11] FLEMING I. Frontier Orbitals and Organic Chemical Reaction [M], Wiley1976.
    [12] (a) MISKOWSKI V M, HOULDING V H. Electronic spectra and photophysics of platinum(II) complexes with .alpha.-diimine ligands solid-state effects. 2. Metal-metal interaction in double salts and linear chains [J]. Inorg. Chem., 1991, 30: 4446-4452. (b) VAN SLAGEREN J, KLEIN A, ZáLI? S. Ligand-to-ligand charge transfer states and photochemical bond homolysis in metal---carbon bonded platinum complexes [J]. Coord. Chem. Rev., 2002, 230: 193-221. (c) KLEIN A, VAN SLAGEREN J, ZáLI? S. Spectroscopy and photochemical reactivity of cyclooctadiene platinum complexes [J]. J. Organomet. Chem., 2001, 620: 202-208. (d) KLEIN A, VAN SLAGEREN J, ZáLI? S. Co-Ligand Involvement in Ground and Excited States of Electron-Rich (Polypyridyl)PtII Complexes [J]. Eur. J. Inorg. Chem., 2003, 1917-1928. (e) LAI S W, CHAN M C W, CHEUNG K K, et al. Carbene and Isocyanide Ligation at Luminescent Cyclometalated 6-Phenyl-2,2‘-bipyridyl Platinum(II) Complexes: Structural and Spectroscopic Studies [J]. Organometallics, 1999, 18: 3327-3336. (f) GUO F Q, SUN W F, LIU Y, et al. Synthesis, Photophysics, and Optical Limiting of Platinum(II) 4‘-Tolylterpyridyl Arylacetylide Complexes [J]. Inorg. Chem., 2005, 44: 4055-4057. (g) DEINIS K C T, MCMILLIN D R. Exciplex quenching of photoexcited platinum(II) terpyridines: influence of the orbital parentage[J]. Coord. Chem. Rev., 2001, 211: 195-245. (h) BüCHNER R, FIELD J S, HAINES R J, et al. Luminescence Properties of Salts of the [Pt(trpy)Cl]+ and [Pt(trpy)(MeCN)]2+ Chromophores: Crystal Structure of [Pt(trpy)(MeCN)](SbF6)2 [J]. Inorg. Chem., 1997, 36: 3952-3956. (i) YIP H K, CHENG L K, CHEUNG K K, et al. Benzenehexathiol as a template rim for a golden wheel: synthesis and structure of [{CSAu(PPh3)}6] [J]. J. Chem. Soc. Dalton Trans., 1994, 2333-2335.
    [13] (a) MCGARRACH J E, KIM Y J, HISSLER M, et al. Toward a Molecular Photochemical Device: A Triad for Photoinduced Charge Separation Based on a Platinum Diimine Bis(acetylide) Chromophore [J]. Inorg. Chem., 2001, 40: 4510-4511. (b) WADAS, T J, WANG Q M, KIM Y J, et al. Vapochromism and Its Structural Basis in a Luminescent Pt(II) Terpyridine?Nicotinamide Complex[J]. J. Am. Chem. Soc., 2004, 126: 16841-16849. (c) HISSLER M, CONNICK W B, GEIGER D K, et al. Platinum Diimine Bis(acetylide) Complexes: Synthesis, Characterization, and Luminescence Properties[J]. Inorg. Chem., 2000, 39: 447-457.
    [14] SPERLINE R P, DICKSON M K, ROUNDHILL D M. [J]. New route to the directed synthesis of mixed metal chain oligomers. Identification of a platinum complex having an intense emission in the visible spectrum in aqueous solution [J]. J. Chem. Soc. Chem. Commun., 1977, 62-63.
    [15] FORDYCE W A, BRUMMER J G, CROSBY G A. Electronic spectroscopy ofa diplatinum (II) octaphosphite complex [J]. J. Am. Chem. Soc., 1981, 103: 7061-7064.
    [16] CHE C–M, BUTLER L G, GRAY H B. Spectroscopic properties and redox chemistry of the phosphorescent excited state of octahydrotetrakis(phosphorus pentoxide)diplatinate(4-) ion (Pt2(P2O5)4H84-) [J]. J. Am. Chem. Soc., 1981, 103: 7796-7797.
    [17] Rice S F, Gray H B. Electronic absorption and emission spectra of binuclear platinum(II) complexes. Characterization of the lowest singlet and triplet excited states of tetrakis(diphosphonato)diplatinate(4-) anion (Pt2(H2P2O5)44-) [J]. J. Am. Chem. Soc., 1983, 105: 4571-4575.
    [18] (a) SHIMIZU Y, TANAKA Y, AZUMI T. Assignment of the lower electronic states of potassium tetrakis (.mu.-diphosphonato)diplatinate(II) [J]. J. Phys. Chem., 1984, 88: 2423-2425. (b) SHIMIZU Y, TANAKA Y, AZUMI T. Sublevel phosphorescence spectra of potassium tetrakis (.mu.-diphosphonato)diplatinate(II) [J]. J. Phys. Chem., 1985, 89: 1372-1374. (c) TANAKA Y, AZUMI T. Delayed fluorescence and triplet-triplet annihilation in a diplatinate(II) pyrophosphite complex [J]. Inorg. Chem., 1986, 25: 247-248.
    [19] STIEGMAN A E, RICE S F, GRAY H B, et al. Electronic spectroscopy of d8-d8 diplatinum complexes. 1A2u (d.sigma.* .fwdarw. p.sigma.), 3Eu (dxz,dyz .fwdarw. p.sigma.), and 3,1B2u (d.sigma.* .fwdarw. dx2-y2) excited states of tetrakis(diphosphonato)diplatinate(4-), Pt2(P2O5H2)44- [J]. Inorg. Chem., 1987, 26: 1112-1116.
    [20] ROUNDHILL D M, GRAY H B, CHE C-M. Pyrophosphito-bridged diplatinum chemistry [J]. Acc. Chem. Res., 1989, 22: 55-61.
    [21] ZIPP A P. The behavior of the tetra-υ-pyrophosphito-diplatinum(II) ion Pt2(P2O5H2)4?4 and related species [J]. Coord. Chem. Rev., 1988, 84: 47-83.
    [22] (a) PARKER W L, CROSBY G A. Symmetry assignments of excited states of [Pt2H8P8O20]4? by polarization ratio spectroscopy [J]. Chem. Phys. Lett., 1984, 105: 544-546. (b) BRUMMER J G, CROSBY G A. Reexamination of the phosphorescence of Ba2Pt2(H2P2O5)4 via thermally modulated emission spectroscopy[J]. Chem. Phys. Lett., 1984, 112: 15-19.
    [23] (a) CHAN S–C, CHAN M C W, WANG Y, et al. Organic Light-Emitting Materials Based on Bis(arylacetylide)platinum(II) Complexes Bearing Substituted Bipyridine and Phenanthroline Ligands: Photo- and Electroluminescence from 3MLCT Excited States [J]. Chem. Eur. J., 2001, 7, 4180-4190. (b) CHE C–M, HE L–Y, POON C–K, et al. Solid-state emission of dicyanoplatinum(II) and -palladium(II) complexes of substituted 2,2'-bipyridines and 1,10-phenanthroline and x-ray crystal structures of isomorphous M(bpy)(CN)2 (bpy = 2,2'-bipyridine; M = Pt, Pd) [J]. Inorg. Chem., 1989, 28: 3081-3083.
    [24] KATO M, KOSUGE C, MORII K, et al. Luminescence Properties and Crystal Structures of Dicyano(diimine)platinum(II) Complexes Controlled by Pt···Pt andπ?πInteractions [J]. Inorg. Chem., 1999, 38: 1638-1641.
    [25] CONNICK W B, HENLING L M, MARSH R E, et al. Emission Spectroscopic Properties of the Red Form of Dichloro(2,2‘-bipyridine)platinum(II). Role of Intermolecular Stacking Interactions [J]. Inorg. Chem., 1996, 35: 6261-6265.
    [26] POMESTCHENKO I E, LUMAN C R, HISSLER M, et al. Room Temperature Phosphorescence from a Platinum(II) Diimine Bis(pyrenylacetylide) Complex [J]. Inorg. Chem., 2003, 42: 1394-1396.
    [27] HISSLER M, MCGARRAH J E, CONNICK W B, et al. Platinum diimine complexes: towards a molecular photochemical device [J]. Coord. Chem. Rev., 2000, 208: 115-137.
    [28] (a) MISKOWSKI V M, HOULDING V H. Electronic spectra and photophysics of platinum(II) complexes with .alpha.-diimine ligands solid-state effects. 2. Metal-metal interaction in double salts and linear chains [J]. Inorg. Chem., 1991, 30: 4446-4452. (b) MISKOWSKI V M, HOULDING V H. Electronic spectra and photophysics of platinum (II) complexes with .alpha.-diimine ligands. Solid-state effects. 1. Monomers and ligand .pi. dimmers [J]. Inorg. Chem., 1989, 28: 1529-1533. (c) HOULDING V H, MISKOWSKI V M. The effect of linear chain structure on the electronic structure of pt(II) diimine complexes [J]. Coord. Chem. Rev., 1991, 111: 145-152.
    [29] HOULDING V H, FRANK A J. Cooperative excited-state behavior in platinum(II) Magnus-type double-salt materials. Active and inactive photosensitizers for hydrogen production in aqueous suspension [J]. Inorg. Chem., 1985, 24: 3664-3668.
    [30] (a) FIELD J S, GERTENBACH J A, HAINES R J, et al. Temperature Dependence of the Crystal Structures and Luminescence Properties of [Pt{4'(o-Cl-ph)trpy}Cl]SbF6 (trpy = 2,2':6',2"-terpyridine) [J]. Dalton Trans., 2003, 1176-1180. (b) MCMILLIN D R, MOORE J J. Luminescence that lasts from Pt(trpy)Cl+ derivatives (trpy=2,2′;6′,2″-terpyridine) [J]. Coord. Chem. Rev., 2002, 229: 113-121. (c) TEARS D K C, MCMILLIN D R. Exciplex quenching of photoexcited platinum(II) terpyridines: influence of the orbital parentage [J]. Coord. Chem. Rev. 2001, 211: 195-205.
    [31] (a) LAI S–W, CHAN M C W, CHEUNG K–K, et al. Spectroscopic Properties of Luminescent Platinum(II) Complexes Containing 4,4‘,4‘‘-Tri-tert-butyl-2,2‘:6‘,2‘‘-terpyridine (tBu3tpy). Crystal Structures of [Pt(tBu3tpy)Cl]ClO4 and [Pt(tBu3tpy){CH2C(O)Me}]ClO4 [J]. Inorg. Chem., 1999, 38: 4262-4267. (b) YIP H K, CHENG L K, CHEUNG K K, et al. Luminescent platinum(II) complexes. Electronic spectroscopy of platinum(II) complexes of 2,2:6,2-terpyridine (terpy) and p-substituted phenylterpyridines and crystal structure of [Pt(terpy)CI][CF3SO3] [J]. J. Chem. Soc. DaltonTrans., 1993, 2933-2938. (c) TZENG B C, FU W F, CHE C M, et al. Structures and Photoluminescence of Dinuclear Platinum(II) and Palladium(II) Complexes with Bridging Thiolates and 2, 2’-Bipyridine or 2,2’: 6’,2”-Terpyridine Ligands [J]. J. Chem. Soc. Dalton Trans., 1999, 1017-1024.
    [32] (a) YAM V W W, TANG R P L, WONG K M C, et al. Synthesis, Luminescence, Electrochemistry, and Ion-Binding Studies of Platinum(II) Terpyridyl Acetylide Complexes [J]. Organometallics, 2001, 20: 4476-4482. (b) YAM V W W, WONG K M C, ZHU N. Solvent-Induced Aggregation through Metal···Metal/π···πInteractions: Large Solvatochromism of Luminescent Organoplatinum(II) Terpyridyl Complexes [J]. J. Am. Chem. Soc., 2002, 124: 6506-6507.
    [33] SCHUBER U S, ESCHBAUMER C. Macromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers [J]. Angew. Chem. Int. Ed., 2002, 41: 2892-2926.
    [34] ARENA G, CALOGERO G, CAMPAGNA S, et al. Synthesis, Characterization, Absorption Spectra, and Luminescence Properties of Organometallic Platinum(II) Terpyridine Complexes [J]. Inorg. Chem., 1998, 37: 2763-2769.
    [35] BALLEY J A, MISKOWSKI V M, GRAY H B. Spectroscopic and structural properties of binuclear platinum-terpyridine complexes [J]. Inorg. Chem. 1993, 32: 369-492.
    [36] YANG Q–Z, WU L–Z, WU Z–X, et al. Long-Lived Emission from Platinum(II) Terpyridyl Acetylide Complexes [J]. Inorg. Chem., 2002, 41: 5653-5655.
    [37] (a) SOLAR J M, OZKAN M A, ISCI H, et al. Electronic absorption and magnetic circular dichroism spectra of some planar platinum(II), palladium(II), and nickel(II) complexes with phosphorus-donor ligands [J]. Inorg. Chem. 1984, 23, 758-764. (b) SOLAR J M, ROGERS R D, MASON W R. Synthesis of some alkyl phosphite complexes of platinum and their structural and spectral characterization [J]. Inorg. Chem., 1984, 23: 373-377. (c) ROBERTS D A, MASON W R, GEOFFROY G L. Metal-to-ligand charge-transfer spectra of some cis- and trans- [Pt(PEt3)2(X)(Y)] complexes [J]. Inorg. Chem. 1981, 20: 789-796. (d) ISCI H, MASON W R. Electronic structure and spectra of square-planar cyano and cyanoamine complexes of platinum(II) [J]. Inorg. Chem., 1975, 14: 905-912.
    [38] (a) RAGHAVACHARI K, POPLE J A. Calculation of one-electron properties using limited configuration interaction techniques [J]. Int. J. Quant. Chem., 1981, 20: 1067-1071. (b)潘清江. d8和d10配合物激发态性质与金属间弱相互作用的量子理论研究[D].吉林:吉林大学理论化学研究所,2005.
    [39] FORESMAN J B, HEAD-GORDON M, POPLE J A. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem. 1992, 96: 135-149.
    [40] (a) BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitationswithin the adiabatic approximation of time dependent density functional theory [J]. Chem. Phys. Lett., 1996, 256: 454-464. (b) CASIDA M E, JAMORSKI C, CASIDA K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Chem. Phys., 1998, 108: 4439-4449. (c) STATMANN R E, SCUSERIA G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J. Chem. Phys., 1998, 109: 8218-8224.
    [41] (a) KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivative studies in configuration–interaction theory [J]. J. Chem. Phys., 1980, 72: 4654-4655. (b) BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J]. J. Chem. Phys., 1980, 72: 4652-4653. (c) SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives in many-body methods. I. First derivatives [J]. J. Chem. Phys., 1989, 90: 1752-1766. (d) RAGHAVACHARI K, POPLE J A. Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int. J. Quant. Chem., 1981, 20: 167-174. (e) POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys., 1987, 87: 5968-5975.
    [42] (a) STOYANOV S R, VILLEGAS J M, RILLEMA D P. Time-Dependent Density Functional Theory Study of the Spectroscopic Properties Related to Aggregation in the Platinum(II) Biphenyl Dicarbonyl Complex [J]. Inorg. Chem., 2003, 42: 7852-7860. (b) STOYANOV S R, VILLEGAS J M, RILLEMA D P. Spectroscopic Properties of [Pt2(μ-P2O5H2)4]:4- A Time-Dependent Density Functional Theory and Conductor-like Polarizable Continuum Model Investigation [J]. J. Phys. Chem. B, 2004, 108: 12175-12180. (c) STOYANOV S R, VILLEGAS J M, CRUZ A J, et al. Computational and Spectroscopic Studies of Re(I) Bipyridyl Complexes Containing 2,6-Dimethylphenylisocyanide (CNx) Ligand [J]. J. Chem. Theor. Comput., 2005, 1: 95-106. (d) VILLEGAS J M, STOYANOV S R, HUANG W, et al. Photophysical, Spectroscopic, and Computational Studies of a Series of Re(I) Tricarbonyl Complexes Containing 2,6-Dimethylphenylisocyanide and 5- and 6-Derivatized Phenanthroline Ligands [J]. Inorg. Chem., 2005, 44: 2297-2309.
    [43] (a) ZHANG H–X, CHE C–M. Aurophilic Attraction and Luminescence of Binuclear Gold(I) Complexes with Bridging Phosphine Ligands: ab initio Study [J]. Chem. Eur. J., 2001, 7: 4887-4893. (b) PAN Q–J, ZHANG H–X. Ab Initio Studies on Metal?Metal Interaction and 3[σ*(d)σ(s)] Excited State of the Binuclear Au(I) Complexes Formed by Phosphine and/or ThioetherLigands [J]. J. Phys. Chem. A, 2004, 108: 3650-3661. (c) PAN Q–J, ZHANG H–X. Ab Initio Study on Luminescent Properties and Aurophilic Attraction of [Au2(dpm)(i-mnt)] and Its Related Au(I) Complexes (dpm = bis(diphosphino)methane and i-mnt = i-malononitriledithiolate) [J]. Organometallics, 2004, 23: 5198-5209. (d) PAN Q–J, ZHANG H–X. An ab Initio Study on Luminescent Properties and Aurophilic Attraction of Binuclear Gold(I) Complexes with Phosphinothioether Ligands [J]. Inorg. Chem., 2004, 43: 593-601. (e) PAN Q–J, ZHANG H–X. Theoretical studies on metal–metal interaction andσ*(d)→σ(p) transition in binuclear platinum(II) complex, [J]. Chem. Phys. Lett., 2004, 394: 155-160. (f) PAN Q–J, ZHANG H–X. Aurophilic attraction and excited-state properties of binuclear Au(I) complexes with bridging phosphine and/or thiolate ligands: An ab initio study [J]. J. Chem. Phys., 2003, 119: 4346-4352. (g) PAN Q–J, ZHANG H–X. Ab initio Study on Luminescence and Aurophilicity of a Dinuclear [(AuPH3)2(i-mnt)] Complex (i-mnt = isomer-Malononitriledithiolate) [J]. Eur. J. Inorg. Chem., 2003, 4202-4210.
    [44] HALLS M D, SCHLEGEL H B. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Mater., 2001, 13: 2632-2640.
    [45] (a) CONDON E U. Nuclear motions associated with electron transitions in diatomic molecules [J]. Phys. Rev., 1928, 32: 858-872. (b) FRANCK J. Elementary processes of photochemical reactions [J]. Trans. Faraday Soc., 1925, 21: 536-542.
    [46] (a) LO K K-W, HUI W-K, NG D C-M, et al. Synthesis, Characterization, PhotophysicalProperties, and Biological Labeling Studies of a Series of Luminescent Rhenium(I) Polypyridine Maleimide Complexes [J]. Inorg. Chem., 2002, 41: 40-46. (b) WALTERS K A, PREMVARDHAN L L, LIU Y, et al. Metal-to-ligand charge transfer absorption in a rhenium(I) complex that contains aπ-conjugated bipyridine acceptor ligand [J]. Chem. Phys. Lett., 2001, 339: 255-262. (c)杨丽.金属有机配合物及高聚物发光材料的理论研究[D].吉林:吉林大学理论化学研究所,2006.
    [47] (a) WONG M W, FRISCH M J, WIBERG K B. Solvent effects. 1. The mediation of electrostatic effects by solvents [J]. J. Am. Chem. Soc., 1991, 113: 4776-4782. (b) WONG M W, WIBERG K B, FRISCH M J. Solvent effects. 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid [J]. J. Am. Chem. Soc., 1992, 114: 523-529. (c) WONG M W, WIBERG K B, FRISCH M J. Solvent effects. 3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab initio SCRF study [J]. J. Am. Chem. Soc., 1992, 114: 1645-1652.
    [48] (a) YERSIN H. Energy transfer from linear stacks of tetracyanoplatinates(II)to rare earth ions [J]. J. Chem. Phys., 1978, 68: 4707-4713. (b) VAN SLAGEREN J, KLEIN A, ZáLI? S. Ligand-to-ligand charge transfer states and photochemical bond homolysis in metal-carbon bonded platinum complexes [J]. Coord. Chem. Rev., 2002, 230: 193-211. (c) KLEIN A, VAN SLAGEREN J, ZáLI? S. Spectroscopy and photochemical reactivity of cyclooctadiene platinum complexes [J]. J. Organomet. Chem., 2001, 620: 202-210. (d) KLEIN A, VAN SLAGEREN J, ZáLI? S. Co-Ligand Involvement in Ground and Excited States of Electron-Rich (Polypyridyl)PtII Complexes [J]. Eur. J. Inorg. Chem., 2003, 1927-1938. (e) BENITO J, BERENGUER J R, FORNIéS J, et al. Synthesis, characterization and luminescence properties of homoleptic platinum(II) acetylide complexes [J]. Dalton Trans., 2003, 4331-4339. (f) EMMERT L A, CHOI W, MARSHALL J A, et al. The Excited-State Symmetry Characteristics of Platinum Phenylacetylene Compounds [J]. J. Phys. Chem. A, 2003, 107: 11340-11346. (g) SCHINDLER J W, FUKUDA R C, ADAMSON A W. Photophysics of aqueous tetracyanoplatinate(2-) [J]. J. Am. Chem. Soc., 1982, 104: 3596-3600. (h)周欣. d8配合物激发态性质与金属间弱相互作用的量子理论研究[D].吉林:吉林大学理论化学研究所,2006.
    [49] (a) CONNICK W B, GRAY H B. Photooxidation of Platinum(II) Diimine Dithiolates [J]. J. Am. Chem. Soc., 1997, 119: 11620-11627. (b) PETTIJOHN C N, JOCHNOWITZ E B, CHUONG B, et al. Luminescent excimers and exciplexes of Pt(II) compounds [J]. Coord. Chem. Rev., 1998, 171: 85-92. (c) CONNICK W B, GEIGER D, EISENBERG R. Excited-State Self-Quenching Reactions of Square Planar Platinum(II) Diimine Complexes in Room-Temperature Fluid Solution [J]. Inorg. Chem., 1999, 38: 3264-3265. (d) CRITES TEARS D K, MCMILLIN D R. Exciplex quenching of photoexcited platinum(II) terpyridines: influence of the orbital parentage [J]. Coord. Chem. Rev., 2001, 211: 195-205.
    [1]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [2]徐光宪,黎乐民,王德民.量子化学-基本原理和从头算法[M].北京:科学出版社,1985.
    [3]王志中,现代量子化学计算方法[M].长春:吉林大学出版社,1998.
    [4]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [5] BORN M,OPPENHEIMER J R. Quantum theory of molecules [J]. Ann. Phys. 1927,84(20): 457-484.
    [6] SZABO A,OSTLUND N S,Mordern quantum chemistry,introduction to advanced electronic structure theory [M]. New York:Mineoda Dove Publications, 1996.
    [7] HEHRE W J, RADOM L, SCHLEYER P V P, et al. Ab initio molecular orbital theory [M]. New York: Wiley & Sons, 1988.
    [8] DYCSTRA C E. Ab initio calculation of the structures and properties of molecules [M]. New York: Elsevier Science Publishers, 1988.
    [9] HOHENBERG P, KOHN W. Inhomogeneous lelctron gas [J]. Phys. Rev. B, 1964, 136: 864-871.
    [10] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effeets [J]. Phys. Rev. A, 1965,140: 1133-1138.
    [11] SLATER J C. Quantum theory of molecular and solids. Vol. 4: The Self-Consistent Field for Molecular and Solids [M]. New York: McGraw-Hill,1974.
    [12] SALAHUB D E, ZERNER M C. The challenge of d and f electrons [M]. ACS: Washington, 1989.
    [13] PARR R G, YANG W. Density-functional theory of atoms and molecules [M]. Oxford: Oxford Univ., 1989.
    [14] POPLE J A, GILL P W M, JOHNSON B G. Kohn-Sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett., 1992, 199: 557-560.
    [15] JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys., 1994, 100: 7429-7442.
    [16] LABANOWSKI J K, ANDZELM J W. Density functional methods in chemistry [M]. New York: Springer-Verlag, 1991.
    [17] BORN M, HUANG K. Dynamical theory of crystal lattices [M]. Oxford: Clarendon Press, 1954.
    [18] HARTREE D. The calculations of atomic structure [M]. New York: Wiley, 1957.
    [19] Roothaan C C J. Developments in molecular orbital theory [J]. Rev. Mod. Phys., 1951, 23(2): 69-89.
    [20] LOWDIN P O. Correlation problem in many-electron quantum mechanics. I. Review of different approaches and discussions of some current ideas [J]. Adv. Chem. Phys., 1959, 2: 207-322.
    [21] WILSON S. Electron correlation in molecules [M]. Oxford: Clarendon Press, 1984.
    [22] FRISCH M J, HEAD-GORDON M, POPLE J A. Semi-direct algorithms for the MP2 energy and gradient [J]. Chem. Phys. Lett., 1990, 166: 281-289.
    [23] FRISCH M J, HEAD-GORDON M, POPLE J A. A direct MP2 gradient method [J]. Chem. Phys. Lett., 1990, 166: 275-280.
    [24] HEAD-GORDON M, POPLE J A, FRISCH M J. MP2 energy evaluation by direct methods [J]. Chem. Phys. Lett., 1988, 153: 503-507.
    [25] M?LLER C, PLESSET M S. Note on an approximation treatment for many-electron systems [J]. Phys. Rev., 1934, 46: 618-622.
    [26] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives in many-body methods. I. First derivatives [J]. J. Chem. Phys., 1989, 90: 1752-1766.
    [27] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys., 1987, 87: 5968-5975.
    [28] BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J]. J. Chem. Phys., 1980, 72: 4652-4653.
    [29] FOREMAN J B. HEAD-GORDON M, POPLE A. Toward a systematic molecular orbital theory for excited states [J]. J Phys. Chem., 1992, 96: 135-149.
    [30] KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivative studies in configuration–interaction theory [J]. J. Chem. Phys., 1980, 72: 4654-4655.
    [31] RAGHAVACHARI K, POPLE J A. Calculation of one-electron propertiesusing limited configuration interaction techniques [J]. Int. J. Quant. Chem., 1981, 20: 1067-1071.
    [32] POPLE J A, SEEGER R, KRISHNAN R. Variational configuration interaction methods and comparison with perturbation theory [J]. Int. J. Quant. Chem., 1977, 11: 149-161.
    [33] POPLE J A, BINKLEY J S, SEEGER R. theoretical models incorporating electron correlation [J]. Int. J. Quant. Chem., 1976, 10: 1-19.
    [34] KNOWLES P J, HANDY N C. A new determinant-based full configuration interaction method [J]. Chem. Phys. Lett., 1984, 111: 315-321.
    [35] SIEGBAHN P E M. Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configuration [J]. J. Chem. Phys., 1980, 72: 1647-1656.
    [36] SCHAEFER III H F. Methods of electronic structure theory [M]. New York: Plenum, 1977.
    [37] THOMAS L H. The calculation of atomic fields [J]. Proc. Camb. Phil. Soc., 1927, 23: 542-548.
    [38] FERMI E. Un metodo statistice per la determinazione di alcune proprieta dell’atomo [J]. Rend. Accad. Lincei., 1927, 6: 602-607.
    [39] DIRAC P A M. A note on exchange phenomenon in the Thomas atom [J]. Proc. Camb. Soc., 1930, 26: 376-385.
    [40] SLATER J C. A Simplification of the Hartree-Fock Method [J]. Phys. Rev., 1591, 81: 385-390.
    [41] ZIEGLER T. Approximate density functional theory as a practical tool in molecular energetics and dynamics [J]. Chem. Rev., 1991, 91: 651-667.
    [42] VOSKO S H, WILK L, NUSAIR M. Accurate Spin-dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis [J]. Can. J. Phy., 1980, 58: 1200-1211.
    [43] BECKE A D. Density-functional Exchange-energy Approximation with Correct Asymptotic Behavior [J]. Phys. Rev., 1988, A38: 3098-3100.
    [44] PERDEW J P. Density-functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas [J]. Phys. Rev., 1986, D33: 8822-8824.
    [45] PERDEW J P. The Electronic Structure of Solids.’91 ed [C]. Akademic Verlag, Berlin, 1991, 11-20.
    [46] ADAMO C, BARONE V. Exchange functionals with improved long-range behavior and adiabatic comnection methods without adjustable parameters: The mPW and mPW1PW models [J]. J. Chem. Phys., 1998, 108: 664-675.
    [47] COLLE R, SALVETTI D. Approximate calculation of the correlation energy for the closed shells [J]. Theor. Chim. Acta, 1975, 37: 329-334.
    [48] LEE C T, YANG W T, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37: 785-789.
    [49] (a) BECKE A D, Density-fuctional thermochemostry.Ⅲ.The role of exact exchange [J]. J. Chem. Phys., 1993, 98: 5648-5652. (b) BECKE A D. A New Mixing of Hartree-Fock and Local Density-functional Theories [J]. J. Chem. Phys., 1993, 98: 1372-1377.
    [50] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. B, 1964, 136(3B): B864-B871.
    [51] RUNGE E, GROSS E K U. Density-Functional Theory for Time-Dependent Systems [J]. Phys. Rev. Lett., 1984, 52(12): 997-1000.
    [52] VAN LEEUWEN R. Causality and Symmetry in Time-Dependent Density-Functional Theory [J]. Phys. Rev. Lett., 1998, 80(6): 1280-1283.
    [53] CASIDA M E, JAMORSKI C, BOHR F, et al. Theoretical and Computational Modeling of NLO and Electronic Materials [M]. Washington, D.C.: ACS Press. 1996.
    [54] GROSS E K U, DREIZLER ED R M. Density Functional Theory. B [M]. New York: Plenum Press. 1995.
    [55] G.赫兹堡著,王鼎昌译.分子光谱与分子结构-双原子分子光谱[M].北京:科学出版社,1983.
    [56]周公度,段连运.结构化学基础[M].北京:北京大学出版社, 1995.
    [57] CONDON E U. Nuclear motions associated with electron transitions in diatomic molecules [J]. Phys. Rev., 1928, 32: 858-872.
    [58] FRANCK J. Elementary processes of photochemical reactions [J]. Trans. Faraday Soc., 1925, 21: 536-542.
    [59]梁映秋,赵文运编.分子振动和振动光谱[M].北京:北京大学出版社,1990.
    [60] LEWIS G N, KASHA M. Phosphorescence and the triplet state [J]. J. Am. Chem. Soc., 1944, 66: 2100-2116.
    [61] ROHATGI-MAKHERJEE K K.著.丁革非,孙万林,盛六四等译.光化学基础[M].北京:科学出版社, 1991.
    [62] HEGARTY D, ROBB M A. Application of unitary group methods toconfiguration interaction calculations [J]. Mol. Phys., 1979, 38: 1795-1812.
    [63] EADE R H E, ROBB M A. Direct minimization in mc scf theory. The quasi-newton method [J]. Chem. Phys. Lett., 1981, 83: 362-368.
    [64] FRISCH M J, RAGAZOS I N, ROBB M A, at al. Anevaluation of 3 direct MCSCF procedures [J]. Chem. Phys. Lett., 1992, 189: 524-528.
    [65] YAMAMOTO N, VREVEN T, ROBB M A, at al. A direct derivative MC-SCF procedure [J]. Chem. Phys. Lett., 1996, 250: 373-378.
    [66] PEUKERT V. A new approximation method for electron systems [J]. J. Phys., 1978, C11: 4945-4956.
    [67] THEOPHILOU A K. The energy density functional formalism for excited states [J]. J. Phys., 1979, C12: 5419-5430.
    [68] (a) HADJISAVVAS N, THEOPHILOU A K. Rigorous formulation of theKohn and Sham theory [J]. Phys. Rev. A, 1984, A30: 2183-2186. (b) HADJISAVVAS N, THEOPHILOU A K. Rigorous formulation of Slater’s transition-state theory for excited states [J]. Phys. Rev. A, 1985, A32: 720-724.
    [69] THEOPHILOU A K, GIDOPOULOS N I. Density functional theory for excited states [J]. Int. J. Quantum. Chem., 1995, 56: 333-336.
    [70] JAMORSKI C, CASIDA M E, SALAHUB D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of timedependent density-functional response theory: N2 as a case study [J]. J. Chem. Phys., 1996, 104(13): 5134-5147.
    [71] PYYKK? P. Relativistic effects in structural chemistry [J]. Chem. Rev., 1988, 88: 563-594.
    [72]林梦海.量子化学简明教程[M].北京:化学工业出版社,2005.
    [73] DUNNING T H. Gaussian Basis Functions for Use in Molecular Calculations. I. Contraction of (9s5p) Atomis Basis Sets for the First-Row Atoms [J]. J. Chem. Phys., 1970, 53: 2823-2833.
    [74] HUZINAGA S. Gaussian-Type Functions for Polyatomic Systems. I [J]. J. Chem. Phys., 1965, 42: 1293-1302.
    [75] (a) HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys., 1985, 82: 270-283. (b) WADT W R, HAY P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi [J]. J. Chem. Phys., 1985, 82: 284-298. (c) HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys., 1985, 82: 299-310.
    [76] MIERTU? S, SCROCCO E, TOMASI J. A direct utilization of ab initio molecular potentials for the prevision of solvent effects [J]. Chem. Phys., 1981, 55: 117-122.
    [77] Pullman B, Miertu? S, Perahia D. Hydration scheme of the purine and pyrimidine bases and base-pairs of the nucleic acids [J]. Theor. Chim. Acta, 1979, 50: 317-325.
    [78] MIERTU? S, TOMASI J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes [J]. Chem. Phys., 1982, 65: 239-245.
    [79] COSSI M, BARONE V, CAMMI R, OMASI J T. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model [J]. Chem. Phys. Lett., 1996, 255: 327-335.
    [80] COSSI M, BARONE V, MENNUCCI B, TOMASI J. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J]. Chem. Phys. Lett., 1998, 286: 253-260.
    [81] CANCèS E, MENNUCCI B, TOMASI J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics [J]. J. Chem. Phys., 1997, 107: 3032-3041.
    [82] BARONE V, COSSI M, TOMASI J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J. Chem. Phys., 1997, 107: 3210-3221.
    [83] TUNON I, SILLA E, TOMASI J. Methylamines basicity calculations: in vacuo and in solution comparative analysis [J]. J. Phys. Chem., 1992, 96: 9043-9048.
    [84] FORESMAN J B, KEITH T A, WIBERG K B, et al. Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations [J]. J. Phys. Chem., 1996, 100: 16098-16104.
    [85] WIBERG K B, KEITH T A, FRISCH M, et al. Solvent effects on 1,2-dihaloethane gauche/trans ratios [J]. J. Phys. Chem., 1995, 99 :9072-9079.
    [86] WIBERG K B, RABLEN P R, RUSH D J, et al. Amides. 3. Experimental and theoretical studies of the effect of the medium on the rotational barriers for N,N-dimethylformamide and N,N-dimethylacetamide [J]. J. Am. Chem. Soc., 1995, 117: 4261-4270.
    [1] PEYRATOUT C S, ALDRIDGE T K, CRITES D K, et al. Dna-binding studies of a bifunctional platinum complex that is a luminescent intercalator [J]. Inorg. Chem., 1995, 34: 4484-4489.
    [2] HOULDING V H, FRANK A J. Cooperative excited-state behavior in platinum(II) magnus-type double-salt materials. Active and inactive photosensitizers for H2 production in aqueous suspension [J]. Inorg. Chem., 1985, 24: 3664-3668.
    [3] KUNUGI Y, MANN K R, MILLER L L, et al. A vapochromic LED [J]. J. Am. Chem. Soc., 1998, 120: 589-590.
    [4] ZHANG D, WU L-Z, ZHOU L, et al. Photocatalytic hydrogen production from hantzsch 1,4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution [J]. J. Am. Chem. Soc., 2004, 126: 3440-3441.
    [5] CONNICK W B, GRAY H B. Photooxidation of platinum(II) diimine dithiolates [J]. J. Am. Chem. Soc., 1997, 119: 11620-11627.
    [6] HISSLER M, MCGARRAH J E, CONNICK W B, et al. Platinum diimine complexes: towards a molecular photochemical device [J]. Coord. Chem. Rev., 2000, 208: 115-137.
    [7] ISLAM A, SUGIHARA H, HARA K, et al. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes [J]. Inorg. Chem., 2001, 40: 5371-5380.
    [8] MCGARRAH J E, KIM Y J, HISSLER M, et al. Toward a molecular photochemical device: A triad for photoinduced charge separation based on a platinum diimine bis(acetylide) chromophore [J]. Inorg. Chem., 2001, 40: 4510-4511.
    [9] MCGARRAH J E, EISENBERG R. Dyads for photoinduced charge separation based on platinum diimine bis(acetylide) chromophores: Synthesis, luminescence and transient absorption studies [J]. Inorg. Chem., 2003, 42: 4355-4365.
    [10] LU W, MI B X, CHAN M C W, et al. Light-Emitting TridentateCyclometalated Platinum(II) Complexes Containingσ-Alkynyl Auxiliaries: Tuning of Photo- and Electrophosphorescence [J]. J. Am. Chem. Soc., 2004, 126: 4958-4971.
    [11] ADAMOVICH V, BROOKS J, TAMAYO A, et al. High efficiency single dopant white electrophosphorescent light emitting diodes [J]. New J. Chem., 2002, 26: 1171-1178.
    [12] JURIS A, BALZANI V, BARIGELLETTI F, et al. Ru (II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence [J]. Coord. Chem. Rev., 1988, 84: 85-277.
    [13] CROSBY G A. Spectroscopic investigations of excited-states of transition-metal complexes [J]. Acc. Chem. Res., 1975, 8: 231-238.
    [14] GARETH WILLIAMS J A.Photochemistry and Photophysics of Coordination Compounds: Platinum [J]. Top Curr. Chem., 2007, 281: 205-268.
    [15] SUN Y, GIEBINK N C, KANNO H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature, 2006, 440: 908-912.
    [16] ZHOU X, ZHANG H X, PAN Q J, et al. Theoretical Studies of the Spectroscopic Properties of [Pt(trpy)C CR]+ (trpy = 2,2‘,6‘,2‘‘-Terpyridine; R = H, CH2OH, and C6H5) [J]. J. Phys. Chem. A, 2005, 109: 8809-8818.
    [17] BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395: 151-154.
    [18] LAMANSKY S, DJUROVICH P, MURPHY D, et al. Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes [J]. J. Am. Chem. Soc., 2001, 123: 4304-4312.
    [19] LAMANKSY S, DJUROVICH P, MURPHY D, et al. Synthesis and characterization of phosphorescent cyclometalated iridium complexes [J]. Inorg. Chem., 2001, 40: 1704-1711.
    [20] CHE C-M, HOU Y-J, CHAN M C W, et al. [meso-Tetrakis(pentafluorophenyl)porphyrinato]platinum(II) as an efficient, oxidation-resistant red phosphor: spectroscopic properties and applications in organic light-emitting diodes [J]. J. Mater. Chem., 2003, 13: 1362-1366.
    [21] IKAI M, ISHIKAWA F, ARATANI N, et al. Enhancement of external quantum efficiency of red phosphorescent organic light-emitting devices with facially encumbered and bulky PtII porphyrin complexes [J]. Adv. Funct. Mater., 2006, 16: 515-519.
    [22] BROOKS J, BABAYAN Y, LAMANSKY S, et al. Synthesis and characterization of phosphorescent cyclometalated platinum complexes [J]. Inorg. Chem., 2002, 41: 3055-3066.
    [23] LIN Y-Y, CHAN S-C, CHAN M C W, et al. Structural, photophysical, andelectrophosphorescent properties of platinum(II) complexes supported by tetradentate N2O2 chelates [J]. Chem. Eur. J., 2003, 9: 1263-1272.
    [24] CHE C-M, CHAN S-C, XIANG H-F, et al. Tetradentate Schiff base platinum(II) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices [J]. Chem. Commun., 2004, 1484-1485.
    [25] KWOK C-C, NGAI H M Y, CHAN S-C, et al. [(O^N^N)PtX] complexes as a new class of light-emitting materials for electrophosphorescent devices [J]. Inorg. Chem., 2005, 44: 4442-4444.
    [26] WONG W-Y, HE Z, SO S-K, et al. A multifunctional platinum-based triplet emitter for OLED applications [J]. Organometallics, 2005, 24: 4079-408.
    [27] GALBRECHT F, YANG X H, NEHLS B S, et al. Semiconducting polyfluorenes with electrophosphorescent on-chain platinum-salen chromophores [J]. Chem. Commun., 2005, 2378-2380.
    [28] ALDRIDGE T K, STACY E M, MCMILLIN D R. Studies of the room-temperature absorption and emission-spectra of [Pt(trpy)X]+ systems [J]. Inorg. Chem., 1994, 33: 722-727.
    [29] CUMMINGS S D, EISENBERG R. Tuning the excited-state properties of platinum(II) diimine dithiolate complexes [J]. J. Am. Chem. Soc., 1996, 118: 1949-1960.
    [30] MCMILLIN D R, MOORE J J. Luminescence that lasts from Pt(trpy)Cl+ derivatives (trpy = 2,2';6',2''-terpyridine) [J]. Coord. Chem. Rev., 2002, 229: 113-121.
    [31] LAI S-W, CHAN M C W, CHEUNG K-K, et al. Spectroscopic properties of luminescent platinum(II) complexes containing 4,4',4''-Tri-tert-butyl-2,2':6',2''-terpyridine (tBu3tpy). Crystal structures of [Pt(tBu3tpy)Cl]ClO4 and [Pt(tBu3tpy){CH2C(O)Me}]ClO4 [J]. Inorg. Chem., 1999, 38: 4262-4267.
    [32] CHEUNG T C, CHEUNG K K, PENG S M, et al. Photoluminescent cyclometallated diplatinum(II, II) complexes: Photophysical properties and crystal structures of [PtL(PPh3)]ClO4 and [Pt2L2(mu-dppm)][ClO4]2 (HL = 6-phenyl-2,2'-bipyridine, dppm=Ph2PCH2PPh2) [J]. J. Chem. Soc. Dalton Trans., 1996, 1645-1651.
    [33] LAI S-W, CHAN C-W, CHEUNG K-K, et al. Carbene and isocyanide ligation at luminescent cyclometalated 6-phenyl-2,2'-bipyridyl platinum(II) complexes: Structural and spectroscopic studies [J]. Organometallics, 1999, 18: 3327-3336.
    [34] YOU Y, KIM K S, AHN T K, et al. Direct spectroscopic observation of interligand energy transfer in cyclometalated heteroleptic iridium(III) complexes: A strategy for phosphorescence color tuning and white light generation [J]. J. Phys. Chem. C, 2007, 111: 4052-4060.
    [35] MARIN V, HOLDER E, HOOGENBOOM R, et al. Functional ruthenium(II)- and iridium(III)-containing polymers for potential electro-optical applications [J]. Chem. Soc. Rev., 2007, 36: 618-635.
    [36] BETTINGTON S, TAVASLI M, BRYCE M R, et al. Tris-cyclometalated iridium(III) complexes of carbazole(fluorenyl)pyridine ligands: Synthesis, redox and photophysical properties, and electrophosphoreseent light-emitting diodes [J]. Chem. Eur. J., 2007, 13: 1423-1431.
    [37] YANG L, FENG J-K, REN A-M. Theoretical investigations of the substituent effect on the absorption and emission properties for a series of platinum (II) complexes supported by tetradentate N2O2 chelates [J]. J. Mol. Struc.: THEOCHEM, 2006, 760: 193-201.
    [38] SHAVALEEV N M, ADAMS H, BEST J, et al. Deep-red luminescence and efficient singlet oxygen generation by cyclometalated platinum(II) complexes with 8-hydroxyquinolines and quinoline-8-thiol [J]. Inorg. Chem., 2006, 45: 9410-9415.
    [39] KUNKELY H, VOGLER A. Photoluminescence of [PtII(4,7-diphenyl-1,10-phenanthroline)(CN)2] in solution [J]. J. Am. Chem. Soc., 1990, 112: 5625-5627.
    [40] MISKOWSKI V M, HOULDING V H, CHE C M, et al. Electronic-spectra and photophysics of platinum(II) complexes withα-diimine ligands. Mixed complexes with halide ligands [J]. Inorg. Chem., 1993, 32: 2518-2524.
    [41] CHAN C W, CHENG L K, CHE C M. Luminescent donor-acceptor platinum(II) complexes [J]. Coord. Chem. Rev., 1994, 132: 87-97.
    [42] ZHANG Y, LEY K D, SCHANZE K S. Photooxidation of diimine dithiolate platinium(II) complexes induced by charge transfer to diimine excitation [J]. Inorg. Chem., 1996, 35: 7102-7110.
    [43] PAW W, CUMMINGS S D, MANSOUR M A, et al. Luminescent platinum complexes: tuning and using the excited state [J]. Coord. Chem. Rev., 1998, 171: 125-150.
    [44] CONNICK W B, MISKOWSKI V M, HOULDING V H, et al. Lowest electronic excited states of platinum(II) diimine complexes [J]. Inorg. Chem., 2000, 39: 2585-2592.
    [45] ED WHITTLE C, WEINSTEIN J A, GEORGE M W, et al. Photophysics of diimine platinum(II) bis-acetylide complexes [J]. Inorg. Chem., 2001, 40: 4053-4062.
    [46] ADAMS C J, JAMES S L, LIU X M, et al. Synthesis and characterisation of new platinum–acetylide complexes containing diimine ligands [J]. J. Chem. Soc. Dalton Trans., 2000, 63-67.
    [47] CASTELLANO F N, POMESTCHENKO I E, SHIKHOVA E, et al. Photophysics in bipyridyl and terpyridyl platinum(II) acetylides [J]. Coord. Chem. Rev., 2006, 250:1819-1828.
    [48] CHANG S-Y, KAVITHA J, HUNG J-Y, et al. Luminescent platinum(II) complexes containing lsoquinolinyl indazolate ligands: Synthetic reaction pathway and photophysical properties [J]. Inorg. Chem., 2007, 46: 7064-7074.
    [49] ZULETA J A, CHESTA C A, EISENBERG R J. Square-planar complexes of platinum(II) that luminesce in fluid solution [J]. J. Am. Chem. Soc., 1989, 111: 8916-8917.
    [50] GREEN T W, LIEBERMAN R, MITCHELL N, et al. Intramolecular metal center dot center dot center dot sulfur interactions of platinum(II) 1,4,7-trithlacyclononane complexes with bipyridyl ligands: The relationship between molecular and electronic structures [J]. Inorg. Chem., 2005, 44: 1955-1965.
    [51] CHOU P-T, CHI Y. Phosphorescent dyes for organic light-emitting diodes [J]. Chem. Eur. J., 2007, 13: 380-395.
    [52] CHANG S-Y, KAVITHA J, LI S-W, et al. Platinum(II) complexes with pyridyl azolate-based chelates: Synthesis, structural characterization, and tuning of photo- and electrophosphorescence [J]. Inorg. Chem., 2006, 45: 137-146.
    [53] KAVITHA J, CHANG S-Y, CHI Y, et al. In search of high-performance platinum(II) phosphorescent materials for the fabrication of red electroluminescent devices [J]. Adv. Funct. Mater., 2005, 15: 223-229.
    [54] RUNGE E, GROSS E K U. Density-functional theory for time-dependent systems [J]. Phys. Rev. Lett., 1984, 52: 997-1000.
    [55] LEE C, YANG W, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density [J]. Phys. Rev. B, 1988, 37: 785-789.
    [56] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98: 5648-5652.
    [57] NOZAKI K, TAKAMORI K, NAKATSUGAWA Y, et al. Theoretical studies of phosphorescence spectra of tris(2,2'-bipyridine) transition metal compounds [J]. Inorg. Chem., 2006, 45: 6161-6178.
    [58] STANTON J F, GAUSS J, ISHIKAWA N, et al. A comparison of single reference methods for characterizing stationary-points of excited-state potential-energy surfaces [J]. J. Chem. Phys., 1995, 103: 4160-4174.
    [59] FOREMAN J B, HEAD-GORDON M, POPLE A. Toward a systematic Molecular-Orbital theory for excited-states [J]. J. Phys. Chem., 1992, 96: 135-149.
    [60] WAITERS V A, HADAD C M, THIEL Y, et al. Assignment of the ? state in bicyclobutane. The multiphoton ionization spectrum and calculations of transition energies [J]. J. Am. Chem. Soc., 1991, 113: 4782-4791.
    [61] ZHOU X, ZHANG H-X, PAN Q-J, et al. Theoretical studies of the spectroscopic properties of [Pt(trpy)C≡CR]+(trpy = 2,2',6',2''-terpyridine; R = H, CH2OH, and C6H5) [J]. J. Phys. Chem. A, 2005, 109: 8809-8818.
    [62] LIU T, XIA B-H, ZHOU X, et al. Theoretical studies on structures and spectroscopic properties of bis-cyclometalated iridium complexes [J]. Organometallics, 2007, 26: 143-149.
    [63] HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations-potentials for the transition-metal atoms Sc to Hg [J]. Chem. Phys., 1985, 82: 270-283.
    [64] WADT W R, HAY P J. Ab initio effective core potentials for molecular calculations-potentials for main group elements Na to Bi [J]. J. Chem. Phys., 1985, 82: 284-298.
    [65] HAY P J. WADT W R. Ab initio effective core potentials for molecular calculations-potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys., 1985, 82: 299-310.
    [66] PYYKK? P, MENDIZABAL F. Theory of d10?d10 Closed-Shell Attraction. III. Rings [J]. Inorg. Chem., 1998, 37, 3018-3025.
    [67] HARIHARAN P C, POPLE J A. Accuracy of Ah equilibrium geometries by single determinant Molecular-Orbital theory [J]. Mol. Phys., 1974, 27: 209-214.
    [68] JAMORSKI C, CASIDA M E, SALAHUB D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study [J]. J. Chem. Phys., 1996, 104: 5134-5147.
    [69] PETERSILKA M, GROSSMANN U J, GROSS E K U. Excitation energies from time-dependent density-functional theory [J]. Phys. Rev. Lett., 1996, 76: 1212-1215.
    [70] BAUERNSCHMITT R, AHLRICHS R, HENNRICH F H, et al. Experiment versus time dependent density functional theory prediction of fullerene electronic absorption [J]. J. Am. Chem. Soc., 1998, 120: 5052-5059.
    [71] CASIDA M E, JAMORSKI C, CASIDA K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Chem. Phys., 1998, 108: 4439-4449.
    [72] STRATMANN R E, SCUSERIA G E, FRISCH M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J. Chem. Phys., 1998, 109: 8218-8224.
    [73] COSSI M, SCALMANI G, REGAR N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J]. J. Chem. Phys., 2002, 117: 43-54.
    [74] BARONE V, COSSI M, TOMASI J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].J. Chem. Phys., 1997, 107: 3210-3221.
    [75] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, revision C02, Gaussian Inc, Wallingford, CT, 2004.
    [76] BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J]. Chem. Phys. Lett., 1996, 256: 454-464.
    [77] FARRELL I R, VAN SLAGEREN J, ZáLI? S, et al. Time-Resolved Emission Spectra and TD-DFT Excited-State Calculations of [W(CO)4(1,10-phenanthroline)] and [W(CO)4(3,4,7,8-tetramethyl-1,10- phenanthroline)] [J]. Inorg. Chem. Acta, 2001, 315: 44-52.
    [78] ROSA A, BAERENDS E J, VAN GISBERGEN S J A V, et al. Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by a Relativistic TDDFT Approach [J]. J. Am. Chem. Soc., 1999, 121: 10356-10365.
    [79] H. NAKATSUJI. Cluster expansion of the wavefunction excited states [J]. Chem. Phys. Lett., 1978, 59: 362-364.
    [80] NAKATSUJI H, HIRAO K. Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory [J]. J. Chem. Phys., 1978, 68: 2053-2065.
    [81] STOYANOV S R, VILLEGAS J M, RILLEMA D P. Time-dependent density functional theory study of the spectroscopic properties related to aggregation in the platinum(II) biphenyl dicarbonyl complex [J]. Inorg. Chem., 2003, 42: 7852-7860.
    [82] ZHOU X, PAN Q-J, XIA B-H, et al. DFT and TD-DFT calculations on the electronic structures and spectroscopic properties of cyclometalated platinum(II) complexes [J]. J. Phys. Chem. A, 2007, 111: 5465-5472.
    [83] LIU X-J, FENG J-K, MENG J, et al. A theoretical investigation of substituent effects on the absorption and emission properties of a series of terpyridylplatinum(II) acetylide complexes [J]. Eur. J. Inorg. Chem., 2005, 1856-1866.
    [84] BAI F-Q, ZHOU X, LIU T, et al. Computational studies on the spectroscopic properties of the 2-pyridylpyrazolate-based platinum(II) complexes with modified pyrazolate fragment[J]. Int. J. Quantum. Chem., 2009, 109: 308-319.
    [1] NAST R. Coordination chemistry of metal alkynyl compounds [J]. Coord. Chem. Rev., 1982, 47: 89-124.
    [2] NGUYEN P, GOMEELIPE P, MANNERS I. Organometallic polymers with transition metals in the main chain [J]. Chem. Rev., 1999, 99: 1515-1548.
    [3] BUNZ U H F, RUBIN Y, TOBE Y. Polyethynylated cyclicπ-systems: Scaffoldings for novel two and three-dimensional carbon networks [J]. Chem. Soc. Rev., 1999, 28: 107-119.
    [4] BRUNEAU C, DIXNEUF P H. Metal vinylidenes in catalysis [J]. Acc. Chem. Res., 1999, 32: 311-323.
    [5] MANNERS I. Polymers and the Periodic Table: Recent Developments in Inorganic Polymer Science [J]. Angew. Chem. Int. Ed. Engl., 1996, 35: 1602-1621.
    [6] SCHWAB P F H, LEVIN M D, MICHL J. Molecular Rods. 1. Simple Axial Rods [J]. Chem. Rev., 1999, 99: 1863-1934.
    [7] YAMAMOTO T. BA clinicopathologic study of transient osteoporosis of the hip [J]. Bull. Chem. Soc. Jpn., 1999, 72: 621-627.
    [8] LICHTENBERGER D L, RENSHAW S K, WONG A, et al. Investigation of metal-dπ-butadiynyl-πinteractions in (η5-C5H5)(CO) 2FeC≡C-C≡CH using photoelectron spectroscopy [J]. Organometallics, 1993, 12: 3522-3526.
    [9] LICHTENBERGER D L, RENSHAW S K, BULLUCK R M. Metal-acetylide bonding in (η5-C5H5)Fe(CO)2C≡CR compounds. Measures of metal-dπ-acetylide-πinteractions from photoelectron spectroscopy [J]. J. Am. Chem. Soc., 1993, 115: 3276-3285.
    [10] KIM P J, MASAI H, SONOGASHIRA K, et al. Preparations ofα,ω-bis-nickel-polyacetylenes [J]. Inorg. Nucl. Chem. Lett., 1970, 6: 181-185.
    [11] LONG N J, WILLIAMS C K. Metal alkynylσcomplexes: Synthesis and materials [J]. Angew. Chem. Int. Ed., 2003, 42: 2586-2617.
    [12] LONG N J. Organometallic compounds for nonlinear optics - The search for en-light-enment! [J]. Angew. Chem. Int. Ed. Engl., 1995, 34: 21-38.
    [13] BARLOW S, O’HARE D. Metal-metal interactions in linked metallocenes [J]. Chem. Rev., 1997, 97: 637-669.
    [14] YOUNUS M, KOHLER A, CRON S, et al. Synthesis, electrochemisty, and spectroscopy of blue platinum(II) polyynes and diynes [J]. Angew. Chem. Int. Ed., 1998, 37: 3036-3039.
    [15] CHAWDHURY N, KOHLER A, FRIEND R H, et al. Synthesis and electronic structure of platinum-containing poly-ynes with aromatic and heteroaromatic rings [J]. Macromolecules, 1998, 31: 722-727.
    [16] YAM V W W, LO K K W, WONG K M C. Luminescent polynuclear metal acetylides [J]. J. Organomet. Chem., 1999, 578: 3-30.
    [17] YAM V W W. Molecular design of transition metal alkynyl complexes as building blocks for luminescent metal-based materials: Structural and photophysical aspects [J]. Acc. Chem. Res., 2002, 35: 555-563.
    [18] IRWIN M J, VITTAL J J, PUDDEPHATT R J. Luminescent gold(I) acetylides: From model compounds to polymers [J]. Organometallics, 1997, 16: 3541-3547.
    [19] PAUL F, LAPINTE C. Organometallic molecular wires and other nanoscale-sized devices. An approach using the organoiron (dppe)Cp*Fe building block [J]. Coord. Chem. Rev., 1998, 178–180: 431-509.
    [20] TESSLER N, DENTON G J, FRIED R H, Lasing from conjugated-polymer microcavities [J]. Nature, 1996, 382: 695-696.
    [21] CHAN S-C, CHAN M C W, WANG Y, er al. Organic light-emitting materials based on bis(arylacetylide)platinum(II) complexes bearing substituted bipyridine and phenanthroline ligands: Photo- and electroluminescence from 3MLCT excited state [J]. Chem. Eur. J., 2001, 7: 4180-4190.
    [22] YANG Y, ZHANG D, WU L-Z, et al. Photosensitized oxidative deprotection of oximes to their corresponding carbonyl compounds by platinum(II) terpyridyl acetylide complex [J]. J. Org. Chem., 2004, 69: 4788-4791.
    [23] ZHANG D, WU L-Z, ZHOU L, et al. Photocatalytic Hydrogen Production from Hantzsch 1,4-Dihydropyridines by Platinum(II) Terpyridyl Complexes in Homogeneous Solution [J]. J. Am. Chem. Soc., 2004, 126: 3440-3441.
    [24] YAM V W W, TANG R P-L, WONG K M C, et al. Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes [J]. Organometallics, 2001, 20: 4476-4482.
    [25] DONHAUSER Z J, MANTOOTH B A, KELLY K F, et al. Conductance switching in single molecules through conformational changes [J]. Science, 2001, 292: 2303- 2307.
    [26] ZHOU G-J, WONG W-Y, YE C, et al. Determination of isothermal section of Fe-Ti-Zr ternary system at 1173 K [J]. Adv. Funct. Mater., 2007, 17: 963-966.
    [27] TANG C W, VAN SLYKE S A, Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51: 913-915.
    [28] LEWIS J, KHAN M S, KAKKAR A K, et al. Di-, tri-, pseudo-di- and pseudo-tetra-acetylenic polymers of platinum: Synthesis, characterization and optical spectra [J]. J. Organomet. Chem., 1992, 425: 165-176.
    [29] FRAPPER G, KERTESZ M. Metal oligo-yne polymers: Electronic structures of [-(L)nMC≡CRC≡C-]x polymers [J]. Inorg. Chem., 1993, 32: 732-740.
    [30] BUNTEN K A, KAKKAR A K. Synthesis, optical absorption, fluorescence, quantum efficiency, and electrical conductivity studies of pyridine/pyridinium dialkynyl organic and Pt(II)-σ-acetylide monomers and polymers [J]. Macromolecules, 1996, 29: 2885-2893.
    [31] CHAWDHURY N, AL-MANDHARY M R A, KHAN M S J. Evolution of lowest singlet and triplet excited states with number of thienyl rings in platinum poly-ynes [J]. Chem. Phys., 1999, 110: 4963-4970.
    [32] WILSON J S, RAITHBY P R. Triplet states in a series of Pt-containing ethynylenes [J]. J. Chem. Phys., 2000, 113: 7627-7634.
    [33] LU W, MI B-X, CHAN M C W, HUI Z, et al. Light-Emitting Tridentate Cyclometalated Platinum(II) Complexes Containingσ-Alkynyl Auxiliaries: Tuning of Photo- and Electrophosphorescence [J]. J. Am. Chem. Soc., 2004, 126: 4958-4971.
    [34] EVANS R C, DOUGLAS P, WINSCOM C J. Coordination complexes exhibiting room-temperature phosphorescence: Evaluation of their suitability as triplet emitters in organic light emitting diodes [J]. Coord. Chem. Rev., 2006, 250: 2093-2126.
    [35] WONG W-Y, HO C-L. Di-, oligo- and polymetallaynes: Syntheses, photophysics, structures and applications [J]. Coord. Chem. Rev., 2006, 250: 2627-2690.
    [36] MASAI H, SONOGASHIRA K, HAGIHARA N. Electronic Spectra of Square-Planar Bis(tertiary phosphine)dialkynyl Complexes of Nickel(II), Palladium(II), and Platinum(II) [J]. Bull. Chem. Soc. Jpn., 1971, 44:2226-2230.
    [37] SONOGASHIRA K, YATAKE T, TOHDA Y, et al. Novel preparation ofσ-alkynyl complexes of transition metals by copper(I) iodide-catalysed dehydrohalogenation [J]. J. Chem. Soc. Chem. Commun., 1977, 291-292.
    [38] SONOGASHIRA K, HAGIHARA N, TAKAHASHI S. A new extended chain polymer. Poly[trans-bis(tri-n-butylphosphine)platinum 1,4-butadiynediyl] [J]. Macromolecules, 1977, 10: 879-880.
    [39] SONOGASHIRA K, FUJIKURA Y, YATAKE T, et al. Syntheses and properties of cis- and trans-dialkynyl complexes of platinum(II) [J]. J. Organomet. Chem., 1978, 145: 101-108.
    [40] FUJIKURA Y, SONOGASHIRA K, HAGIHARA N. Preparation and uv- spectra of some oligomer-complexes composed of platinum group metals and conjugated poly-yne systems [J]. Chem. Lett., 1975, 1067-1070.
    [41] TAKAHASHI S, MURATA E, SONOGASHIRA K, et al. Studies on polyyne polymers containing transition metals in the main chain - 4. polymer synthesis by oxidative coupling of transition metal-bis(acetylide) complexes.[J]. J. Polym. Sci. Polym. Chem. Ed., 1980, 18: 661-669.
    [42] CHAN C W, CHENG L K, CHE C M, Luminescent donor-acceptor platinum(II) complexes [J]. Coord. Chem. Rev., 1994, 132: 87-97.
    [43] LEWIS J, RAITHBY P R, WONG W-Y. Synthesis of new bis(acetylide)-substituted fluorene derivatives and their bimetallic and polymeric complexes [J]. J. Organomet. Chem., 1998, 556: 219-228.
    [44] WONG W Y, CHOI K H, LU G L, et al. Synthesis, redox and optical properties of low-bandgap platinum(II) polyynes with 9-dicyanomethylene-substituted fluorene acceptors [J]. Macromol. Rapid Commun., 2001, 22: 461-465.
    [45] Gebler D D, WANG Y Z, BLATCHFORD J W, et al. Blue electroluminescent devices based on soluble poly(p-pyridine) [J]. J. Appl. Phys., 1995, 78: 4264-4266.
    [46] TAO X-T, ZHANG Y-D, WADA T, et al. Hyperbranched polymers for electroluminescence applications [J]. Adv. Mater., 1998, 10: 226-230.
    [47] MARUYAMA S, ZHANG Y, WADA T, et al. Convenient syntheses of cyclic carbazole oligomers by 1-pot Knoevenagel reaction [J]. J. Chem. Soc. Perkin Trans., 1999, 1: 41-45.
    [48] WONG W-Y, LU G-L, CHOI K-H, et al. Synthesis and electronic properties of new photoluminescent platinum-containing polyynes with 9,9-dihexylfluorene and 9-butylcarbazole units [J]. Macromolecules, 2002, 35: 3506-3513.
    [49] ZIESSEL R, HISSLER M, EL-GHAYOURY A, et al., Multifunctional transition metal complexes Information transfer at the molecular level [J]. Coord. Chem. Rev. , 1998, 178–180: 1251-1298.
    [50] HISSLER M, MCGARRAH J E, CONNICK W B, et al. Platinum diiminecomplexes: Towards a molecular photochemical device [J]. Coord. Chem. Rev., 2000, 208: 115-137.
    [51] MCMILLIN D R, MOORE J J. Luminescence that lasts from Pt(trpy)Cl+ derivatives (trpy = 2, 2′; 6′,2′′-terpyridine) [J]. Coord. Chem. Rev., 2002, 229: 113-121.
    [52] CASTELLANO F N, POMESTCHENKO I E, SHIKHOVA E, et al. Photophysics in bipyridyl and terpyridyl platinum(II) acetylides [J]. Coord. Chem. Rev., 2006, 250: 1819-1828.
    [53] GERETH WILLIAMS J A. Photochemistry and Photophysics of Coordination Compounds: Platinum [J]. Top. Curr. Chem., 2007, 281: 205-268.
    [54] LAI S W, CHAN M C W, CHEUNG K K, et al. Carbene and Isocyanide Ligation at Luminescent Cyclometalated 6-Phenyl-2,2'-bipyridyl Platinum(II) Complexes: Structural and Spectroscopic Studies [J]. Organometallics, 1999, 18: 3327-3336.
    [55] LAI S W, CHAN M C W, CHEUNG T C, et al. Probing d8-d8 interactions in luminescent mono- and binuclear cyclometalated platinum(II) complexes of 6-phenyl-2,2'-bipyridines [J]. Inorg. Chem., 1999, 38: 4046-4055.
    [56] NEVE F, GHEDINI M, CRISPINI A, et al. C,N,N-Cyclometallated palladium(II) complexes: A step forward to luminescent metallomesogens [J]. Chem. Commun., 1996, 2463-2464.
    [57] CHEUNG T C, CHEUNG K K, PENG S M, et al. Photoluminescent cyclometallated diplatinum(II,II) complexes: Photophysical properties and crystal structures of [PtL(PPh3)]ClO4 and[Pt2L2(μ-dppm)][ClO4]2(HL = 6-phenyl-2,2'-bipyridine, dppm = Ph2PCH2PPh2) [J]. Dalton Trans., 1996, 1645-1651.
    [58] CHAN C W, LAI T F, CHE C M, et al. Covalently linked donor-acceptor cyclometalated platinum(II) complexes. Structure and luminescent properties [J]. J. Am. Chem. Soc., 1993, 115: 11245-11253.
    [59] LU W, CHAN M C W, CHEUNG K K, et al.π-πinteractions in organometallic systems. Crystal structures and spectroscopic properties of luminescent mono-, bi-, and trinuclear trans-cyclometalated platinum(II) complexes derived from 2,6-diphenylpyridine [J]. Organometallics, 2001, 20: 2477-2486.
    [60] YAM V W W, TANG R P L, WONG K M C, et al. Synthesis and ion-binding studies of a platinum(II) terpyridine complex with crown ether pendant. X-ray crystal structure of [Pt(trpy)(S-benzo-15-crown-5)]PF6 [J]. Inorg. Chem., 2001, 40: 571-574.
    [61] MICHALEC J F, BEJUNE S A, MCMILLIN D R. Multiple ligand-based emissions from a platinum(II) terpyridine complex attached to pyrene [J]. Inorg. Chem., 2000, 39: 2708-2709.
    [62] ARENA G, CALOGERO G, CAMPAGNA S, et al. Synthesis, Characterization, Absorption Spectra, and Luminescence Properties of OrganometallicPlatinum(II) Terpyridine Complexes [J]. Inorg. Chem., 1998, 37: 2763-2769.
    [63] SENECLAUZE J B, RETAILLEAU P, ZIESSEL R. Design and preparation of neutral substituted fluorene- and carbazole-based platinum(II)-acetylide complexes [J]. New J. Chem., 2007, 31: 1412-1416.
    [64] BELLA S D. Second-order nonlinear optical properties of transition metal complexes [J]. Chem. Soc. Rev., 2001, 30: 355-366.
    [65] Powell C E, Humphrey M G. Nonlinear optical properties of transition metal acetylides and their derivatives [J]. Coord. Chem. Rev., 2004, 248: 725-756.
    [66] ZHOU X, PAN Q-J, XIA B-H, et al. DFT and TD-DFT calculations on the electronic structures and spectroscopic properties of cyclometalated platinum(II) complexes [J]. J. Phys. Chem. A, 2007, 111: 5465-5472.
    [67] LIU X-J, FENG J-K, MENG J, et al. Relationship between immune molecules and invasion and metastasis of gastric cancer [J]. Eur. J. Inorg. Chem., 2005, 1856-1859.
    [68] CARDOLACCIA T, LI Y, SCHANZE K S. Phosphorescent platinum acetylide organogelators [J]. J. Am. Chem. Soc., 2008, 130: 2535-2545.
    [69] AMICANGELO J C. Theoretical characterization of a tridentate photochromic Pt(II) complex using density functional theory methods [J]. J. Chem. Theory Comput., 2007, 3: 2198-2209.
    [70] STOYANOV S R, VILLEGAS J M, RILLEMA D P. Time-Dependent Density Functional Theory Study of the Spectroscopic Properties Related to Aggregation in the Platinum(II) Biphenyl Dicarbonyl Complex [J]. Inorg. Chem., 2003, 42: 7852-7860.
    [71] SHI L-L, LIAO Y, YANG G-C, et al. Effect ofπ-conjugated length of bridging ligand on the optoelectronic properties of platinum(II) dimers [J]. Inorg. Chem., 2008, 47: 2347-2355.
    [72] KOCH W, HOLTHAUSEN M C. A chemist’s guide to density functional, theory [M]. Wiley-VCH, Weinheim: Germany, 2000.
    [73] ADAMO C, DI MATTEO A, BARONE V. From Classical Density Functionals to Adiabatic Connection Methods. the State of the Art. [J]. Adv. Quantum Chem., 1999, 36: 45-75.
    [74] RUNGE E, GROSS E K U. Density-Functional Theory for Time-Dependent Systems [J]. Phys. Rev. Lett., 1984, 52: 997-1000.
    [75] LEE C, YANG W, PARR R G, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B., 1988, 37: 785-789.
    [76] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98: 5648-5652.
    [77] NOZAKI K, TAKAMORI K, NAKATSUGAWA Y, et al. Theoretical studies of phosphorescence spectra of tris(2,2’- bipyridine) transition metal compounds [J]. Inorg. Chem., 2006, 45: 6161-6178.
    [78] MIEHLICH B, SAVIN A, STOLL H, et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr [J]. Chem. Phys. Lett., 1989, 157: 200-206.
    [79] HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys., 1985, 82: 270-283.
    [80] WADT W R, HAY P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi [J]. J. Chem. Phys., 1985, 82: 284-298.
    [81] HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitale [J]. J. Chem. Phys., 1985, 82: 299-310.
    [82] HARIHARAN P C, POPLE J A. Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory [J]. Mol. Phys., 1974, 27: 209-214.
    [83] GLIMSDAL E, CARLSSON M, ELIASSON B, et al. Excited states and two-photon absorption of some novel thiophenyl Pt(II)-ethynyl derivatives [J]. J. Phys. Chem. A, 2007, 111: 244-250.
    [84] COOPER T M, KREIN D M, BURKE A R, et al. Asymmetry in platinum acetylide complexes: Confinement of the triplet exciton to the lowest energy ligand [J]. J. Phys. Chem. A., 2006, 110: 13370-13378.
    [85] HE Z, WONG W-Y, YU X, et al. Phosphorescent platinum(II) complexes derived from multifunctional chromophores: Synthesis, structures, photophysics, and electroluminescence [J]. Inorg. Chem., 2006, 45: 10922-10937.
    [86] HIRANI B, LI J, DJUROVICH P I, et al. Cyclometallated iridium and platinum complexes with noninnocent ligands [J]. Inorg. Chem., 2007, 46: 3865-3875.
    [87] SOTOYAMA W, SATOH T, SATO H, et al. Excited states of phosphorescent platinum(II) complexes containing N^C^N-coordinating tridentate ligands: Spectroscopic investigations and time-dependent density functional theory calculations [J]. J. Phys. Chem. A, 2005, 109: 9760-9766.
    [88] JAMORSKI C, CASIDA M E, SALAHUB D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study [J]. J. Chem. Phys., 1996, 104: 5134-5147.
    [89] PETERSILKA M, GROSSMANN U J, GROSS E K U. Excitation energies from time-dependent density-functional theory [J]. Phys. Rev. Lett., 1996, 76: 1212-1215.
    [90] BAUERNSCHMITT R, AHLRICHS R, HENNRICH F H, et al. Molecular excitation energies to high-lying bound states from time-dependentdensity-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Am. Chem. Soc., 1998, 120: 5052-4449.
    [91] CASIDA M E, JAMORSKI C, CASIDA K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Chem. Phys., 1998, 108: 4439-4449.
    [92] STRATMANN R E, SCUSERIA G E, FRISCH M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J. Chem. Phys., 1998, 109: 8218-8224.
    [93] CHEN W, LI Z R, WU D, et al. Inverse sodium hydride: Density functional theory study of the large nonlinear optical Properties [J]. J. Phys. Chem. A, 2005, 109: 2920-2924.
    [94] COSSI M, SCALMANI G, REGAR N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J]. J. Chem. Phys., 2002, 117: 43-54.
    [95] BARONE V, COSSI M, TOMASI J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J. Chem. Phys., 1997, 107: 3210-3221.
    [96] ANDRAE D, HAUSSERMANN U, DOLG M, et al. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements [J]. Theor. Chim. Acta, 1990, 77: 123-141.
    [97] DOLG M. Calculated Structure and Optical Properties of Tl2Pt(CN)4 [J]. Inorg. Chem., 1996, 35: 7450-7451.
    [98] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, Revision C.02, Gaussian Inc., Wallingford, CT, 2004.
    [99] ODA M, NOTHOFER H-G, SCHERF U, et al. Chiroptical properties of chiral substituted polyfluorenes [J]. Macromolecules, 2002, 35: 6792-6798.
    [100] WANG J-F, FENG J-K, REN A-M, et al. Theoretical studies of the absorption and emission properties of the fluorene-based conjugated polymers [J]. Macromolecules, 37: 3451-3458.
    [101] FANTACCI S, DE ANGELIS F, SELLONI A. Absorption spectrum and solvatochromism of the [Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] molecular dye by time dependent density functional theory [J]. J. Am. Chem. Soc., 2003, 125: 4381-4387.
    [102] CHARLOT M-F, PELLEGRIN Y, QUARANTA A, et al. A theoretical investigation into the photophysical properties of ruthenium polypyridine-type complexes [J]. Chen. Eur. J., 2006, 12: 796-812.
    [103] CHARLOT M-F, AUKAULOO A. Highlighting the role of the medium inDFT analysis of the photophysical properties of ruthenium(II) polypyridine-type complexes [J]. J. Phys. Chem. A, 2007, 111: 11661-11672.
    [104] ROSA A, RICCIARDI G, GRITSENKO O, et al. Excitation energies of metal complexes with timedependent density functional theory [J]. Struct. Bonding, 2004, 112: 49-116.
    [105] GISBERGEN S J A, GROENEVELD J A, ROSA A, et al. Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to MnO4-, Ni(CO)4, and Mn2(CO)10 [J]. J. Phys. Chem. A, 1999, 103: 6835- 6844.
    [106] VL?EK A, ZALI? S. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques [J]. Coord. Chem. Rev., 2007, 251: 258-287.
    [107] CASIDA M E, GUTIERREZ F, GUAN J, et al. Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: Analysis within the two-level model with illustration for H2 and LiH [J]. J. Chem. Phys., 2000, 113: 7062-7071.
    [108] CAI Z L, SENDT K, REIMERS J R. Failure of density-functional theory and time-dependent density-functional theory for large extendedπsystems [J]. J. Chem. Phys., 2002, 117: 5543-5549.
    [109] DREUW A, WEISMAN J L, HEAD-GORDON M. Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange [J]. J. Chem. Phys., 2003, 119: 2943-2946.
    [110] GRIMME S, PARAC M. Substantial errors from time-dependent density functional theory for the calculation of excited states of largeπsystems [J]. ChemPhysChem, 2003, 3: 292-295.
    [111] PIACENZA M, DELLA SALA F, FABIANO E, et al. Torsional effects on excitation energies of thiophene derivatives induced byβ-substituents: Comparison between time-dependent density functional theory and approximated coupled cluster approaches [J]. J. Comput. Chem., 2008, 29: 451-457.
    [112] GRAVE C, RISKO C, SHAPORENKO A, et al. Charge transport through oligoarylene self-assembled monolayers: Interplay of molecular organization, metal-molecule interactions, and electronic structure [J]. Adv. Funct. Mater., 2007, 17: 3816-3828.
    [113] AVILOV I, MARSAL P, BRéDAS J L, et al. Quantum-chemical design of host materials for full-color triplet emission [J]. Adv. Mater., 2004, 16: 1624-1629.
    [114] AVILOV I, MINOOFAR P, CORNIL J, et al. Influence of substituents on the energy and nature of the lowest excited states of heteroleptic phosphorescent Ir(III) complexes: A joint theoretical and experimental study [J]. J. Am. Chem. Soc., 2007, 129: 8247-8258.
    [115] DOS SANTOS D A, BELJONNE D, CORNIL J, et al. Electronic structure of the lowest singlet and triplet excited states in cyano-substituted oligo(phenylene vinylene)s [J]. Chem. Phys., 1998, 227: 1-10.
    [116] BELJONNE D, CORNIL J, BRéDAS J L, et al. Influence of chain length and derivatization on the lowest singlet and triplet states and intersystem crossing in oligothiophenes [J]. J. Am. Chem. Soc., 1996, 118: 6453-6461.
    [117] BELJONNE D, WITTMANN H F. Spatial extent of the singlet and triplet excitons in transition metal-containing poly-ynes [J]. J. Chem. Phys., 1996, 105: 3868-3877.
    [118] WHITTALL I R, MCDONAGH A M, HUMPHREY M G, et al. Organometallic Complexes in Nonlinear Optics I: Second-Order Nonlinearities [J]. Adv. Organomet. Chem., 1998, 42: 291-362.
    [119] COE B J. Molecular materials possessing switchable quadratic nonlinear optical properties [J]. Chem. Eur. J., 1999, 5: 2464-2471.
    [120] COE B J, HARRIS J A, ASSELBERGHS I, et al. Tuning of charge-transfer absorption and molecular quadratic non-linear optical properties in ruthenium(II) ammine complexes [J]. J. Chem. Soc. Dalton Trans., 1999, 3617-3625.
    [121] COE B J, HARRIS J A, CLAYS K, et al. A comparison of the pentaammine(pyridyl)ruthenium(II) and 4-(dimethylamino)phenyl groups as electron donors for quadratic non-linear optics [J]. Chem. Commun., 2001, 1548-1549.
    [122] OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment [J]. J. Chem. Phys., 1977, 66: 2664-2668.
    [123] OUDAR J L. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds [J]. J. Chem. Phys., 1977, 67: 446-457.
    [124] KANIS D R, RATNER M A, MARKS T J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects [J]. Chem. Rev., 1994, 94: 195-242.
    [1] (a) HAHN F E, JAHNKE M C. Heterocyclic carbenes: synthesis and coordination chemistry [J]. Angewandte chemie international edition, 2008, 47: 3122-3172; (b) HERRMANN W A. N-Heterocyclic Carbenes: a new Concept in Organometallic Catalysis [J]. Angewandte chemie international edition, 2002, 41: 1290-1309.
    [2] SCHNEIDER S K, SCHWARZ J, FREY G D, et al. Chiral, bridged bis(imidazolin-2-ylidene) complexes of palladium [J]. Journal of Organometallic Chemistry, 2007, 692: 4560-4568.
    [3] (a) MCKIE R, MURPHY J A, PARK S R, et al. Homoleptic Crown N-Heterocyclic Carbene Complexes [J]. Angewandte chemie international edition, 2007, 46: 6525-6528; (b) ALBRECHT M. C4-bound imidazolylidenes: from curiosities to high-impact carbene ligands [J]. Chemical Communications, 2008: 3601-3160.
    [4] SAJOTO T, DJUROVICH P I, TAMAYO A, et al. Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands [J]. Inorganic Chemistry, 2005, 44: 7992-8003.
    [5] UNGER Y, ZELLER A, AHRENS S, et al. Blue phosphorescent emitters: new N-heterocyclic platinum(II) tetracarbene complexes [J]. ANGEWANDTE CHEMIE INTERNATIONAL EDITION, Chemical Communications, 2008: 3263-3265.
    [6] (a) STRASSNER T, TAIGE M A. Evaluation of Functionals O3LYP, KMLYP, and MPW1K in Comparison to B3LYP for Selected Transition-Metal Compounds [J]. Journal of Chemical Thoery and Computation, 2005, 1: 848-855; (b) GEERLINGS P, DE PROFT F, LANGENAEKER W. Conceptual Density Functional Theory [J]. Chemical Reviews, 2003, 103: 1793-1874. (c) BOLINK H J, CAPPELLI L, CHEYLAN S, et al. Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium(III) complex [J]. Journal of Materials Chemistry, 2007, 17: 5032-5041.
    [7] (a) JAMORSKI C , CASIDA M E, SALAHUB D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study [J]. Journal of Chemical Physics, 1996, 104: 5134-5147; (b) PETERSILKA M, GOSSMANN U J, GROSS E K U. Excitation Energies from Time-Dependent Density-Functional Theory [J]. Physical Review Letter, 1996, 76: 1212-1215.
    [8] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
    [9] KOCH W, HOLTHAUSEN M C. A Chemist’s Guide to Density FunctionalTheory [M]. Weinheim, Germany: Wiley-VCH, 2000.
    [10] (a) RUNGE E, GROSS E K U. Density-Functional Theory for Time-Dependent Systems [J]. Physical Review Letters, 1984, 52: 997-1000; (b) LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B, 1988, 37: 785-789; (c) BECKE A D. A new mixing of Hartree–Fock and local density-functional theories [J]. Journal of Chemical Physics,1993,98:1372-1377; (d) Nozaki K, Takamori K, Nakatsugawa Y, et al. Theoretical Studies of Phosphorescence Spectra of Tris(2,2‘-bipyridine) Transition Metal Compounds [J]. Inorganic Chemistry,2006,45:6161-6178; (e) MIEHLICH B, SAVIN A, STOLL H, et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr [J]. Chemical Physics Letters, 1989, 157: 200-206.
    [11] (a) HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. Journal of Chemical Physics, 1985, 82: 270-283; (b) WADT W R, HAY P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi [J]. Journal of Chemical Physics, 1985, 82: 284-298; (c) HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. Journal of Chemical Physics, 1985, 82: 299-310.
    [12] HARIHARAN P C, POPLE J A. Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory [J]. Molecular Physics, 1974, 27: 209-214.
    [13] (a) JAMORSKI C, CASIDA M E, SALAHUB D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study [J]. Journal of Chemical Physics, 1996, 104: 5134-5147; (b) PETERSILKA M, GOSSMANN U J, GROSS E K U. Excitation Energies from Time-Dependent Density-Functional Theory [J]. Physical Review Letter, 1996, 76: 1212–1215; (c) BAUERNSCHMITT R, AHLRICHS R, HENNRICH F H, et al. Experiment versus Time Dependent Density Functional Theory Prediction of Fullerene Electronic Absorption [J]. Journal of the American Chemical Society, 1998, 120: 5052-5059; (d) CASIDA M E, JAMORSKI C, CASIDA K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J]. Journal of Chemical Physics, 1998, 108: 4439-4449; (e) STRATMANN R E, SCUSERIA G E, FRISCH M J, et al. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. Journal of Chemical Physics, 1998, 109:8218-8224.
    [14] VL?EK A, ZáLI? S. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques [J]. Coordination Chemistry Reviews, 2007, 251: 258-287.
    [15] GARETH WILLIAMS J A. Photochemistry and Photophysics of Coordination Compounds: Platinum [J]. Topics in Current Chemistry, 2007, 281: 205-268.
    [16] Andrae D, Haussermann U, Dolg M, et al. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements [J]. Thermochimica Acta, 1990, 77: 123-141.
    [17] (a) R. A. Marcus, J. Chem. Phys., 1965, 24, 966; (b) MARCUS R A. Electron transfer reactions in chemistry. Theory and experiment [J]. Reviews of Modern Physics, 1993, 65: 599-610.
    [18] (a) GARETH WILLIAMS J A. Photochemistry and Photophysics of Coordination Compounds: Platinum [J]. Topics in Current Chemistry, 2007, 281: 205-268. (b) ISLAM A, IKEDA N, NOZAKI K, et al. Role of higher excited states in radiative and nonradiative processes of coordination compounds of Ru(II) and Rh(III) in crystal [J]. Chemical Physics Letters, 1996, 263: 209-214. (c) DURHAM B, CASPAR J V, NAGLE J K, et al. Photochemistry of tris(2,2'-bipyridine)ruthenium(2+) ion [J]. Journal of the American Chemical Society, 1982, 104: 4803-4810. (d) ALLEN G H, WHITE R P, RILLEMA D P, et al. Synthetic control of excited-state properties. Tris-chelate complexes containing the ligands 2,2'-bipyrazine, 2,2'-bipyridine, and 2,2'-bipyrimidine [J]. Journal of the American Chemical Society, 1984, 106: 2613–2620.
    [19] (a) SALASSA L, GARINO C, SALASSA G, et al. Mechanism of Ligand Photodissociation in Photoactivable [Ru(bpy)2L2]2+ Complexes: A Density Functional Theory Study [J]. Journal of the American Chemical Society, 2008, 130: 9590–9597. (b) SAITO K, NAKAO Y, SAKAKI S. Theoretical Study of Pyrazolate-Bridged Dinuclear Platinum(II) Complexes: Interesting Potential Energy Curve of the Lowest Energy Triplet Excited State and Phosphorescence Spectra [J]. Inorganic Chemistry, 2008, 47: 4329-4337. (c) YANG L, OKUDA F, KOBAYASHI K, et al. Syntheses and Phosphorescent Properties of Blue Emissive Iridium Complexes with Tridentate Pyrazolyl Ligands [J]. Inorganic Chemistry, 2008, 47: 7154-7165. (d) YU J-K, HU Y-H, CHENG Y-M, et al. A Remarkable Ligand Orientational Effect in Osmium-Atom-Induced Blue Phosphorescence [J]. Chemistry - A European Journal, 2004, 10: 6255-6264. (e) DE ANGELIS F, FANTACCI S, EVANS N, et al. Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes: A Combined Experimental and Theoretical Study [J]. Inorganic Chemistry, 2007, 46: 5989-6001.
    [20] (a) AMINI A, HARRIMAN A, MAYEUX A. The triplet excited state ofruthenium(II) bis(2,2:6,2-terpyridine): Comparison between experiment and theory [J]. Physical Chemistry Chemical Physics, 2004, 6: 1157 - 1164; (b) BENNISTON A C, CHAPMAN G, HARRIMAN A, et al. Electron Delocalization in a Ruthenium(II) Bis(2,2‘:6‘,2‘‘-terpyridyl) Complex [J]. Inorganic Chemistry, 2004, 43: 4227-4233; (c) HUTCHISON G R, RATNER M A, MARKS T J. Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies and Substituent Effects [J]. Journal of the American Chemical Society, 2005, 127: 2339-2350.
    [21] LIN B C, CHENG C P, LAO Z P M. Reorganization Energies in the Transports of Holes and Electrons in Organic Amines in Organic Electroluminescence Studied by Density Functional Theory [J]. The Journal of Physical Chemistry A, 2003, 107: 5241-5251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700