碱金属掺杂分子的结构和大的非线性光学响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对一系列碱金属掺杂分子的结构与非线性光学性质进行了系统和深入地理论研究。主要贡献如下:
     1、通过一个碱金属原子掺杂到TCNQ分子得到了电荷转移阴离子自由基盐M+TCNQ·– (M = Li, Na, K)。首次研究了M+TCNQ·–的非线性光学性质。特别是发现阴离子自由基盐M+TCNQ·–具有大的第一(β0),第二(γ0)超极化率。并揭示了超极化率随着碱金属原子序数的增加而增大的规律。说明了这些大的第一,第二超极化率产生是由于重要跃迁是配体到金属的电荷转移(Ligand-to-metal charge transfer,LMCT)跃迁,它产生了大的基态与最主要激发态之间的偶极距之差。
     2、通过掺杂两个碱金属原子到TCNQ分子得到了具有电子化物特性的自由基离子对盐M2·+TCNQ·– (M = Li, Na, K)。首次发现了它们的大的非线性光学响应。特别是,第一次报道了含额外电子的电子化物的第二超极化率。发现了自由基离子对盐M2·+TCNQ·–的大的第一,第二超极化率具有碱金属原子序数依赖性。
     3、首次得到了新型的环多胺的电子化物(Li-[9]aneN3, Li-[12]aneN4,Li-[15]aneN5)的几何结构。由于额外电子的作用,这些电子化物都具有大的β0值。特别是发现了,随着配体分子环的增大伴随着柔性的增加,使额外电子更弥散,导致这些环多胺的电子化物的β0值增加。设计出了Li-[15]aneN5分子,它的β0值已超过了文献报道的电子化物的最大β0值。
     4、首次报道了马鞍型碱金属化物和电子化物的结构和性质。发现了第一超极化率的两个依赖性:顺反异构和自旋多重度依赖性。特别是在反式trans-Li(saddle[4]pyrrole)Na异构体中,与以往报道的第一超极化率,高自旋态大于低自旋态的结果不同,本章出现了低自旋态大于高自旋态的反常结果。这是由于出现了异构体的特性与自旋多重度相关联的特殊现象所引起。在反式trans-Li(saddle[4]pyrrole)Na异构体中,低自旋态结构具有碱金属化物特性而高自旋态结构具有电子化物特性。
     这些分子结构和电子结构与非线性光学响应的之间的重要关系和规律,为设计高性能的非线性光学材料提供了新的指导思想。
Along with the development of science and technology, photonic materials are very important in many fields, such as optical process of information, optical computer, optical communication, etc. The research of the nonlinear optical materials is an important field of its development. The research of many types of nonlinear optical phenomena bring that the people find the better nonlinear optical materials. The nonlinear optical coefficients are main index of nonlinear optical materials, i.e. high performance nonlinear optical materials have larger first hyperpolarizability.
     In this thesis, the structures and nonlinear optical properties of the alkali metal doped molecules are investigated. The main contributions are as followings:
     (1) The static hyperpolarizabilities of the the charge transfer anion-radical salts M+TCNQ·– (M = Li, Na, K) are calculated at ROMP2 method. Three mian conclusions have been found:
     1) A monotonous dependence on the alkali atomic number of the first (β0) and second (γ0) hyperpolarizability is found. Theβ0 andγ0 values increase with increasing the alkali atomic number. The order of theβ0 values is 17086 (M = Li) < 21198 (M = Na) < 28485 au (M = K), while the order of theγ0 value is 1154000 (M = Li) < 1357000 (M = Na) < 1994000 au (M = K).
     2) These anion-radical salts exhibit large first (β0) and second (γ0) hyperpolarizabilities, which are related to the ligand-to-metal charge transfer (LMCT) transitions. In the crucial transition (LMCT), the large difference of electron cloud distributions between HOMO and LUMO correlates to a long-range charge transfer from ligand TCNQ to alkali-metal M, which leads to the large difference of dipole moment between the ground state and the crucial excited state (Δμn0).
     (2) Doping two alkali atoms into TCNQ forms the radical ion pair salts M2·+TCNQ·– with excess electron. The formation of excess electron in a M2·+TCNQ·– salt can be considered to be divided into two steps. First, one valence s electron is transferred from M2 to TCNQ, and radical ion pair M2·+ and TCNQ·– are formed. Second, the valence s-electron remaining on the M2·+ is pushed out by lone pairs of the two nearby N atoms of TCNQ·– and becomes a diffused excess electron. However, the M+TCNQ·– salts have not electride characteristics. In the M+TCNQ·–, one valence s electron is transferred from M to TCNQ, and M+ and TCNQ·– are formed. No valence s-electron remaining on the M+ is pushed out by lone pairs of the two nearby N atoms of TCNQ·– to become a diffuse excess electron.
     Interestingly, an alkali atomic number dependence of the first hyperpolarizability is found in M2·+TCNQ·– (M = Li, Na, K). Theβ0 value increases with increasing the alkali atomic number in the order of 19203 (M = Li) < 24140 (M = Na) < 29065 a.u. (M = K). Specially, for the radical ion pair salts M2·+TCNQ·– with excess electron, the second hyperpolarizability is obtained for the first time. These complexes have large second hyperpolarizabilities (γ0) up to 7.9×106 au of K2·+TCNQ·– with alkali metal atoms, which is about 25 times larger than that of TCNQ without alkali metal atoms (3.2×105 au). It shows that the effect of alkali-metal doping on the second hyperpolarizability is conspicuous. In addition, theγ0 value of K2·+TCNQ·– is about 17 times larger than that of the organometallic complexσ-arylalkynyl trans-[Ru(4,4′-C≡CC6H4C≡CC6H4NO2)Cl(dppm)2] and about 9 times larger than that of the intramolecular charge transfer complexσ-arylvinylidene trans-[Ru(4-C=CHC6H4C≡CC6H4NO2)Cl(dppm)2]PF6, while the atom number of K2·+TCNQ·– is only about one-sixth of that ofσ-arylalkynyl orσ-arylvinylidene ruthenium(II) complex. ? Comparison of theγ0 values among these M2·+TCNQ·– (M = Li, Na, K) shows that theγ0 value increases with increasing the alkali atomic number in the order of 2213006 (M = Li) < 3136754 (M = Na) < 7905623 au (M = K). This means that doping the alkali atom with a larger atomic number is also effective for enhancing the second hyperpolarizability.
     (3) In this work, we designed and systematically studiedthe static and dynamic first hyperpolarizabilities of Li-doped cyclic polyamines (Li-[9]aneN3, Li-[12]aneN4, and Li-[15]aneN5) formed by the interactions of alkali-metal atoms with cyclic polyamine complexants, for the first time, and obtained the recordβ0 value of electride molecules.
     1) Doping alkali atoms into cyclic polyamines to form loosely bound excess electrons can effectively lower the transitioin energies of crucial excited states and increase the hyperpolarizabilities. Li-doped cyclic polyamines exhibit large static first hyperpolarizabilities (β0 = 52282 ~ 127617 au). Especially, with the same coordination number (four N atoms), theβ0 value of 6.5×104 au for Li-[12]aneN4 is about 9 times larger than that of 7.3×103 au for the corresponding Li@calix[4]pyrrole. The complexant [12]aneN4 is strongly deformed by the chemical doping with Li and exhibits more flexible feature than the complexant calix[4]pyrrole. Thus the higher flexible cyclic polyamines are better than the inflexible calix[4]pyrrole complexant in enhancing the first hyperpolarizability. Furthermore, theβ0 value of 1.3×105 au for Li-[15]aneN5 is about 6 times as large as that of 2.1×104 au for the organometallic complex trans-[Ru(4-C=CHC6H4NO2)Cl(dppe)2]PF6 and close to that of 1.7×105 au for a long dipolar donor-acceptor conjugated organic molecule. It shows that this type of alkalides could be a new member of the large family of nonlinear optical (NLO) materials with different types.
     2) Theβ0 value increases with increasing the petal number (n) in the order of 52282 (n = 3) < 65505 (n = 4) < 127617 au (n = 5). There is a substantial increase inβ0 due to replacing [9]aneN3 by [12]aneN4 and, particularly, by [15]aneN5, since the interaction between Li and cyclic polyamine and the deformation of the cyclic polyamines increase with the increase of the petal number (or cycle size).
     3) The frequency-dependentβvalues of the Li-doped cyclic polyamines are given. Results show that the frequency-dependentβ(-ω;ω, 0) andβ(-2ω;ω,ω) (atω= 0.005, 0.01 au) are larger than the corresponding staticβ0. Theβ(-ω;ω, 0) value increases with the increase of frequencyωvalue from 0.0000 to 0.01 au. The frequency-dependentβ(-ω;ω, 0) andβ(-2ω;ω,ω) all show the obvious dependence on the petal number (n) is similar to the case of staticβ0. As a result, our investigation may evoke one’s attention to design new material with large NLO responses using the higher flexible complexants.
     (4) Cis-trans isomerization and spin multiplicity dependences on the static first hyperpolarizability for the two-alkali-metal-doped saddle[4]pyrrole compounds are found.
     1) For the singlet isomers, theβ0 value of 2.34×105 au for trans-3 is about 16 times enhanced as compared to that of 1.51×104 au for cis-1. For the triplet isomers, theβ0 value of 3.57×104 au for cis-2 is about 10 times enhanced as compared to that of 3.54×103 au for tran-4. These features show the effect of the cis-trans isomerization onβ0.
     2) For the cis isomers, theβ0 value of 3.57×104 au for triplet-2 is about 2 times larger than that of 1.51×104 au for singlet-1. For the trans isomers, theβ0 value of 2.34×105 au for singlet-3 is about 66 times larger than that of 3.54×103 au for triplet-4. Accordingly, the spin multiplicity significantly affects theβ0 value, especially in the trans isomers.
     3) In the trans-Li(saddle[4]pyrrole)Na, the high spin state is smaller than low spin state for NLO response, that is triplet-4 (3.54×103) < singlet-3 (2.34×105 au). This reason is that the change of spin multiplicity companies with the characteristic change between alkalide and electride for the trans-Li(saddle[4]pyrrole)Na. So, theβ0 value of the singlet-3 with alkalide characteristic is larger than that of the triplet-4 with electride characteristic.
     The result demonstrates that the cis-trans isomerization and spin multiplicity controls of the second-order NLO response are possible.
引文
[1]孙慷,张福学主编,<<压电学>>,上册,第十二章[M]。北京:国防工业出版社,1985。
    [2] FRANKEN P A, HILL A E, Peters C W, et al. Generation of optical harmonics [J]. Phys. Rev. Lett. 1961, 7: 118-119.
    [3] CHEN C T, LIU G Z. Recent advances in nonlinear optical and electro-optical materials [J]. Ann.Rev. Mater. Sci., 1986, 16: 203-243.
    [4] WILLIAMS D J. Nonlinear optical prooerties of organic and polymeric materials [M]. Washington D C: ACS Symp. Ser., No. 233, 1983.
    [5] CHEMLA D S, ZYSS J. Nonlinear optical properties of organic molecules and crystals Vol. 1 and 2[M]. Orlando:Academic Press, 1987
    [6] FRAZIER C C, HARREY M A, Cockerham M P, et al. Second-harmonic generation in transition-metal-organic compounds [J]. J. Phys. Chem. 1986, 90: 5703-5706.
    [7] MARDER S R, PERRY J W, BOURHILL G, et al. Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules [J]. Science, 1993, 261: 186-189.
    [8] Marder S R, CHENG L T, TIEMANN B G, et al. Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity [J]. Science, 1994, 263: 511-514.
    [9] BLANCHARD-DESCE M, ALAIN V, BEDWORTH P V, et al. Large quadratic hyperpolarizabilities with donor-acceptor polyenes exhibiting optimum bond length alternation: Correlation between structure and hyperpolarizability [J]. Chem. Eur. J. 1997, 3: 1091-1104.
    [10] OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment [J]. J. Chem. Phys., 1977, 66: 2664-2668.
    [11] LEVINE B F, BETHEA C G. Second and third order hyperpolarizabilities of organic molecules [J]. J. Chem. Phys. 1975, 63: 2666-2682.
    [12] LEVINE B F, BETHEA C G. Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids [J]. Appl. Phys. Lett., 1974, 24: 445-447.
    [13] OUDAR J L, Optical nonlinearities of conjugated molecules, stilbene derivatives and highly polar aromatic compounds [J]. J. Chem. Phys. 1977, 67: 446-457.
    [14] CHENG L T, TAM W, MARDER S R, et al. Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences [J]. J. Phys. Chem. 1991, 95: 10643-10652.
    [15] MORLEY J O, DOCHERTY V J, PUGH D. Non-linear optical properties of organic molecules. Part 2. Effect of conjugation length and molecular volume on the calculated hyperpolarisabilities of polyphenyls and polyenes [J]. J. Chem. Soc. Perkin. Trans. 2, 1987, 1351-1357.
    [16] HUIJTS R A, HESSELINK G L J, Length dependence of the second-order polarizability in conjugated organic molecules [J]. Chem. Phys. Lett. 1989, 156: 209-213.
    [17] BARZOUKAS M, BLANCHARD-DESCE M, JOSSE D, et al. Very large quadratic nonlinearities in solution of two push-pull polyene series: Effect of the conjugation length and of the end groups [J]. Chem. Phys. 1989, 133: 323-329.
    [18] IKEDA H, KABAWE Y, SAKAI T, et al. Second harmonic generation in nonbenzenoid aromatics [J]. Chem. Phys. Lett. 1989, 157: 576-578.
    [19] DEHU C, MEYERS F, HENDRICKX E, et al. Solvent effects on the second-order nonlinear optical response ofπ-conjugated molecules: A combined evaluation through self-consistent reaction field calculations and hyper-rayleigh scattering measurements [J]. J. Am. Chem. Soc. 1995, 117: 10127-10128.
    [20] MARDER S R, GORMAN C B, MEYERS F, et al. A unified description of linear and nonlinear polarization in organic polymethine dyes, Science, 1994, 265:632-635.
    [21] BOURHILL G, BREDAS J L, CHENG L T, et al. Experimental demonstration of the dependence of the first hyperpolarizability of donor-acceptor-substituted polyenes on the ground-state polarization and bond length alternation [J]. J. Am. Chem. Soc. 1994, 116: 2619-2620.
    [22] MOHANALINGAM K, CHANDRA-RAY P, DAS P K. First hyperpolarizabilities of some push-pull olefins measured by the hyper-Rayleigh scattering technique [J]. Synth. Metals 1996, 82: 47-51.
    [23] WU I Y, LIN J T, LUO J, et al. Syntheses and reactivity of rutheniumσ-pyridylacetylides [J]. Organometallics 1997, 16: 2038-2048.
    [24] WENSELEERS W, GOOVAERTS E, BOUWEN A, et al. Dissertation Abstracts Internat. 2000, B60: 4038-4043.
    [25] WHITTALL I R, HUMPHREY M G, PERSOONS A, et al. Organometallic complexes for nonlinear optics. 3.1 Molecular quadratic hyperpolarizabilities of ene-, imine-, and azo-linked ruthenium-acetylides: X-ray crystal structure of Ru((E)-4,4'-C≡CC6H4CH =CHC6H4NO2)(PPh3)2(η-C5H5) [J]. Organometallics, 1996, 15: 1935-1941.
    [26] HOUBRECHTS S, CLAYS K, PERSOONS A, et al. New organometallic materials for nonlinear optics: metalσ-arylacetylides [J]. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2852: 98-108.
    [27] WENSELEERS W, GERBRANDIJ A W, GOOVAERTS E, et al. Hyper-Rayleigh scattering study of 5-monocyclopentadienyl-metal complexes for second order non-linear optical materials [J]. J. Mater. Chem. 1998, 8: 925-930.
    [28] CHENG L T, TAM W, EATON F, Quadratic hyperpolarizabilities of group 6A metal carbonyl complexes [J]. Organometallics, 1990, 9: 2856-2857.
    [29] CADIERNO V, CONEJERO S, Gamasa M P, et al. Synthesis and second-order nonlinear optical properties of donor-acceptorσ-alkynyl andσ-enynyl indenylruthenium(ii) complexes, x-ray crystal structures of [Ru{C≡CCH=C(C6H4NO2-3)2}(η5-C9H7)(PPh3)2] and (EE)-[Ru{C≡C(CH=CH)2-C6H4NO2-4}(η5 -C9H7)(PPh3)2] [J]. Organometallics, 1999, 18: 582.
    [30] LEE I S, SEO H, CHUNG Y K, Preparation of (thiophene)manganese tricarbonyl cations for nonlinear optics [J]. Organometallics 1999, 18: 1091-1096.
    [31] LICANDRO E, MAIORANA S, PAPAGNI A, et al. Synthesis and non-linear properties of conjugated poly-unsaturated amino carbene complexes [J]. J. Organomet. Chem. 1999, 583: 111-119.
    [32] LI Y, LI Z R, WU D, et al. An ab initio prediction of the extraordinary static first hyperpolarizability for the electron-solvated cluster (FH)2{e}(HF) [J]. J. Phys. Chem. B 2004, 108: 3145-3148.
    [33] CHEN W, LI Z R, WU D, et al. The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study [J]. J. Chem. Phys. 2004, 121: 10489-10494.
    [34] (a) CHEN W, LI Z R, WU D, et al. Theoretical investigation of the large nonlinear optical properties of (HCN)n clusters with Li Atom [J]. J. Phys. Chem. B 2005, 109: 601-608. (b) CHEN W, LI Z R, WU D, et al. Inverse sodium hydride: density functional theory study of the large nonlinear optical properties [J]. J. Phys. Chem. A 2005, 109: 2920-2924. (c) CHEN W, LI Z R, WU D, et al. The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole [J]. J. Am. Chem. Soc. 2005, 127: 10977-10981. (d) CHEN W, LI Z R, WU D, et al. Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependenc [J]. J. A. Chem. Soc. 2006, 128: 1072-1073. (e) JING Y Q, LI Z R, WU D, et al. Effect of the complexant shape on the large first hyperpolarizability of alkalides Li+(NH3)4M– [J]. ChemPhysChem. 2006, 7: 1759-1763. (f) JING Y Q, LI Z R, WU D, et al. What is the role of the complexant in the large first hyperpolarizability of sodide systems Li(NH3)nNa (n = 1-4)? [J]. J. Phys. Chem. B. 2006, 11: 11725-11729. (g) XU H L, LI Z R, WU D, et al. Structures and large nlo responses of new electrides: Li-doped fluorocarbon chain [J]. J. Am. Chem. Soc. 2007, 129: 2967-2970.
    [1] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln Ann Phsik [J] .Quantum Theory of the Molecules Ann. Phys, 1927, 84: 457-484.
    [2] (a) HEHRE W J, RADOM L, SCHLEYER P v R, et al. Ab initio molecular orbital theory [M]. John Wiley &Sons, Inc., 1986. (b) Mcquarrie D A. Quantum chemistry university science books [M]. Mill Vally. CA, 1983.
    [3] (a)唐敖庆,杨忠志,李前树,量子化学[M]。北京:科学出版社,1982。(b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M]。北京:科学出版社,1985。
    [4] L?WDIN P O. Correlation problem in many-electron quantum mechanics [J]. Adv. Chem. Phys. 1959, 2: 207-322.
    [5] POPLE J A, SEEGER R, KRISHNAN R. Variational configuration interaction methods and comparison with perturbation theory [J]. Int. J. Quant. Chem. 1977, 11: 149-161.
    [6] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem. 1992, 96: 135-149.
    [7] KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivate studies in configuration interaction theory [J]. J. Chem. Phys. 1980, 72: 4654-4655.
    [8] BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic gradient from correlated wave functions via the two-particle density matrix and the unitary group approach [J]. J. Chem. Phys. 1980, 72, 4652-4653.
    [9] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives in many-body methods i. first derivatives [J]. J. Chem. Phys. 1989, 90: 1752-1766.
    [10] RAGHAVACHARI K, POPLE J A. Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int. J. Quant. Chem. 1981, 20: 167-178.
    [11] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys. 1987, 87: 5968-5875.
    [12] CIOSLOWSKI J A. New robust algorithm for fully automated determination of attactor interaction lines in moleclues [J]. Chem. Phys. Lett. 1994, 219: 151-154.
    [13] SCHLEGEL H B, ROBB M A. MCSCF gradient optimization of the H2CO→H2+CO transition structure [J]. Chem. Phys. Lett. 1982, 93: 43-46.
    [14] EADE R H E, ROBB M A. Direct minimization in mcscf theory. The quasi-newton method [J]. Chem. Phys. Lett. 1981, 83: 362-368.
    [15] HEGARTY D, ROBB M A. Application of unitary group methods to configuration interaction calculations [J]. Mol. Phys. 1979, 38: 1795-1812.
    [16] JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys. 1994, 100: 7429-7442.
    [17] LABANOWSKI J K, ANDZELM J W. Density functional methods in chemistry [M]. New York: Springer-Verlag, 1991.
    [18] FUKUI K. Variational principles in a chemical reaction [J]. Int. J. Quantum. Chem. Quant. Chem. Symp. 1981, 15: 633-642.
    [19] Fukui, K.; Tachibana, A.; Yamashita, K. Toward chemodynamics [J]. Int. J. Quantum. Chem. Quant. Chem. Symp. 1981, 15: 621-632.
    [20] WANG B, HOU H, GU Y. Ab initio/density functional theory and multichannel rrkm calculations for the CH3O + CO reaction [J]. J. Phys. Chem. A, 1999, 103:8021-8029.
    [21] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. B, 1964, 136: 864-871.
    [22] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A, 1965, 140: 1133-1138.
    [23] SLATER J C. Quantum theory of molecular and solids. Vol. 4: The self-consistent field for molecular and solids mcgraw-hill [M]. New York, 1974.
    [24] SALAHUB D R, ZERNER M C. The challenge of d and f electrons acs [M]. Washington, D.C., 1989.
    [25] PARR R G, YANG W. Density-functional theory of atoms and molecules Oxford Univ [M]. Press: Oxford, 1989.
    [26] POPLE J A, GILL P M W, JOHNSON B G. Kohn-sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett. 1992, 199: 557-560.
    [27] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem. 1992, 96: 135-147.
    [28] RAGHAVACHARI K, POPLE J A, Calculation of one-electron properties using limited configuration interaction techniques [J]. Int. J. Quant. Chem. 1981, 20: 1067-1071.
    [29] a). ZHANG H X, CHE C M. Aurophilic attraction and luminescence of binuclear gold(i) complexes with bridging phosphine ligands: ab initio study [J]. Chem. Eur. J. 2001, 7: 4887-4893. b). PAN Q J, ZHANG H X. Ab initio study on luminescent properties and aurophilic attraction of [Au2(dpm)(i-mnt)] and its related Au(I) Complexes (dpm = bis(diphosphino)methane and i-mnt = i-malononitriledithiolate) [J]. Organometallics, 2004, 23: 5198-5209. c). PAN Q J, ZHANG H X. J. Phys. Chem. A. 2004, 108, 3650. d). Pan Q J, Zhang H X. An ab initio study on luminescent properties and aurophilic attraction of binuclear Gold(I) complexes with phosphinothioether ligands [J]. Inorg. Chem. 2004, 43: 593-601. e). PAN Q J, ZHANG H X. Aurophilic attraction and excited-state properties of binuclear Au(I) complexes with bridging phosphine and/or thiolate ligands: An ab initio study [J]. J. Chem. Phys. 2003, 119: 4346-4352.
    [30] a). LIAO Y, FENG J K, YANG L, et al. theoretical study on the electronic structure and optical properties of mercury-containing diethynylfluorene monomer, oligomer, and polymer [J]. Organometallics 2005, 24: 385-394. b). YANG L, REN A M, FENG J K,et al. Theoretical studies of ground and excited electronic states in a series of halide Rhenium(I) bipyridine complexes [J]. J. Phys. Chem. A 2004, 108: 6797-6808. c). YANG L, REN A M, FENG J K, et al. Theoretical studies of ground and excited electronic states in a series of Rhenium(I) Bipyridine complexes containing diarylethynyl-based structure [J]. Inorg. Chem. 2004, 43: 5961-5972.
    [31] van GISBERGEN S J A, GROENEVELD J A, ROSA A. et al. Excitation energies for transition metal compounds from time-dependent density functional theory. applications to MnO4-, Ni(CO)4, and Mn2(CO)10 [J]. J. Phys. Chem. A 1999, 103: 6835.
    [32] HALLS M D, SCHLEGEL H B. Molecular orbital study of the first excited state of the OLED material Tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Mater. 2001, 13: 2632-2640.
    [33] FORESMAN J B, FRISCH ?. Exploring chemistry with electronic structure methods, 2nd edition, Gaussian, Inc., Pittsburgh, PA, 1996.
    [34] FRANK I. Excited state molecular dynamics Invited Review, SIMU Newsletter, 2001, 3: 63-77.
    [35] WILLIAMS D J. Nonlinear Optical Prooerties of Organic and Polymeric Materials [M]. ACS Symp. Ser., No. 233, Washington D. C., 1983.
    [36] CHEMLA D S, ZYSS J. Nonlinear Optical Properties of Organic Molecules and Crystals Vol. 1 and 2 [M]. Orlando: Academic Press, 1987.
    [37] FRAZIER C C, HARVEY M A, COCKERHAM M P, et al. Second-harmonic generation in transition-metal-organic compounds [J]. J. Phys. Chem. 1986, 90: 5703-5706.
    [38] TENG C C, GARITO A F. Dispersion of the nonlinear second-order optical susceptibility of an organic system: p-nitroaniline [J]. Phys. Rev. Lett., 1983, 50: 350-352.
    [39] BUCKINGHAM A D. Permanent and induced molecular moments and long-range intermolecular forces [J]. Adv. Chem. Phys. 1967, 12: 107-142.
    [40] FELLER D. Application of systematic sequences of wave functions to the water dimmer [J]. J. Chem. Phys. 1992, 96: 6104-6114.
    [1] CHEMLA D S, ZYSS J. Nonlinear optical properties of organic molecules and crystals [M]. New York: Academic Press, 1987.
    [2] WILLIAMS D J, PRASAD P. Introduction to nonlinear optical effects in molecules and polymers [M]. New York: Wiley, 1991.
    [3] BRéDAS J L, ADANT C, TACKX P, et al. Third-order nonlinear optical response in organic materials: theoretical and experimental aspects [J]. Chem. ReV. 1994, 94: 243-278.
    [4] GESKIN V M, LAMBERT C, BRéDAS J L. Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups [J]. J. Am. Chem. Soc. 2003, 125: 15651-15658.
    [5] a). Marder S R, CHENG L T, TIEMANN B G, et al. Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity [J]. Science, 1994, 263: 511-514. b). MARDER S R, TORRUELLAS W E, BLANCHARD-DESCE M, et al. Large molecular third-order optical nonlinearities in polarized carotenoids [J]. Science 1997, 276: 1233-1236.
    [6] KIRTMAN B, CHAMPAGNE B, BISHOP D M, Electric field simulation of substituents in donor?acceptor polyenes: a comparison with ab initio predictions for dipole moments, polarizabilities, and hyperpolarizabilities [J]. J. Am. Chem. Soc. 122, 2000: 8007-8014.
    [7] NAKANO M, FUJITA H, TAKAHATA M, et al. Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure?property relation in nlo responses of fractal antenna dendrimers [J]. J. Am. Chem. Soc. 2002, 124: 9648-9655.
    [8] CALAMINICI P, JUG K, KOESTER A M, et al. Mechanism for large first hyperpolarizabilities of phosphonic acid stilbene derivatives [J]. J. Comput. Chem. 2002, 23: 291-297.
    [9] BRéDAS J L, BELJONNE D, COROPCEANU V, et al. Charge-Transfer and energy-transfer processes inπ-conjugated oligomers and polymers: a molecular picture [J]. Chem. ReV. 2004, 104: 4971-5004.
    [10] LOCKNAR S A, PETEANU L A, SHUAI Z G. Calculation of ground and excited state polarizabilities of unsubstituted and donor/acceptor polyenes: a comparison of the finite-field and sum-over-states methods [J]. J. Phys. Chem. A, 1998, 103: 2197-2201.
    [11] MELBY L R, HARDEN R J, HERTLER W R, et al. Substituted quinodimethans. II. anion-radical derivatives and complexes of 7, 7, 8, 8-tetracyanoquinodimethan [J]. J. Am. Chem. Soc. 1962, 84: 3374-3387.
    [12] BAILEY J C, CHESNUT D B. ESR study of morpholinium TCNQ complexes [J]. J. Chem. Phys. 1969, 51: 5118-5128.
    [13] IQBAL Z, CHRISTOE C W, DAWSON D K. Infrared absorption and reflection studies of organic radical salt: K+TCNQ? [J]. J. Chem. Phys. 1975, 63: 4485-4489.
    [14] OKAMOTO H, IKEGAMI K, WAKABAYASHI T, et al. Ultrafast photoinduced melting of a spin-peierls phase in an organic charge-transfer compound, K-tetracyanoquinodimethane [J]. Phys. Rev. Lett. 2006, 96: 37405-37409.
    [15] CHEN W, LI Z R, WU D, et al. The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole [J]. J. Am. Chem. Soc. 2005, 127: 10977-10981.
    [16] COHEN H D, ROOTHAAN C C J, Electric dipole polarizability of atoms by the hartree-fock method. I. Theory for closed-shell systems [J]. J. Chem. Phys. 1965, 43: S34-S39.
    [17] KURTZ H A, STEWART J J P, DIETER K M. Calculation of the nonlinear optical properties of molecules [J]. J. Comput. Chem. 1990, 11: 82-87.
    [18] MAROULIS G. Hyperpolarizability of H2O [J]. J. Chem. Phys. 1991, 94: 1182-1190.
    [19] CHAMPAGNE B, BOTEK E, QUINET O, et al. Experimental study of the second-order non-linear optical properties of tetrathia-[7]-helicene [J]. Chem. Phys. Lett. 2005, 407: 372-378.
    [20] CHAMPAGNE B, BOTEK E, NAKANO M, et al. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell -conjugated systems [J]. J. Chem. Phys. 2005, 122: 114315-114327.
    [21] XU H L, LI Z R, WU D, et al. Structures and large nlo responses of new electrides: Li-doped fluorocarbon chain [J]. J. Am. Chem. Soc. 2007, 129: 2967-2970.
    [22] CHEN W, LI Z R, WU D, et al. Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependenc [J]. J. A. Chem. Soc. 2006, 128: 1072-1073.
    [23] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03, revision B03, Gaussian, Inc., Wallingford, CT, 2004.
    [24] REED A E, CURTISS L A, WEINHOLD F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint [J]. Chem. ReV. 1988, 88: 899-926.
    [25] BESLER B H, MERZ K M, KOLLMAN P A, Atomic charges derived from semiempirical methods [J]. J. Comput. Chem. 1990, 11: 431-439.
    [26] BRENEMAN C M, WIBERG K B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis [J]. J. Comput. Chem. 1990, 11: 361-373.
    [27] HURST S K, CIFUENTES M P, MORRALL J P L, et al. Organometallic complexes for nonlinear optics. 22.1 Quadratic and cubic hyperpolarizabilities of trans-bis(bidentate phosphine)rutheniumσ-arylvinylidene andσ-arylalkynyl complexes [J]. Organometallics 2001, 20: 4664-4675.
    [28] SZABLEWSKI M, THOMAS P R, THORNTON A, et al. Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects [J]. J. Am. Chem. Soc. 1997, 119: 3144-3154.
    [29] OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment [J]. J. Chem. Phys. 66 (1977) 2664-2668.
    [30] MORRELL J A, ALBRECHT A C, LEVIN K H, et al. The electro-optic coefficients of urea [J]. J. Chem. Phys. 1979, 71: 5063-5068.
    [31] CHAMPAGNE B, SPASSOVA M, JADIN J B, et al. Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains [J]. J. Chem. Phys. 2002, 116: 3935-3946.
    [32] NAKANO M, OKUMURA M, YAMAGUCHI K, et al. CNDO/S-CI calculations of hyperpolarizabilities. III. Regular polyenes, charged polyenes, di-substituted polyenes, polydiacetylene and related species [J]. Mol. Cryst. Liq. Cryst. 1990, 182A: 1-5.
    [33] NAKANO M, YAMAGUCHI K. A proposal of new organic third-order nonlinear optical compounds. Centrosymmetric systems with large negative third-order hyperpolarizabilities [J]. Chem. Phys. Lett. 1993, 206: 285-292.
    [34] NAKANO M, YAMAGUCH K, FUENO T. Coupled hartree-fock calculations of the third-order hyperpolarizabilities for mixed and segregated charge-transfer clusters [J]. Nonlinear Optics. 1994, 6: 289-296.
    [35] NAKANO M, YAMADA S, YAMAGUCHI K. Analysis of spatial contribution to the second hyperpolarizabilities ofπ-conjugated systems involving sulfur atoms [J]. J. Phys. Chem. A, 1999, 103: 3103-3109.
    [36] NAKANO M, YAMADA S, YAMAGUCHI K. Theoretical studies on second hyperpolarizabilities for cation radical states of tetrathiafulvalene and tetrathiapentalene [J]. Chem. Phys. Lett. 1999, 311: 221-230.
    [37] NAKANO M, YAMADA S, YAMAGUCHI K. On the second hyperpolarizabilitiesγof three charged states of tetrathiapentalene and tetrathiafulvalene: aγdensity analysis [J]. Chem. Phys. Lett. 2000, 321: 491-497.
    [38] LI Y, LI Z R, WU D, et al. An ab initio prediction of the extraordinary static first hyperpolarizability for the electron-solvated cluster (FH)2{e}(HF) [J]. J. Phys. Chem. B, 2004, 108: 3145-3148.
    [39] CHEN W, LI Z R, WU D, et al. The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study [J]. J. Chem. Phys. 2004, 121: 10489-10494.
    [40] CHEN W, LI Z R, WU D, et al. Theoretical investigation of the large nonlinear optical properties of (HCN)n clusters with Li Atom [J]. J. Phys. Chem. B, 2005, 109: 601-608.
    [1] CHEMLA D S, ZYSS J. Nonlinear optical properties of organic molecules and crystals [M]. New York: Academic Press, 1987.
    [2] WILLIAMS D J, PRASAD P. Introduction to nonlinear optical effects in molecules and polymers [M]. New York: Wiley, 1991.
    [3] BRéDAS J L, ADANT C, TACKX P, et al. Third-order nonlinear optical response in organic materials: theoretical and experimental aspects [J]. Chem. ReV. 1994, 94: 243-278.
    [4] GESKIN V M, LAMBERT C, BRéDAS J L. Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups [J]. J. Am. Chem. Soc. 2003, 125: 15651-15658.
    [5] (a) MEYERS F, MARDER S R, PIERCE B M, et al. Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., .beta., and .gamma.) and bond length alternation [J]. J. Am. Chem. Soc. 1994, 116: 10703-10714. (b) Marder S R, CHENG L T, TIEMANN B G, et al. Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity [J]. Science, 1994, 263: 511-514. (c) MARDER S R, TORRUELLAS W E, BLANCHARD-DESCE M, et al. Large molecular third-order optical nonlinearities in polarized carotenoids [J]. Science 1997, 276: 1233-1236.
    [6] KIRTMAN B, CHAMPAGNE B, BISHOP D M, Electric field simulation of substituents in donor-acceptor polyenes: a comparison with ab initio predictions for dipole moments, polarizabilities, and hyperpolarizabilities [J]. J. Am. Chem. Soc. 122, 2000: 8007-8014.
    [7] NAKANO M, FUJITA H, TAKAHATA M, et al. Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure-property relation in nlo responses of fractal antenna dendrimers [J]. J. Am. Chem. Soc. 2002, 124: 9648-9655.
    [8] KIM J, ICHIMURA A S, HUANG R H, et al. Crystalline salts of Na- and K- (alkalides) that are stable at room temperature [J]. J. Am. Chem. Soc. 1999, 121: 10666-10667.
    [9] DYE J L. Electrides: from 1d heisenberg chains to 2d pseudo-metals [J]. Inorg. Chem. 1997, 36: 3816-3826.
    [10] ICHIMURA A S, DYE J L. Toward inorganic electrides [J]. J. Am. Chem. Soc. 2002, 124: 1170-1171.
    [11] DYE J L. Electrons as anions [J]. Science, 2003, 301: 607-608.
    [12] LI Y, LI Z R, WU D, et al. An ab initio prediction of the extraordinary static first hyperpolarizability for the electron-solvated cluster (FH)2{e}(HF) [J]. J. Phys. Chem. B 2004, 108: 3145-3148.
    [13] CHEN W, LI Z R, WU D, et al. The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study [J]. J. Chem. Phys. 2004, 121: 10489-10494.
    [14] CHEN W, LI Z R, WU D, et al. Theoretical investigation of the large nonlinear optical properties of (HCN)n clusters with Li Atom [J]. J. Phys. Chem. B, 2005, 109: 601-608.
    [15] CHEN W, LI Z R, WU D, et al. The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole [J]. J. Am. Chem. Soc. 2005, 127: 10977-10981.
    [16] CHEN W, LI Z R, WU D, et al. Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependenc [J]. J. A. Chem. Soc. 2006, 128: 1072-1073.
    [17] XU H L, LI Z R, WU D, et al. Structures and large nlo responses of new electrides: Li-doped fluorocarbon chain [J]. J. Am. Chem. Soc. 2007, 129: 2967-2970.
    [18] Wang F F, LI Z R, WU D, et al. Novel superalkali superhalogen compounds (Li3)+(SH)- (SH = LiF2, BeF3, and BF ) with aromaticity: new electrides and alkalides [J]. ChemPhysChem, 2006, 7: 1136-1141.
    [19] MELBY L R, HARDEN R J, HERTLER W R, et al. Substituted quinodimethans. II. anion-radical derivatives and complexes of 7, 7, 8, 8-tetracyanoquinodimethan [J]. J. Am. Chem. Soc. 1962, 84: 3374-3387.
    [20] TORRANCE J B. The difference between metallic and insulating salts of tetracyanoquinodimethone (TCNQ): how to design an organic metal [J]. Acc. Chem. Res. 1979, 12: 79-86.
    [21] KLOTS C E, COMPTON R N, RAAEN V F. Electronic and ionic properties of molecular TTF and TCNQ, J. Chem. Phys. 1974, 60: 1177-1178.
    [22] IQBAL Z, CHRISTOE C W, DAWSON D K. Infrared absorption and reflection studies of organic radical salt: K+TCNQ? [J]. J. Chem. Phys. 1975, 63: 4485-4489.
    [23] OKAMOTO H, IKEGAMI K, WAKABAYASHI T, et al. Ultrafast photoinduced melting of a spin-peierls phase in an organic charge-transfer compound, K-tetracyanoquinodimethane [J]. Phys. Rev. Lett. 2006, 96: 37405-37409.
    [24] SUCHANSKI M R, VAN. DUYNE R P. Resonance Raman spectroelectrochemistry. IV. The oxygen decay chemistry of the tetracyanoquinodimethane dianion [J]. J. Am. Chem. Soc. 1976, 98: 250-252.
    [25] KHATKALE M S, DEVLIN J P. The vibrational and electronic spectra of the mono-, di-, and trianon salts of TCNQ [J]. J. Chem. Phys. 1979, 70: 1851-1859.
    [26] BUCKINGHAM A D. Permanent and induced molecular moments and long-range intermolecular forces [J]. Adv. Chem. Phys. 1967, 12: 107-142.
    [27] MCLEAN A D, YOSHIMINE M. Theory of molecular polarizabilities [J]. J. Chem. Phys. 1967, 47: 1927-1935.
    [28] COHEN H D, ROOTHAAN C C J, Electric dipole polarizability of atoms by the hartree-fock method. I. Theory for closed-shell systems [J]. J. Chem. Phys. 1965, 43: S34-S39.
    [29] MAROULIS G. Hyperpolarizability of H2O [J]. J. Chem. Phys. 1991, 94: 1182-1190.
    [30] KURTZ H A, STEWART J J P, DIETER K M. Calculation of the nonlinear optical properties of molecules [J]. J. Comput. Chem. 1990, 11: 82-87.
    [31] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03, revision B03, Gaussian, Inc., Wallingford, CT, 2004.
    [32] OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment [J]. J. Chem. Phys. 66 (1977) 2664-2668.
    [33] MORRELL J A, ALBRECHT A C, LEVIN K H, et al. The electro-optic coefficients of urea [J]. J. Chem. Phys. 1979, 71: 5063-5068.
    [34] NAKANO M, OKUMURA M, YAMAGUCHI K, et al. CNDO/S-CI calculations of hyperpolarizabilities. III. Regular polyenes, charged polyenes, di-substituted polyenes, polydiacetylene and related species [J]. Mol. Cryst. Liq. Cryst. 1990, 182A: 1-5.
    [35] HURST S K, CIFUENTES M P, MORRALL J P L, et al. Organometallic complexes for nonlinear optics. 22.1 Quadratic and cubic hyperpolarizabilities of trans-bis(bidentate phosphine)rutheniumσ-arylvinylidene andσ-arylalkynyl complexes [J]. Organometallics 2001, 20: 4664-4675.
    [1] (a) EATON D F. Nonlinear optical materials [J]. Science, 1991, 253: 281-287. (b) CHENG W D, XIANG K H, PANDEY R, et al. Calculations of linear and nonlinear optical properties of H-silsesquioxanes [J]. J. Phys. Chem. B, 2000, 104: 6737-6742. (c) ICHIDA M, SOHDA T, NAKAMURA A. Third-order nonlinear optical properties of c60 ct complexes with aromatic amines [J]. J. Phys. Chem. B, 2000, 104: 7082-7084. (d) GESKIN V M, LAMBERT C, BRéDAS J L. Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups [J]. J. Am. Chem. Soc. 2003, 125: 15651-15658. (e) NAKANO M, FUJITA H, TAKAHATA M, et al. Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure-property relation in nlo responses of fractal antenna dendrimers [J]. J. Am. Chem. Soc. 2002, 124: 9648-9655. (f) LONG N J, WILLIAMS C K. Metal alkynyl complexes: synthesis and materials [J]. Angew. Chem. Int. Ed. 2003, 42: 2586-2617. (g) KIRTMAN B, CHAMPAGNE B, BISHOP D M, Electric field simulation of substituents in donor-acceptor polyenes: a comparison with ab initio predictions for dipole moments, polarizabilities, and hyperpolarizabilities [J]. J. Am. Chem. Soc. 122, 2000: 8007-8014. (h) MARDER S R, TORRUELLAS W E, BLANCHARD-DESCE M, et al. Large molecular third-order optical nonlinearities in polarized carotenoids [J]. Science 1997, 276: 1233-1236. (i) AVRAMOPOULOS A, REIS H, LI J, PAPADOPOULOS M G. The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study [J]. J. Am. Chem. Soc. 2004, 126: 6179-6184. (j) LE BOUDER T, MAURY O, BONDON A, et al. Photophysical and nonlinear optical properties of macromolecular architectures featuring octupolar tris(bipyridine) Ruthenium(II) moieties: Evidence for a supramolecular self-ordering in a dentritic structure [J]. J. Am. Chem. Soc. 2003, 125: 12284-12299. (k) CHAMPAGNE B, BOTEK E, QUINET O, et al. Experimental study of the second-order non-linear optical properties of tetrathia-[7]-helicene [J]. Chem. Phys. Lett. 2005, 407: 372-378. (l) CHAMPAGNE B, SPASSOVA M, JADIN J B, et al. Ab initio investigation of doping-enhanced electronic and vibrational secondhyperpolarizability of polyacetylene chains [J]. J. Chem. Phys. 2002, 116: 3935-3946. (m) SPASSOVA M, CHAMPAGNE B, KIRTMAN B. Large effect of dopant level on second hyperpolarizability of alkali-doped polyacetylene chains [J]. Chem. Phys. Lett. 2005, 412: 217-222. (n) NAKANO M, OHTA S, TOKUSHIMA K, et al. First and second hyperpolarizabilities of donor–acceptor disubstituted diphenalenyl radical systems [J]. Chem. Phys. Lett. 2007, 443: 95-101.
    [2] (a) LI Y, LI Z R, WU D, et al. An ab initio prediction of the extraordinary static first hyperpolarizability for the electron-solvated cluster (FH)2{e}(HF) [J]. J. Phys. Chem. B, 2004, 108: 3145-3148. (b) CHEN W, LI Z R, WU D, et al. The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study [J]. J. Chem. Phys. 2004, 121: 10489-10494.
    [3] (a) KIM J, ICHIMURA A S, HUANG R H, et al. Crystalline salts of Na- and K- (alkalides) that are stable at room temperature [J]. J. Am. Chem. Soc. 1999, 121: 10666-10667. (b) DYE J L. Anionic electrons in electrides [J]. Nature, 1993, 365: 10-11. (c) DYE J L, WAGNER M J, OVERNEY G, et al. Cavities and channels in electrides [J]. J. Am. Chem. Soc. 1996, 118: 7329-7336. (d) DYE J L. Electrides: from 1d heisenberg chains to 2d pseudo-metals [J]. Inorg. Chem. 1997, 36: 3816-3826. (e) SRDANOV V I, STACKY G D, LIPPMA E, et al. Evidence for an antiferromagnetic transition in a zeolite-supported cubic lattice of F centers [J]. Phys. Rev. Lett. 1998. 80: 2449-2452. (f) EDWARDS P P, ANDERSON P A, TOMAS J M. Dissolved alkali metals in zeolites [J]. Acc. Chem. Res. 1996, 29, 23-29. (g) ICHIMURA A S, DYE J L. Toward inorganic electrides [J]. J. Am. Chem. Soc. 2002, 124: 1170-1171. (h) MATSUISHI S, TODA Y, MIYAKAWA M, et al. High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-) [J]. Science 2003, 301: 626-629. (i) DYE J L. Electrons as anions [J]. Science, 2003, 301: 607-608.
    [4] (a) CHEN W, LI Z R, WU D, et al. The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole [J]. J. Am. Chem. Soc. 2005, 127: 10977-10981. (b) XU H L, LI Z R, WU D, et al. Structures and large nlo responses of new electrides: Li-doped fluorocarbon chain [J]. J. Am. Chem. Soc. 2007, 129: 2967-2970. (c) LI Z J, WANG F F, LI Z R, et al. Large static first and second hyperpolarizabilities dominatedby excess electron transition for radical ion pair salts M2·+TCNQ·– (M = Li, Na, K) [J]. Phys. Chem. Chem. Phys. 2009, 11: 402–408.
    [5] (a) CHEN W, LI Z R, WU D, et al. Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependenc [J]. J. A. Chem. Soc. 2006, 128: 1072-1073. (b) JING Y Q, LI Z R, WU D, et al. What is the role of the complexant in the large first hyperpolarizability of sodide systems Li(NH3)nNa (n = 1-4)? [J]. J. Phys. Chem. B. 2006, 11: 11725-11729.
    [6] (a) DEAL K A, BURSTYN J N. Mechanistic studies of dichloro(1, 4, 7-triazacyclononane)copper(ii)-catalyzed phosphate diester hydrolysis [J]. Inorg. Chem. 1996, 35: 2792-2798. (b) SIBBONS K, SHASTRI K, WATKINSON M. The application of manganese complexes of ligands derived from 1, 4, 7-triazacyclononane in oxidative catalysis [J]. Dalton Trans. 2006, 5: 645–661. (c) TFOUNI E, FERREIRA K Q, DORO F G, et al. Ru(II) and Ru(III) complexes with cyclam and related species [J]. Coord. Chem. Rev. 2005, 249: 405-418. (d) SCHRODT A, NEUBRAND A, VAN ELDIK R. Fixation of CO2 by Zinc(II) chelates in alcoholic medium. X-ray structures of {[Zn(cyclen)]3(μ3-CO3)}(ClO4)4 and [Zn(cyclen)EtOH](ClO4)2 [J]. Inorg. Chem. 1997, 36: 4579-4584. (e) RILEY D P, HENKE S L, LENNON P J, et al. Synthesis, characterization, and stability of Manganese(II) C-substituted 1, 4, 7, 10, 13-pentaazacyclopentadecane complexes exhibiting superoxide dismutase activity [J]. Inorg. Chem. 1996, 35: 5213-5231. (f) ZHANG D, BUSCH D H, LENNON P L, et al. Iron(III) complexes as superoxide dismutase mimics: synthesis, characterization, crystal structure, and superoxide dismutase (sod) activity of Iron(III) complexes containing pentaaza macrocyclic ligands [J]. Inorg. Chem. 1998, 37: 956-963.
    [7] CHEN W, LI Z R, WU D, et al. Theoretical investigation of the large nonlinear optical properties of (HCN)n clusters with Li Atom [J]. J. Phys. Chem. B 2005, 109: 601-608.
    [8] (a) DYKSTRA C E, JASIEN P G. Derivative hartree-fock theory to all orders [J]. Chem. Phys. Lett. 1984, 109: 388-393. (b) PULAY P. Second and third derivatives of variational energy expressions: Application to multiconfigurational self-consistent field wave functions [J]. J. Chem. Phys. 1983, 78: 5043-5051.
    [9] (a) RICE J E, HANDY N C. J. Chem. Phys. 1991, 94: 4959-4971. (b) RICE J E, HANDY N C. The calculation of frequency-dependent hyperpolarizabilities includingelectron correlation effects [J]. Int. J. Quantum Chem. 1992, 43: 91-118. (c) JACQUEMIN D, QUINET O, CHAMPAGNE B, et al. Second-order nonlinear optical coefficient of polyphosphazene-based materials: A theoretical study [J]. J. Chem. Phys. 2004, 120: 9401-9409.
    [10] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03, revision B03, Gaussian, Inc., Wallingford, CT, 2004.
    [11] DENNINGTON R II, TODD K, MILLAM J, et al. Gauss View, version 3.09; Semichem, Inc.: Shawnee Mission, KS, 2003.
    [12] HURST S K, CIFUENTES M P, MORRALL J P L, et al. Organometallic complexes for nonlinear optics. 22.1 Quadratic and cubic hyperpolarizabilities of trans-bis(bidentate phosphine)rutheniumσ-arylvinylidene andσ-arylalkynyl complexes [J]. Organometallics 2001, 20: 4664-4675.
    [13] BLANCHARD-DESCE M, ALAIN V, BEDWORTH P V, et al. Large quadratic hyperpolarizabilities with donor-acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability [J]. Chem. Eur. J. 1997, 3: 1091-1104.
    [14] SCUDERI D, PALADINI A, SATTA M, et al. Chiral aggregates of indan-1-ol with secondary alcohols and water: Laser spectroscopy in supersonic beams [J]. Phys. Chem. Chem. Phys. 2002, 4: 4999-5003.
    [15] (a) OUDAR J L, CHEMLA D S. J. Chem. Phys. 1977, 66: 2664-2668. (b) OUDAR J L. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds [J]. J. Chem. Phys. 1977, 67: 446-457. (c) KANLS D R, RATNER M A, MARKS T J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects [J]. Chem. Rev. 1994, 94: 195-242.
    [1] CHEMLA D S, ZYSS J. Nonlinear optical properties of organic molecules and crystals [M]. New York: Academic Press, 1987.
    [2] WILLIAMS D J, PRASAD P. Introduction to nonlinear optical effects in molecules and polymers [M]. New York: Wiley, 1991.
    [3] BRéDAS J L, ADANT C, TACKX P, et al. Third-order nonlinear optical response in organic materials: theoretical and experimental aspects [J]. Chem. ReV. 1994, 94: 243-278.
    [4] GESKIN V M, LAMBERT C, BRéDAS J L. Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups [J]. J. Am. Chem. Soc. 2003, 125: 15651-15658.
    [5] MARDER S R, TORRUELLAS W E, BLANCHARD-DESCE M, et al. Large molecular third-order optical nonlinearities in polarized carotenoids [J]. Science 1997, 276: 1233-1236.
    [6] KIRTMAN B, CHAMPAGNE B, BISHOP D M, Electric field simulation of substituents in donor-acceptor polyenes: a comparison with ab initio predictions for dipole moments, polarizabilities, and hyperpolarizabilities [J]. J. Am. Chem. Soc. 122, 2000: 8007-8014.
    [7] NAKANO M, FUJITA H, TAKAHATA M, et al. Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure?property relation in nlo responses of fractal antenna dendrimers [J]. J. Am. Chem. Soc. 2002, 124: 9648-9655.
    [8] SCHULZ M, TRETIAK S, CHERNYAK V, et al. Size scaling of third-order off-resonant polarizabilities. Electronic coherence in organic oligomers [J]. J. Am. Chem. Soc. 2000, 122: 452-459.
    [9] SLEPKOV A D, HEGMANN F A, ZHAO Y, TYKWINSKI R R, et al. Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers [J]. J. Chem. Phys. 2002, 116: 3834-3840.
    [10] POWELL C E, HUMPHREY M G, CIFUENTES M P, et al. Organometallic complexes for nonlinear optics. 33.1 Electrochemical switching of the third-order nonlinearity observed by simultaneous femtosecond degenerate four-wave mixing and pump?probe measurements [J]. J. Phys. Chem. A, 2003, 107: 11264-11266.
    [11] DE LA TORRE G, VAQUEZ P, AGULLO-LOPEZ F, et al. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds [J]. Chem. ReV. 2004, 104: 3723-3750.
    [12] HUMPHREY J, KUCIAUSKAS D. Charge-transfer states determine iron porphyrin film third-order nonlinear optical properties in the near-ir spectral region [J]. J. Phys. Chem. B, 2004, 108: 12016-12023.
    [13] POWELL C E, MORRALL J P, WARD S A, et al. Dispersion of the Third-Order Nonlinear Optical Properties of an Organometallic Dendrimer [J]. J. Am. Chem. Soc. 2004, 126: 12234-12235.
    [14] CHEN W, LI Z R, WU D, et al. Inverse sodium hydride: density functional theory study of the large nonlinear optical properties. [J]. J. Phys. Chem. A, 2005, 109: 2920-2924.
    [15] CHEN W, LI Z R, WU D, et al. Theoretical investigation of the large nonlinear optical properties of (HCN)n clusters with Li Atom [J]. J. Phys. Chem. B, 2005, 109: 601-608.
    [16] CHEN W, LI Z R, WU D, et al. The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole [J]. J. Am. Chem. Soc. 2005, 127: 10977-10981.
    [17] CHEN W, LI Z R, WU D, et al. Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependenc [J]. J. A. Chem. Soc. 2006, 128: 1072-1073.
    [18] JING Y Q, LI Z R, WU D, et al. Effect of the complexant shape on the large first hyperpolarizability of alkalides Li+(NH3)4M– [J]. ChemPhysChem. 2006, 7: 1759-1763.
    [19] JING Y Q, LI Z R, WU D, et al. What is the role of the complexant in the large first hyperpolarizability of sodide systems Li(NH3)nNa (n = 1-4)? [J]. J. Phys. Chem. B. 2006, 11: 11725-11729.
    [20] XU H L, LI Z R, WU D, et al. Structures and large nlo responses of new electrides: Li-doped fluorocarbon chain [J]. J. Am. Chem. Soc. 2007, 129: 2967-2970.
    [21] KAMADA K, OHTA K, NAKAMURA J, et al. Third-order nonlinear optical properties of a stable radical species with nitronyl nitroxide group [J]. Mol Cryst Liq Cryst 1998, 315: 117-122.
    [22] CHAMPAGNE B, BOTEK E, NAKANO M, et al. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell -conjugated systems [J]. J. Chem. Phys. 2005, 122: 114315-114327.
    [23] NAKANO M, KISHI R, NITTA T, et al. Second hyperpolarizability (γ) of singlet diradical system: dependence ofγon the diradical character [J]. J. Phys. Chem. A, 2005, 109: 885-891.
    [24] NAKANO M, KISHI R, NAKAGAWA N, et al. Second hyperpolarizabilities (γ) of bisimidazole and bistriazole benzenes: diradical character, charged state, and spin state dependences [J]. J. Phys. Chem. A, 2006, 110: 4238-4243.
    [25] NAKANO M, NITTA T, YAMAGUCHI K, et al. Spin multiplicity effects on the second hyperpolarizability of an open-shell neutralπ-conjugated system [J]. J. Phys. Chem. A, 2004, 108: 4105-4111.
    [26] OHTA S, NAKANO M, KUBO T, et al. Theoretical study on the second hyperpolarizabilities of phenalenyl radical systems involving acetylene and vinylene linkers: Diradical character and spin multiplicity dependences [J]. J. Phys. Chem. A, 2007, 111: 3633-3641.
    [27] NAKANO M, OHTA S, TOKUSHIMA K, et al. First and second hyperpolarizabilities of donor-acceptor disubstituted diphenalenyl radical systems [J]. Chem. Phys. Lett. 2007, 443: 95-101.
    [28] MA F, LI Z R, XU H L, et al. Lithium salt electride with an excess electron pair-a class of nonlinear optical molecules for extraordinary first hyperpolarizability [J]. J Phys Chem A 2008, 112: 11462-11467.
    [29] WILLETTS A, RICE J E, BURLAND D M, et al. Problems in the comparison of theoretical and experimental hyperpolarizabilities [J]. J. Chem. Phys. 1992, 97: 7590-7599.
    [30] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03, revision B03, Gaussian, Inc., Wallingford, CT, 2004.
    [31] DENNINGTON R II, TODD K, MILLAM J, et al. Gauss View, version 3.09; Semichem, Inc.: Shawnee Mission, KS, 2003.
    [32] HURST S K, CIFUENTES M P, MORRALL J P L, et al. Organometallic complexes for nonlinear optics. 22.1 Quadratic and cubic hyperpolarizabilities of trans-bis(bidentate phosphine)rutheniumσ-arylvinylidene andσ-arylalkynyl complexes [J]. Organometallics 2001, 20: 4664-4675.
    [33] OUDAR J L, CHEMLA D S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment [J]. J. Chem. Phys. 66 (1977) 2664-2668.
    [34] MORRELL J A, ALBRECHT A C, LEVIN K H, et al. The electro-optic coefficients of urea [J]. J. Chem. Phys. 1979, 71: 5063-5068.
    [35] DIRK C W, KUZYK M G. Missing-state analysis: A method for determining the origin of molecular nonlinear optical properties [J]. Phys. Rev. A, 1989, 39: 1219-1266.
    [36] WANG B Q, LI Z R, WU D, et al. Structures and static electric properties of novel alkalide anions F-Li+Li- and F-Li3+Li3- [J]. J. Phys. Chem. A, 2007, 111: 6378-6382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700