几种纳米分子及小分子体系的非线性光学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今迅猛发展的信息时代里,光子材料对光信息处理、光通讯、光计算机的发展,具有重要的战略意义。非线性光学(NLO)材料及其特性的研究是其中的一个重要的领域。也是目前国际前沿课题之一。寻找和设计高性能的非线性光学材料是这一领域发展的重要基础。本文采用精确的从头算(ab initio)和密度泛函理论(DFT)等量子化学方法,对修饰的石墨烯纳米分子以及一些重要小分子体系的非线性光学性质进行了深入的理论研究。主要贡献如下:
     一、石墨烯纳米带(Graphene Nanoribbon, GNR)作为优秀的共轭桥被引入到推电子基团(Donor)一共轭桥(Conjugated Bridge)一拉电子基团(Acceptor) (D-B-A)模式中来设计高性能非线性光学材料。由于GNR共轭桥自身独特的平面双自由基结构,NH2-GNR-NO2分子展示出了极大的第一超极化率(β0),其中,NH2-(7,3)ZGNRs-NO2分子的β0值高达2.5×10~6au(22000×10-30 esu),这个值是β0实验纪录值(1470×10~30 esu)的15倍。并且发现了二阶非线性光学性质(β0)与石墨烯纳米带尺度的依赖关系:在沿着推拉电子基团的方向上,β0值随着纳米带长度的增加而急剧增加。这里称其为共轭桥的长度效应;在面内垂直于推拉电子基团的方向上,p0值随着纳米带宽度的增加而陡然增加,这里称其为共轭桥的宽度效应。此宽度效应首次被报道。通过比较发现宽度效应优于长度效应。这将丰富以往对共轭有机非线性光学材料的设计与研究。
     二、以推电子基团-石墨烯纳米带共轭桥一拉电子基团模式为基础来设计更小尺度的非线性光学材料。1)在NH2-GNR-NO2体系中,改变GNR共轭桥的形状但不改变共轭桥的碳原子数。结果发现体系中苯环数越多,其p0值越大。重要的是共轭桥的形状对体系的二阶NLO性质起着关键性的作用。如三角形共轭桥体系(NH2-GNR-NO2)表现出了最好的二阶NLO性质,在CAM-B3LYP/6-31 G*水平下,其β_0值高达1.7×10~5au。2)在纳米带边缘取代供电子基团如氨基(-NH2),使体系形成一个面内推拉电子模式。同时在纳米带上方进行锂(Li)掺杂,形成一个面外推拉电子模式。双重推拉电子模式极大的加强了体系的二阶非线性光学性质。上述两种方法都是在不增加体系纳米尺寸的情况下而有效地增大了体系的二阶NLO性质。
     三、基于从头算方法,我们提出用外加电场这一物理方法来诱导弱相互作用体系(NH3-HCl和H20-HCl)发生质子转移从酸(HCl)到碱(NH3/H20).研究表明当电场在沿着质子转移方向的场强达到或超过临界电场时,质子转移即可发生。在电场诱导质子发生转移时,体系的二阶非线性光学系数(β0)突然大幅增加。表明电荷转移对体系的二阶非线性光学性质有着重要影响。这项研究为我们日后利用电场来设计高性能非线性光学材料带来了启发。
     四、在UMP2(Full)/aug-cc-pVTZ水平上,我们研究了取代效应和协同效应对单电子卤键复合物(H3C…C1F)谱学性质和光学性质的影响。当拉电子基团(如F原子)取代甲基中的氢原子时,相互作用能、C1-F蓝移和第一超极化率(β0)全都降低。当推电子基团(如H3C-)取代甲基中的氢原子时,相互作用能、C1-F蓝移和第一超极化率(β0)全都增加。另外,在三体H3C…ClF…ClF体系中,协同效应加强了单电子卤键的强度也增加了第一超极率(β0)。NBO和AIM结果表明电荷转移在卤键强度、谱学及非线性光学性质上起着非常重要的作用。
In today's high-technology world, photonic materials are very important in many fields, such as optical process of information, optical computer, optical communication, etc. The research of the nonlinear optical materials is an important field of its development and is one of the international frontier topics at the present. The searching and designing of high-performance NLO materials is an important base in this field. In this thesis, the structures and nonlinear optical properties of the modified graphene nano-molecules and some important small molecules are investigated by the quantum chemical methods-ab initio and density functional theory (DFT). The main contributions are as followings:
     1. Graphene nanoribbon (GNR) as an excellent conjugated bridge was used in a donor-conjugated bridge-acceptor (D-B-A) framework to design high performance second-order nonlinear optical materials. Owing to the unique diradical planar conjugated bridge of GNR, (NH2)-GNR-(NO2) exhibits exceptionally large static first hyperpolarizability (β0) up to 2.5×106 a.u. (22000×10-30 esu) for H2N-(7,3)ZGNR-NO2 (ZGNR=zigzagedged GNR), which is about 15 times larger than the recorded value ofβ0 (1470×10-30 esu) for the D-A polyene reported by Blanchard-Desce et al. Interestingly, we have found that the size effect of GNR plays a key role in increasingβ0 for the H2N-GNR-NO2 system, in which the width effect of GNR perpendicular to the D-A direction is superior to the length effect along the D-A direction. It enriches the design and research of conventional organic NLO materials.
     2. Based on the donor-GNR conjugated bridge-acceptor (D-B-A) framework, we have designed smaller scale and high-performance nonlinear optical (NLO) materials.1) In the NH2-GNR-NO2 system, different shaped conjugated bridges of GNR with the same number of carbon atom are designed. We find that the more the fused bezene ring, the larger theβ0 value. Besides, the shape effect of GNR plays a very important role in enhancingβ0 for NH2-GNR-NO2 systems, such as the NH2- triangle-GNR-NO2 system displays a very largeβ0 value up to 1.7×105 au at the CAM-B3LYP/6-31G*.2) Substituting a donor (-NH2) on the edge of GNR forms one donor-acceptor mode. Meanwhile, Li doping into GNR forms another donor-acceptor mode. The twofold donor-acceptor mode greatly enhances NLO properties but not enlarge the size of systems.
     3. On the basis of ab initio method, we propose a physical method of external electric field (Eext) to drive the proton transfer from acid (HCl) to base (NH3/H2O). Our results show that when Eext along the proton-transfer direction achieves or exceeds the critical electric field (Ec), the proton transfer occurs. At the same time, theβ0 value of H3N-HCl and H2O-HCl is greatly increased. It is shown that the charge transfer has a key role in enhancing NLO property. This work inspired us to apply the external electric field to design NLO materials for our future work.
     4. The effects of substitution and cooperativity on spectrum and nonlinear optical properties in H3C…ClF complex has been studied with quantum chemical calculations at the UMP2(Full)/aug-cc-pVTZ level. The electron-withdrawing group (F atom) in the methyl (H3C-) makes the blue shift and the first hyperpolarizability (β0) decrease, whereas the electron-donating group (methyl group) in the methyl (H3C-) causes them increase. The cooperativity between different two types of halogen bonds in H3C…ClF…ClF complex enhances the strength of single-electron halogen bond and hyperpolarizability. The results of AIM and NBO show that the charge transfer plays an important role in enhancing the interaction, spectrum, and nonlinear optical properties.
引文
[1]杨全红,吕伟,杨永岗,自由态二维碳原子晶体-单层石墨烯,新型碳材料23卷(2008)2期,97-102.
    [2]王春,纳米金刚石-碳纳米管-石墨烯性能的第一原理研究,吉林大学博士论文.
    [3]ROBERT F. SERVICE, Carbon Sheets an Atom Thick Give Rise to Graphene Dreams, Science 324,875-877.
    [4]R.M. WESTERVELT, Graphene Nanoelectronics, Science 320,324-325
    [5]A.K. GEIM. Graphene:Status and Prospect, Science 324,530.
    [6]吴康迪,石墨烯晶体管:摩尔定律的延寿者,计算机世界报(2008)43期,38.
    [7]吴江滨,最具潜力的新型“奇迹材料”,物理通报,(2009)6期,1.
    [8]孙慷,张福学主编,<<压电学>>,上册,第十二章,国防工业出 版社,北京,1985.
    [9]P. A. FRANKEN; A. E. HILL; et al., Generation of Optical Harmonics. Phys. Rev. Lett.,1961,7,118.
    [10]C.-T. CHEN; G.-Z. LIU; Recent advances in nonlinear optical and electro-optical materials. Ann.Rev. Mater. Sci.,1986,16,203.
    [11]D.J. WILLIAMS; ed., "Nonlinear Optical Prooerties of Organic and Polymeric Materials", ACS Symp. Ser., No.233, Washington D. C.,1983
    [12]D.S. CHEMLA; J. ZYSS; ed., " Nonlinear Optical Properties of Organic Molecules and Crystals", Vol.1 and 2, Academic Press Orlando,1987
    [13]C.C FRAZIER.; M.A. HARREY; et al., Second-harmonic generation in transition-metal-organic compounds. J. Phys. Chem.,1986,90,5703
    [14]S. R. MARDER; J. W. PERRY; G. BOURHILL; CH. B. GORMAN; B. G. TIEMANN; K. MANSOUR; Relation Between Bond-Length Alternation and Second Electronic Hyperpolarizability of Conjugated Organic Molecules. Science (Washington, DC) 1993,261.186
    [15]S. R. MARDER; L.-T. CHENG; B. G. TIEMANN; A. C. GRIEDLI; M. BLANCHARD-DESCE; J. W. PERRY; J. SKINDH(?)J; Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond Length Alternation and Aromaticity. Science (Washington, DC) 1994.263.511
    [16]M. BLANCHARD-DESCE; V. ALAIN;P. V. BEDWORTH; S. R. MARDER; A. FORT; C. RUNSER;M. BARZOUKAS;S. LEBUS:AND R. WORTMANN; Chem.-Eur. J.,1997.3.1091
    [17]J. L. OUDAR; AND D. S. CHEMLA;J. Chem. Phys.,1977,66.2664
    [18]B. F. LEVINE; AND C. G. BETHEA;J. Chem. Phys.,1975.63,2666
    [19]B. F. LEVINE;AND C. G. BETHEA;Appl. Phys. Lett.,1974,24,445
    [20]J. L. OUDAR;J. Chem. Phys.,1977,67,446
    [21]L.-T. CHENG; W. TAM; S. R. MARDER; A. E. STIEGMAN; G. RIKKEN; AND C. W. SPRANGLER; J. Phys. Chem.,1991,95.10643
    [22]J. O. MORLEY;V. J. DOCHERTY; AND D. PUGH; J. chem. Soc. Perkin. Trans.1987.2.1351
    [23]R. A. HUIJTS; AND G. L. J. HESSELINK; Chem. Phys. Lett.,1989, 156,209
    [24]M, BARZOUKAS; M. BLANCHARD-DESCE; D. JOSSE; AND J.-M. LEHN; Chem. Phys.,1989.133.323
    [25]H. IKEDA; Y. KABAWE; T. SAKAI; AND K. KAWASAKI; Chem. Phys. Lett.,1989,157.576
    [26]C. DEHU; F. MEYERS; E. HENDRICKX; K. CLAYS; A. PERSOONS; S. R. MARDER; AND J.-L. BREDAS; J. Am. Chem. Soc.,1995.117, 10127
    [27]S. R. MARDER; CH. B. GORMAN; X F. GORMAN; J. W. PERRY; G. BOURHILL; J.-L. BREDAS; AND B. M. PIERCE; Science (Washington, DC),1994,265,632
    [28]G. BOURHILL; J.-L. BREDAS; L.-T. CHENG; S. R. MARDER; F. MEYERS; J. W. PERRY; AND B. G. TIEMANN; J. Am. Chem. Soc.,1994, 116.2619
    [29]K. MOHANALINGAM; P. CHANDRA-RAY; AND P. K. DAS; Synth. Metals,1996,82,47.
    [30]I.-Y. WU; J. T. LIN; J. LUO; S.-S. SUN; C.-S. LI; K. J. LIN; C. TSAI; C.-C. HSU; AND J.-L. LIN; Syntheses and Reactivity of Ruthenium σ-Pyridylacetylides [J]. Organometallics,1997,16,2038.
    [31]W. WENSELEERS; E. GOOVAERTS; A. BOUWEN; M. H. GARCIA; M. P. ROBALO; P. J. MENDES; AND A. R. DIAS; Dissertation Abstracts Internat [J].2000, B60,4038.
    [32]I. R. WHITTALL; M. G. HUMPHREY; A. PERSOONS; AND S. HOUBRECHTS; Organometallic Complexes for Nonlinear Optics.3. Molecular Quadratic Hyperpolarizabilities of Ene-, Imine-, and Azo-Linked Ruthenium a-Acetylides:X-ray Crystal Structure of Ru((E)-4,4'-C≡CC6H4CH=CHC6H4NO2)(PPh3)2(η-C5H5). Organometallics, 1996,15,1935.
    [33]S. HOUBRECHTS; K. CLAYS; A. PERSOONS; V. CADIERNO; M. P. GAMASA; J. GIMENO; I. R. WHITTALL; AND M. G. HUMPHREY; Proc. SPIE-Int. Soc. Opt. Eng.1996,98.2852
    [34]W. WENSELEERS; A. W. GERBRANDIJ; E. GOOVAERTS; M. H. GARCIA; M. P. ROBALO; P. J. MENDES; J. C. RODRIGUES; AND A. R. DIAS; Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials [J]. J. Mater. Chem.,1998.8,925
    [35]L. T. CHENG; X W. CHENG; AND F. EATON; Quadratic hyperpolarizabilities of Group 6A metal carbonyl complexes [J]. Organometallics,1990,9,2856
    [36]V. CADIERNO;S. CONEJERO; M. PILAR GAMASA; J. GIMENO; I. ASSELBERGHS;S. HOUBRECHTS; K. CLAYS:A. PERSOONS;J. BORGE; AND S. GARCIA-GRANDA; Synthesis and Second-Order Nonlinear Optical Properties of Donor-Acceptor σ-Alkynyl and σ-Enynyl Indenylruthenium(II) Complexes. X-ray Crystal Structures of [Ru{C≡C CH=C(C6H4NO2-3)2}(η5-C9H7)(PPh3)2] and (EE)-[Ru{C≡C(CH=CH)2-C6H4NO2-4}(η5-C9H7)(PPh3)2] [J]. Organometallics,1999,18,582.
    [37]I. S. LEE;H. SEO; AND Y. K. CHUNG; Preparation of (Thiophene)manganese Tricarbonyl Cations for Nonlinear Optics. Organometallics.1999.18,1091
    [38]M. BORN, R. OPPENHEIMER Zur Quantentheorie der Molekeln Ann Phsik [J].Quantum Theory of the Molecules Ann. Phys,1927,84: 457-484.
    [39]W. J. HEHRE; L. RADOM; P. V. R. SCHLEYER;et al. Ab initio molecular orbital theory [M]. John Wiley & Sons, Inc.,1986. (b) Mcquarrie D A. Quantum chemistry university science books [M]. Mill Vally. CA, 1983.
    [40](a)徐光宪, 黎乐民,王德民,量子化学基本原理和从头计算法[M]。 北京:科学出版社,1985。(b)唐敖庆, 杨忠志,李前树,量子化学[M]。 北京:科学出版社,1982。
    [41]K. JANKOWSKI; A. SOKOLOWSKI; Ab initio studies of electron correlation in rare-earth ions. I. Intrashell correlation for 4f2 in Pr3+[J]. J. Phys. B:At. Mol. Phys,1981,14:3345.
    [42]J. A. POPLE:R. SEEGER; R. KRISHNAN:Variational configuration interaction methods and comparison with perturbation theory [J]. Int. J. Quant. Chem.,1977,11:149-161.
    [43]E. C. MARK; J. CHRISTINE; C. C. KIM, R. S. Dennis; Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Chem. Phys.1998,108:4439.
    [44]R. KRISHNAN; H. B. SCHLEGEL; J. A. POPLE; Derivate studies in configuration interaction theory [J]. J. Chem. Phys.,1980,72: 4654-4655.
    [45]B. R. BROOKS; W. D. LAIDIG; P. SAXE; et al. Analytic gradient from correlated wave functions via the two-particle density matrix and the unitary group approach [J]. J. Chem. Phys.,1980,72,4652-4653.
    [46]E. A. SALTER; G. W. TRUCKS; R. J. BARTLETT; Analytic energy derivatives in many-body methods i. first derivatives [J]. J. Chem. Phys., 1989,90:1752-1766.
    [47]K. RAGHAVACHARI; J. A. POPLE; Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int. J. Quant. Chem.,1981.20:167-178.
    [48]J. A. POPLE; M. HEAD-GORDON; K. RAGHAVACHARI; Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys.,1987,87:5968-5875.
    [49]J. A. CIOSLOWSKI; New robust algorithm for fully automated determination of attactor interaction lines in moleclues [J]. Chem. Phys. Lett.,1994,219:151-154.
    [50]H. B. SCHLEGEL, M. A. ROBB; MCSCF gradient optimization of the H2CO→H2+CO transition structure [J]. Chem. Phys. Lett.,1982,93: 43-46.
    [51]R. H. E. EADE; M. A. ROBB; Direct minimization in mcscf theory. The quasi-newton method [J]. Chem. Phys. Lett.,1981,83:362-368.
    [52]E. ENRIQUE; A. IBON; E. JOSE; M. ELIES; From weak to strong interactions:A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H…F-Y systems [J]. J. Chem. Phys.2002,117:5529.
    [53]A. CARLO; B. VINCENZO; Toward reliable density functional methods without adjustable parameters:The PBEO model [J]. J. Chem. Phys.,1999.110:6158.
    [54]J. K. LABANOWSKI; J. W. ANDZELM; Density functional methods in chemistry [M]. New York:Springer-Verlag.1991.
    [55]K. FUKUI; Variational principles in a chemical reaction [J]. Int. J. Quantum. Chem. Quant. Chem. Symp.1981,15:633-642.
    [56]K. FUKUI; A. Tachibana; K. Yamashita; Toward chemodynamics [J]. Int. J. Quantum. Chem. Quant. Chem. Symp.1981.15:621-632.
    [57]H. M. ZHAO; C. K. SUN; R. C. ZHANG; H. G. XI;Z. H. LI; Theoretical study on the reaction mechanism of (CH3)3CO+CO [J]. SCIENCE IN CHINA SERIES B:(CHEMISTRY),2005.1:48.
    [58]L. H. THOMAS; The calculation of atomic fields [J] Camb Proc. Phil. Soc.,1927,23.
    [59]E. FERMI; Rend. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente [J]. Accad. Lincei,1927,6:602.
    [60]P. A. M. DIRAC; Note on Exchange Phenomena in the Thomas Atom [J]. Camb Proc. Phil. Soc..1930,26:376.
    [61]C. F. WEIZSACKER; von. Zur Theorie der Kernmassen [J]. Phys., 1935,96:431.
    [62]P. HOHENBERG; W. KOHN; Inhomogeneous electron gas [J]. Phys. Rev. B,1964,136:864-871.
    [63]W. KOHN; L. J. SHAM; Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A,1965,140:1133-1138.
    [64]J. C. SLATER; Quantum theory of molecular and solids. Vol.4:The self-consistent field for molecular and solids mcgraw-hill [M]. New York, 1974.
    [65]D. R. SALAHUB; M. C. ZERNER; The challenge of d and f electrons acs [M]. Washington, D.C.,1989.
    [66]R. G. PARR; W. YANG; Density-functional theory of atoms and molecules Oxford Univ [M]. Press:Oxford,1989.
    [67]J. A. POPLE; P. M. W. GILL; B. G. JOHNSON; Kohn-sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett., 1992.199:557-560.
    [68]J. B. FORESMAN; M. HEAD-GORDON; J. A. POPLE; et al. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem., 1992,96:135-147.
    [69]K. RAGHAVACHARI; J. A. POPLE; Calculation of one-electron properties using limited configuration interaction techniques [J]. Int. J. Quant. Chem.,1981.20:1067-1071.
    [70]a). Q. J. PAN; H. X. ZHANG; Ab initio study on luminescent properties and aurophilic attraction of [Au2(dpm)(i-mnt)] and its related Au(I) Complexes (dpm=bis(diphosphino)methane and i-mnt i-malononitriledithiolate) [J]. Organometallics,2004,23:5198-5209. b). Q. J. Pan; H. X. Zhang; An ab initio study on luminescent properties and aurophilic attraction of binuclear Gold(I) complexes with phosphinothioether ligands [J]. Inorg. Chem.2004,43:593-601. c). PAN Q J, ZHANG H X. Aurophilic attraction and excited-state properties of binuclear Au(I) complexes with bridging phosphine and/or thiolate ligands: An ab initio study [J]. J. Chem. Phys.,2003,119:4346-4352.
    [71]a) L. YANG, A. M. REN, J. K. FENG; et al. Theoretical studies of ground and excited electronic states in a series of halide Rhenium(Ⅰ) bipyridine complexes [J]. J. Phys. Chem. A 2004,108:6797-6808. b). Y. LIAO; J. K. FENG; L. YANG; et al. theoretical study on the electronic structure and optical properties of mercury-containing diethynylfluorene monomer, oligomer, and polymer [J]. Organometallics 2005,24:385-394.
    [72]S. J. A. van GISBERGEN;J. A. GROENEVELD; A. ROSA; et al. Excitation energies for transition metal compounds from time-dependent density functional theory. applications to MnO4-. Ni(CO)4. and Mn2(CO)10 [J]. J. Phys. Chem. A 1999,103:6835.
    [73]M. D. HALLS; H. B. SCHLEGEL; Molecular orbital study of the first excited state of the OLED material Tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Mater,2001.13:2632-2640.
    [74]J. B. FORESMAN; (?)E. FRISCH; Exploring chemistry with electronic structure methods,2nd edition. Gaussian. Inc., Pittsburgh. PA.1996.
    [75]I. FRANK; Excited state molecular dynamics Invited Review, SIMU Newsletter,2001.3:63-77.
    [76]王一波[J].中国科学B辑1995,25,1016.
    [77]S. F. BOYNS; F. BERMARDI; The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Mol. Phy.,1970.19:553.
    [78]D. E. WOON; Benchmark calculations with correlated molecular wave functions. V. The determination of accurate ab initio intermolecular potentials for He2. Ne2. and Ar2 [J]. J. Chem. Phys.1994,100:2838.
    [79]F. M. TAO; Y. K. PAN; Moller-Plesset perturbation investigation of the He2 potential and the role of midbond basis functions [J]. J. Chem. Phys.1992.97:4989.
    [80]F. M. TAO; Y. K. PAN; Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys.1985,82:270.
    [81]M. J. PANICH; NMR study of the F---Hcdots. three dots. centeredF hydrogen bond. Relation between hydrogen atom position and F---Hcdots, three dots, centeredF bond length [J]. Chem. Phys..1995,196:511.
    [82]F. M. TAO; Bond functions, basis set superposition errors and other practical issues with ab initio calculations of intermolecular potentials [J]. Int. Rev. in Phys. Chem.2001,20:617-643.
    [83]K. S. NOVOSELOV, A. K. GEIM, S. V. MOROZOV. D. JIANG, Y. ZHANG. S. V. DUBONOS, I. V. GREGORIEVA. A. A. FIRSOV. Science 2004,306,666.
    [84]V. HOD; G. E. BARONE; SCUSERIA, Phys. Rev. B 2008,77,035411.
    [85]C. BERGER, Z. SONG, X. WU, N. BROWN, C. NAUD, D. MAYOU. T. LI, J. HASS, A. N. MARCHENKOV, E. H. CONRAD, P. N. FIRST, W. A. DE HEER, Science 2006,312,1191.
    [86]M. FUJITA, K. WAKABAYASHI, K. NAKADA, K. KUSAKABE, J. Phys. Soc. Jpn.1996,65,1920.
    [87]K. WAKABAYASHI, M. SIGRIST, M. FUJITA, J. Phys. Soc. Jpn. 1998,67,2089.
    [88]K. WAKABAYASHI, M. FUJITA, H. AJIKI, M. SIGRIST, Phys. Rev. B 1999,59,8271.
    [89]K, KUSAKABE, M. MARUYAMA, Phys. Rev. B 2003,67,092406.
    [90]YAMASHIRO, Y. SHIMOI, K. HARIGAYA, K. WAKABAYASHI, Phys. Rev. B 2003,68,193410.
    [91]H. LEE, Y.-W. SON, N. PARK, S. HAN, J. YU, Phys. Rev. B 2005,72, 174431.
    [92]Y.-W. SON, M. L. COHEN. S. G. LOUIE, Nature (London) 2006,444, 347.
    [93]Y. ZHANG, Y. TAN, H. STORMER, P. KIM, Nature 2005,438,201.
    [94]N. M. R. PERES, A. H. CASTRO NETO, F. GUINEA, Phys. Rev. B 2006,73,195411.
    [95]N. M. R. PERES, A. H. CASTRO NETO, F. GUINEA, Phys. Rev. B 2006,73,241403(R).
    [96]K. S. NOVOSELOV, Z. JIANG, Y. ZHANG, S. V. MOROZOV. H. L STORMER. U. ZEITLER, J. C. MAAN, G. S. BOEBINGER. P. KIM. A. K. GEIM. Science 2007,315,1379.
    [97]M. EZAWA, Phys. Rev. B 2006,73.045432.
    [98]V. BARONE, O. HOD, G. E. SCUSERIA, Nano Lett.2006,6,2748.
    [99]Y.-W. SON. M. L. COHEN. S. G. LOUIE. Phys. Rev. Lett.2006,97. 216803.
    [100]M. Y. HAN, B. OZYILMAZ, Y. ZHANG, P. KIM, Phys. Rev. Lett. 2007,98,206805.
    [101]J. WANG, Y. HERNANDEZ. M. LOTYA. J. N. COLEMAN, W. J. BLAU. Adv. Mater.2009,21,2430
    [102]S. R. MARDER, Chem. Commun.2006,2,131.
    [103]M. BLANCHARD-DESCE, V. ALAIN. P. V. BEDWORTH. S. R. MARDER. A. FORT. C. RUNSER. M. BARZOUKAS, S. LEBUS, R. WORTMANN, Chem.-Eur. J.1997,3.1091.
    [104]B. CHAMPAGNE, et al., J. Phys. Chem. A 2000.104.4755.
    [105]M. NAKANO, S. OHTA, K. KAMADA, R. KISHI, T. KUBO, K. KAMADA, K. OHTA, B. CHAMPAGNE. E. BOTEK, H. TAKAHASHI, First and second hyperpolarizabilities of donor-acceptor disubstituted diphenalenyl radical systems Chem. Phys. Lett.2007,443,95.
    [106]D. R. KANIS, M. A. RATNER, T. J. MARKS, Design and Construction of Molecular Assemblies with Large Second-Order Optical Nonlinearities. Quantum Chemical Aspects Chem. Rev,1994,94,195.
    [107]S. PRIYADARSHY. M. J. THERIEN, D. N. BERATAN. J. Am. Chem. Soc.1996,118.1504.
    [108]K. S. SUSLICK, C. T. CHEN. G. R. MEREDITH, L. T. CHENG, Push-pull porphyrins as nonlinear optical materials J. Am. Chem. Soc. 1992,114,6928.
    [109]S. R. MARDER, D. N. BERATAN, L.-T. CHENG, Science 1991,252, 103.
    [110]S. PRIYADARSHY, M. J. THERIEN, D. N. BERATAN, Acetylenyl-Linked, Porphyrin-Bridged, Donor-Acceptor Molecules:A Theoretical Analysis of the Molecular First Hyperpolarizability in Highly Conjugated Push-Pull Chromophore Structures J. Am. Chem. Soc.1996, 118,1504.
    [111]P. N. PRASAD, D. J. WILLIAMS, Introduction to Nonlinear Optical Effects in Molecules and Polymers; John Wiley & Sons:New York,1991.
    [112]D. M. BISHOP, B. CHAMPAGNE, B. KIRTMAN, J. Chem. Phys.1998. 109,9987.
    [113]F. A. BULAT, A. TORO-LABBE, B. CHAMPAGNE, B. KIRTMAN. W. YANG, J. Chem. Phys.2005,123,014309.
    [114]D. XIAO, F. A. BULAT, W. YANG, D. N. BERATAN, A Donor-Nanotube Paradigm for Nonlinear Optical Materials Nano Lett. 2008,8,2814.
    [115]B. A. REINHARDT, L. L. BROTT, S. J. CLARSON, A. G. DILLARD, J. C. BHATT, R. KANNAN, L. YUAN, G. S. HE, P. N. PRASAD, Highly Active Two-Photon Dyes:Design, Synthesis, and Characterization toward Application Chem. Mater.1998,10,1863.
    [116]M. NAKANO, H. NAGAI, H. FUKUI, K. YONEDA, R. KISHI, H. TAKAHASHI, A. SHIMIZU, T. KUBO, K. KAMADA, K. OHTA, et al. Theoretical study of third-order nonlinear optical properties in square nanographenes with open-shell singlet ground states Chem. Phys. Lett. 2008,467,120.
    [117]H. NAGAI, M. NAKANO, K. YONEDA, H. FUKUI, T. MINAMI, S. BONESS, R. KISHI, H. TAKAHASHI, A. SHIMIZU, T. KUBO, K. KAMADA, K. OHTA, et al. Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes:Edge shape effect Chem. Phys. Lett.2009,477,355.
    [118]K. YONEDA, M. NAKANO, R. KISHI, H. TAKAHASHI, A. SHIMIZU. et al. Third-order nonlinear optical properties of trigonal, rhombic and bow-tie graphene nanoflakes with strong structural dependence of diradical character Chem. Phys. Lett.2009.480.278.
    [119]T. WASSMANN. A. P. SEITSONEN, A. MARCO SAITTA. M. LAZZERI, F. MAURI. Clar's Theory.π-Electron Distribution. and Geometry of Graphene Nanoribbons J. Am. Chem. Soc.2010,132,3440.
    [120]W. CHEN, Z. R. LI. D. WU. R. Y. LI. C. C. SUN. Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom J. Phys. Chem. B 2005,109,601.
    [121](a) M. J. Frisch, G. W. Trucks. H. B. Schlegel, G. E. Scuseria. M. A. Robb. J. R. Cheeseman. J. A. Montgomery Jr.. T. Vreven. K. N. Kudin. J. C. Burant. J. M. Millam. S. S. Iyengar, J. Tomasi, V. Barone. B. Mennucci, M. Cossi. G. Scalmani. N. Rega, G. A. Petersson. H. Nakatsuji. M. Hada. M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima. Y. Honda, O. Kitao. H. Nakai. M. Klene, X. Li. J. E. Knox. H. P. Hratchian, J. B. Cross. C. Adamo, J. Jaramillo. R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin. R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma. G. A. Voth. P. Salvador, J. J. Dannenberg. G. Zakrzewski. S. Dapprich, A. D. Daniels. M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari. J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski. B. B. Stefanov. G. Liu, A. Liashenko, P. Piskorz, I. Komaromi. R. L. Martin, D. J. Fox, T. Keith. M. A. Al-Laham, C. Y. Peng, A. Nanayakkara. M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen. M. W. Wong, C. Gonzalez. J. A. Pople, Gaussian, Inc., Pittsburgh, PA,2003. (b) M. J. Frisch, G. W. Trucks, H. B. Schlegel. G. E. Scuseria, M. A. Robb. J. R. Cheeseman. G. Scalmani, V. Barone. B. Mennucci. G. A. Petersson. H. Nakatsuji. M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino. G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara. K. Toyota. R. Fukuda. J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai. T. Vreven. J. A. Montgomery, Jr.. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd. E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi. J. Normand, K. Raghavachari. A. Rendell, J. C. Burant. S. S. Iyengar, J. Tomasi, M. Cossi. N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin. R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin. K. Morokuma. V. G. Zakrzewski. G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz. J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.:Wallingford, CT,2009.
    [122]L.-T. CHENG, W. TAM. S. H. STEVENSON, G. R. MERIDITH, G. RIKKEN, S. R. MARDER, Experimental investigations of organic molecular nonlinear optical polarizabilities.1. Methods and results on benzene and stilbene derivatives J. Phys. Chem.1991,95,10631.
    [123]B. CHAMPAGNE, EA. PERPETE. AND D JACQUEMIN., Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push-Pull π-Conjugated Systems J. Phys. Chem. A 2000,104.4755.
    [124]J. L. OUDAR, D. S. CHEMLA, Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment J. Chem. Phys.1977,66,2664.
    [125]J. L. OUDAR, Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds J. Chem. Phys.1977,67, 446.
    [126]Y. ZHAO, D. G. TRUHLAR, Density Functional for Spectroscopy:No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States J. Phys. Chem. A 2006,110,13126.
    [127]M. M. MESTECHKIN; KLIMKO, G. T. Photoelectron spectra of fullerenes C60, C70, C76, C80. J. Molecular. Structure 1995.348.401-404.
    [128]D. F. EATON; Nonlinear Optical Materials Science 1991,253,281.
    [129]D. J. WILLIAMS.; ED. Nonlinear Optical Properties of Organic Molecules and Polymeric Materials:ACS SvmDosium Series 233. American Chemic& Society:Washington, DC; 1984.
    [130]W. D. CHENG; IANG, K. H.; PANDEY. R.; PERNISZ. U. C. Calculations of Linear and Nonlinear Optical Properties of H-Silsesquioxanes J. Phys. Chem. B 2000,104,6737.
    [131]M. ICHIDA; SOHDA. T.. AND NAKAMURA. A., Third-Order Nonlinear Optical Properties of C60 CT Complexes with Aromatic Amines J. Phys. Chem. B 2000.104.7082.
    [132]K. HOLD; PAWLOWSKI, F.; J(?)RGENSEN P., AND HATTIG. C. Calculation of frequency-dependent polarizabilities using the approximate coupled-cluster triples model CC3 J. Chem. Phys.2003,118,1292
    [133]C. HATTIG; LARSEN, H.; OLSEN, J.; J(?)RGENSEN, P.; KOCH, H.; FEMANDEZ. B., AND RIZZO, A., The effect of intermolecular interactions on the electric properties of helium and argon. Ⅰ. Ab initio calculation of the interaction induced polarizability and hyperpolarizability in He2 and Ar2 J. Chem. Phys 1999, 111,10099.
    [134]R. HORIKOSHI; NAMBU. C., AND MOCHIDA, T., Metal-Centered Ferrocene Clusters from 5-Ferrocenylpyrimidine and Ferrocenylpyrazine Inorg. Chem.2003.42,6868.
    [135]N.J. LONG; AND C.K. WILLIAMS; Angew. Chem. Int. edit 2003,42, 2586.
    [136]D. P. SHELTON; RICE, J. E., Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase Chem. Rev,1994,94.3.
    [137]X. YANG; DOU, X.; ROUHANIPOUR, A.; ZHI. L.; RADER. H. J.; MULLEN, K. Two-Dimensional Graphene Nanoribbons J. Am. Chem. Soc. 2008,130,4216.
    [138]M. EZAWA; Metallic graphene nanodisks:Electronic and magnetic properties Phys. Rev. B 2007.76,245415.
    [139]WANG, W. L.; MENG, S.; KAXIRAS, E. Graphene NanoFlakes with Large Spin Nano. Lett.2008,8.241-245.
    [140]A. D. GUCLU; POTASZ, P.; VOZNYY, O.; KORKUSINSKI. M.; HAWRYLAK, P. Magnetism and Correlations in Fractionally Filled Degenerate Shells of Graphene Quantum Dots Phys. Rev. Lett.2009.103, 246805.
    [141]WANG, W. L.; YAZYEV, O. V.; MENG, S.; KAXIRAS, E. Topological Frustration in Graphene Nanoflakes:Magnetic Order and Spin Logic Devices Phys. Rev. Lett.2009,102 157201.
    [142]P. RECHER; TRAUZETTEL, B. Nanotechnology 2010,21,302001.
    [143]S. S. YU; ZHENG, W.T.; WANG, C.; JIANG Q.Nitrogen/Boron Doping Position Dependence of the Electronic Properties of a Triangular Graphene ACS nano 2010,4,7619.
    [144]Y. TAWADA; TSUNEDA, T.; YANAGISAWA, S.; YANAI, T.;HIRAO, K. A long-range-corrected time-dependent density functional theory J. Chem. Phys.2004,120,8425.
    [145]T. YANAI; TEW, D. P.; HANDY, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett.2004,393,51.
    [146]M. J. G. PEACH; HELGAKER, T.; SALEK, P.; KEAL. T. W.; LUTNAES. O. B.; TOZER, D. J.; HANDY, N. C. Assessment of a Coulomb-attenuated exchange-correlation energy functional Phys. Chem. Chem. Phys.2006.8,558.
    [147]R. KOBAYASHI; AMOS, R. D. The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin-bacteriochlorin complex Chem. Phys. Lett.2006,420.106.
    [148]Z. L. CAI; CROSSLEY. M. J.; REIMERS. J. R.; KOBAYASHI. R.; AMOS. R. D. Density Functional Theory for Charge Transfer:The Nature of the N-Bands of Porphyrins and Chlorophylls Revealed through CAM-B3LYP, CASPT2, and SAC-CI Calculations J. Phys. Chem. B 2006, 110.15624.
    [149]Z. J. ZHOU; X. P. LI; MA F. LIU Z.B. LI Z.R.:HUANG X.R.; AND SUN C.C.; Exceptionally Large Second-Order Nonlinear Optical Response in Donor-Graphene Nanoribbon-Acceptor Systems. Chem. Eur. J.2011 17, 2414-2419
    [150]W. CHEN; LI Z. R., WU D., LI R. Y. SUN C. C., Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom J. Phys. Chem. B.2005,109,601.
    [151]H. L. XU; LI Z. R.. WU D.. WANG B. Q., LI Y. GU F. L., AOKI Y.. Structures and Large NLO Responses of New Electrides:Li-Doped Fluorocarbon Chain J. Am. Chem. Soc.,2007.129,2967.
    [152]X. Y. SUN; LI Z. R.. WU D., SUN C. C., TANG A. C., Structures and NLO properties of molecular clusters with alkali metal atom Chem. J. Chinese Universities 2007.28(6) 1110.
    [153]H. L. XU; LI Z. R.. WU D.. CHEN W., YU G. T.. Wang Q.. Whether the Coordination Number Influence Dependence of Static First Hyperpolarizability on the Atomic Number of Alkali Metal Chem. J. Chinese Universities 2009.30(4) 786.
    [154]W. CHEN; LI Z. R., WU D., LI Y., SUN C. C. GU F. L., The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole J. Am. Chem. Soc.,2005.127.10977.
    [155]W. CHEN; LI Z. R., WU D., LI Y., SUN C. C., GU F. L., AOKI Y., Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M-(M) Li, Na, and K):Alkali Anion Atomic Number Dependence J. Am. Chem. Soc., 2006,128,1072.
    [156]E. D. GLENDENING. A. E. REED, J. E. Carpenter. F. Weinhold, NBO Version 3.1
    [157]H. L. XU; LI Z. R., WU D., MA F., AND LI ZJ., Lithiation and Li-Doped Effects of [5]Cyclacene on the Static First Hyperpolarizability J. Phys. Chem. C,2009,113,4984.
    [158]F. MA; Z. R. LI; XU H. L., LI ZJ., LI ZS., GU F. L., AOKI Y., Lithium Salt Electride with an Excess Electron Pair A Class of Nonlinear Optical Molecules for Extraordinary First Hyperpolarizability J. Phys. Chem. A. 2008,112,11462.
    [159]P. O. LOWDIN; Proton Tunneling in DNA and its Biological Implications Rev. Mod. Phys.1963,35,724.
    [160]P. O. LOWDIN; Adv. Quantum Chem.1965,2,213.
    [161]I. DABKOWSKA; RAK, J.; GUTOWSKI, M. DNA strand breaks induced by concerted interaction of H radicals and low-energy electrons-A computational study on the nucleotide of cytosine Eur. Phys. J. D 2005, 35,429.
    [162]J. GU; WANG, J.; RAK, J.; LESZCZYNSKI, J. Findings on the electron-attachment-induced abasic site in a DNA double helix Angew. Chem., Int. Ed.2007,46,3479.
    [163]A. L. SOBOLEWSKI; DOMCKE, W. Ab initio studies on the photophysics of the guanine-cytosine base pair Phys. Chem. Chem. Phys. 2004,6,2763.
    [164]A. L. SOBOLEWSKI; DOMCKE, W.; HATTIG, C. Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs:The role of electron-driven proton-transfer processes Proc. Natl. Acad. Sci. U.S.A.2005.102.17903.
    [165]S. PERUN:SOBOLEWSKI. A. L.; DOMCKE. W. Role of Electron-Driven Proton-Transfer Processes in the Excited-State Deactivation of the Adenine-Thymine Base Pair J. Phys. Chem. A 2006. 110,9031.
    [166]N. K. SCHWALB:TEMPS. F. Ultrafast Electronic Relaxation in Guanosine is Promoted by Hydrogen Bonding with Cytidine J. Am. Chem. Soc.2007.129.9272.
    [167]H. A. WAGENKNECHT; Reductive electron transfer and transport of excess electrons in DNA Angew. Chem., Int. Ed.2003,42.2454.
    [168]T. ITO; ROKITA, S. E. Criteria for efficient transport of excess electrons in DNA Angew. Chem., Int. Ed.2004.43,1839.
    [169]A. K. GHOSH; SCHUSTER. G. B. Role of the Guanine N1 Imino Proton in the Migration and Reaction of Radical Cations in DNA Oligomers J. Am. Chem. Soc.2006.128,4172.
    [170]H. Y. CHEN; KAO. C. L. HSU. S. C. N. Proton Transfer in Guanine-Cytosine Radical Anion Embedded in B-Form DNA J. Am. Chem. Soc.2009,131.15930.
    [171]K. L. HSUEH; WESTLER, W. M. MARKLEY, J. L. NMR Investigations of the Rieske Protein from Thermus thermophilus Support a Coupled Proton and Electron Transfer Mechanism J. Am. Chem. Soc.2010. 132.7908.
    [172]D. K. CHAKRAVORTY;HAMMES-SCHIFFER. S. Impact of Mutation on Proton Transfer Reactions in Ketosteroid Isomerase:Insights from Molecular Dynamics Simulations J. Am. Chem. Soc.2010,132, 7549.
    [173]E. J. GOODWIN; HOWARD, N. W.; LEGON, A. C. The rotational spectrum of 15N-ammonium chloride vapour:characterisation of the hydrogen-bonded dimer H3N...HCl Chem. Phys. Lett.1986,131,319.
    [174]N. W. HOWARD; LEGON, A. C. Nature, geometry, and binding strength of the ammonia-hydrogen chloride dimer determined from the rotational spectrum of ammonium chloride vapor J. Chem. Phys.1988,88, 4694.
    [175]R. A. CAZAR; A. J. JAMKA; TAO, F. M. Proton transfer reaction of hydrogen chloride with ammonia:is it possible in the gas phase?Chem. Phys. Lett.1998,287,549.
    [176]R. A. CAZAR; A. J. JAMKA; TAO. F. M. Ab Initio Investigation of Proton Transfer in Ammonia-Hydrogen Chloride and the Effect of Water Molecules in the Gas Phase J. Phys. Chem. A 1998,102.5117.
    [177]F. M. TAO; Direct formation of solid ammonium chloride particles from HCl and NH3 vapors J. Chem. Phys.1999,110,11121.
    [178]B. CHERNG; F. M. TAO; Formation of ammonium halide particles from pure ammonia and hydrogen halide gases:A theoretical study on small molecular clusters (NH3-HX)n (=1,2,4; X=F, Cl, Br) J. Chem. Phys.2001,114,1720.
    [179]Z. LATAJKA; S. SAKAI; MOROKUMA, K.; RATAJCZAK, H. Possible gas-phase ion pairs in amine-HCl complexes. An ab initio theoretical study Chem. Phys. Lett.1984,110,464.
    [180]A. BRCIZ; A. KARPFEN; LISCHKA, H.; SCHUSTER, P. A candidate for an ion pair in the vapor phase:Proton transfer in complexes R3N-HX Chem. Phys.1984,89,337.
    [181]P. G. JASIEN; W. STEVENS; Theoretical studies of potential gas-phase charge-transfer complexes:NH3+HX (X=C1, Br, I) J. Chem. Phys. Lett.1986,130,127.
    [182]C. CHIPOT; D. RINALDI; RIVAIL. J.-L. Intramolecular electron correlation in the self-consistent reaction field model of solvation. A MP2/6-31G** ab initio study of the NH3---HCl complex Chem. Phys. Lett. 1992.191,287.
    [183]G. B. BACSKAY; Mol. Phys.1992,77,61.
    [184]G. CORONGIU; D. ESTRIN; MURGIA. G.; PAGLIERI. L.; PISANI. L.; SUZZI VALLI, G.; WATTS. J. D.; CLEMENTI, E. Revisiting the potential energy surface for [H3N…HC1]:An ab initio and density functional theory investigation Int. J. Quantum Chem.1996.59.119.
    [185]A. J. BARNES:T. R. BEECH; MIELKE. Z. J. Chem. Soc., Faraday Trans,1980.80,455.
    [186]N. A. ZVEREVA; Ab initio study of H2O-HCl (1:1,1:2.2:1) complexes J. Struct.Chem.2001.42,730.
    [187]Z. LATAJKA; S. SCHEINER; Structure, energetics, and vibrational spectrum of H2O-HCl J. Chem. Phys.1987,87,5928.
    [188]R. J. LI; Z. R. LI; WU, D.; HAO, X. Y.; LI. Y.; WANG, B. Q.; TAO, F. M.; SUN, C. C. Density functional study of structures and interaction hyperpolarizabilities of NH3-HCl-(H2O)n (n=0-4) clusters Chem. Phys. Lett.2003.372,893.
    [189]R. J. LI:Z. R. LI; WU, D.; CHEN. W.; LI. Y.; WANG, B. Q.; SUN. C. C. Proton Transfer of NH3-HCl Catalyzed by Only One Molecule J. Phys. Chem. A 2005.109.629.
    [190]M. BICZYSKO; Z. LATAJKA; The influence of water molecules on the proton position in H3N-HX (X=F. Cl. Br) complexes Chem. Phys. Lett. 1999,313,366.
    [191]S. ODDE; B. J. MHIN; S. LEE; H. M. LEE; K. S. KIM; Dissociation chemistry of hydrogen halides in water J. Chem. Phys.2004,120.9524.
    [192]O. I. ARILLO-FLORES; M. F. RUIZ-LOPEZ; M. I. BERNAL-URUCHURTU; Can semi-empirical models describe HCI dissociation in water? Theor. Chem. Acc 2007,118,425.
    [193]S. N. EUSTIS; D. RADISIC; K. H. BOWEN; R. A. HARANCZYK; M. HARANCZYK; G. K. SCHENTER; M. GUTOWSKI; Electron-Driven Acid-Base Chemistry:Proton Transfer from Hydrogen Chloride to Ammonia Science.2008,319,936.
    [194]H. M. LEE; K. S. KIM; Hydrogen detachment of the hydrated hydrohalogen acids upon attaching an excess electron J. Chem. Phys.2008, 128,104310.
    [195]F. MA; Z. R. LI; H. L. XU; Z. J. LI; D. WU; Z. S. LI; F. L. GU; Proton Transfer in the Complex H3N HCl Catalyzed by Encapsulation into a C60 Cage ChemPhysChem 2009,10,1112.
    [196]Z. CAO; Y. X. PENG; T. Y. YAN; S. LI; A. L. LI; G. A. VOTH; Mechanism of Fast Proton Transport along One-Dimensional Water Chains Confined in Carbon Nanotubes J. Am. Chem. Soc.2010,132,11395.
    [197]C. D. DIMITRAKOPOULOS; D. J. MASCARO; Organic thin-film transistors:A review of recent advances IBM J. Res. Dev.2001,45,11.
    [198]R. H. BAUGHMAN; A. A. ZAKHIDOV; W. A. DE HEER; Carbon Nanotubes--the Route Toward Applications Science,2002,297,787.
    [199]Y. SON; M. L. COHEN; S. G. LOUIE; Half-metallic graphene nanoribbons Nature 2006,444,347.
    [200]S. DUTTA; A. K. MANNA; S. K. PATI; Intrinsic Half-Metallicity in Modified Graphene Nanoribbons Phys. Rev. Lett.2009,102,096601.
    [201]A. H. CASTRO NETO; F. GUINEA; N. M. R. PERES; K. S. NOVOSELOV; A. K. GEIM; The electronic properties of graphene Rev. Mod. Phys.2009,81,109.
    [202]J. ZYSS, I. LEDOUX, Nonlinear optics in multipolar media:theory and experiments Chem. Rev.94 (1994) 77.
    [203]D.M. BURLAND. Second-order nonlinearity in poled-polymer systems Chem. Rev.94 (1994) 31.
    [204]D.P. SHELTON, J.E. RICE. Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase Chem. Rev.94 (1994) 3.
    [205]B.L. HAMMOND. J.E. RICE. Ab initio determination of the nonlinear optical properties of HCI J. Chem. Phys.97 (1992) 1138.
    [206]J. GUAN, P. DUFFY, J. T. CARTER, D.P. CHONG, K.C. CASIDA, M.E. CASIDA. M. WRINN. Comparison of local-density and Hartree-Fock calculations of molecular polarizabilities and hyperpolarizabilities J. Chem. Phys.98 (1993) 4753.
    [207]H. SEKINO. R.J. BARTLETT. Molecular hyperpolarizabilities J. Chem. Phys.98 (1993) 3022.
    [208]P. ROZYCZKO. R.J. BARTLETT. Frequency dependent equation-of-motion coupled cluster hyperpolarizabilities:Resolution of the discrepancy between theory and experiment for HF?J. Chem. Phys. 107(1997) 10823.
    [209]M.G. PAPADOPOULOS, J. WAITE. A.D. BUCKINGHAM, Rules for developing basis sets for the accurate computation of hyperpolarizabilities: Applications to He. H2. Be. Ne. F-. and HF J. Chem. Phys.102 (1995) 371.
    [210]G. MAROULIS, Hyperpolarizability of H2O revisited:accurate estimate of the basis set limit and the size of electron correlation effects Chem. Phys. Lett.289 (1998) 403.
    [211]E.A. DONLEY. D.P. SHELTON. Hyperpolarizabilities measured for interacting molecular pairs Chem. Phys. Lett.215 (1993) 156.
    [212]S. YOKOYAMA. T. NAKAHAMA, A. OTOMO, S. MASHIKO, Intermolecular Coupling Enhancement of the Molecular Hyperpolarizability in Multichromophoric Dipolar Dendrons J. Am. Chem. Soc.122 (2000) 3174.
    [213]Y. OKUNO, S. YOKOYAMA, S. MASHIKO, Interaction between Monomeric Units of Donor-Acceptor-Functionalized Azobenzene Dendrimers:Effects on Macroscopic Configuration and First Hyperpolarizability J. Phys. Chem. B 105 (2001) 2163.
    [214]M.G. PAPADOPOULOS, J. WAITE, On the interaction hyperpolarisability of He2, He3 and Ne2. An Ab initio study. Chem. Phys. Lett.135 (1987) 361.
    [215]B. FEMANDEZ, C. HATTIG, H. KOCH, A. RIZZO, Ab initio calculation of the frequency-dependent interaction induced hyperpolarizability of Ar2 J. Chem. Phys.110 (1999) 2872.
    [216]C. HATTIG, H. LARSEN, J. OLSEN, P. J RGENSEN, H. KOCH, B. FEMANDEZ, A. RIZZO, the effect of intermolecular interactions on the electric properties of helium and argon. I. Ab initio calculation of the interaction induced polarizability and hyperpolarizability in He2 and Ar2 J. Chem. Phys. 111 (1999) 10099.
    [217]H. KOCH, C. HATTIG, B. FEMANDEZ, A. RIZZO, the effect of intermolecular interactions on the electric properties of helium and argon. II. The dielectric, refractivity, Kerr, and hyperpolarizability second virial coefficients J. Chem. Phys. 111 (1999) 10108.
    [218]G. MAROULIS, Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules J. Chem. Phys.113 (2000) 1813.
    [219]G. MAROULIS, Computational Aspects of Interaction Hyperpolarizability Calculations. A Study on H2…H2, Ne…HF, Ne…FH. He…He, Ne…Ne, Ar…Ar, and Kr…Kr J. Phys. Chem. A 104 (2000) 4772.
    [220]T. BANCEWICZ, Interaction-induced pair hyperpolarizabilities by spherical irreducible tensors J. Chem. Phys. 111 (1999) 7440.
    [221]B. KIRTMAN. C.E. DYKSTRA. B. CHAMPAGNE. Major intermolecular effects on nonlinear electrical response in a hexatriene model of solid state polyacetylene. Chem. Phys. Lett.305 (1999) 132.
    [222]A. D. BUCKINGHAM, E. P. CONCANNON. I. D. HANDS. Hyperpolarizability of Interacting Atoms J. Phys. Chem.98 (1994) 10455.
    [223](a) A. E. REED; R. B. WEINSTOCK;F. WEINHOLD; Natural population analysis J. Chem. Phys.1985.83,735. (b) A. E. REED;R. B. WEINSTOCK; F. WEINHOLD; Natural localized molecular orbitals J. Chem. Phys.1985,83,1736. (c) A. E. REED; L. A. CURITSS; F. WEINHOLD; Intermolecular interactions from a natural bond orbital. donor-acceptor viewpoint Chem. Rev.1988,88.899.
    [224]S. SCHEINER. Hydrogen bonding; A Theoretical Perspective (Oxford University Press. New York.1997).
    [225]A. C. LEGON. D. J. MILLEN. Systematic effect of d substitution on hydrogen-bond lengths in gas-phase dimers B...HX and a model for its interpretation Chem. Phys. Lett.147.484 (1988).
    [226]S. SCHEINER. S. J. GRABOWSKI. T. KAR. Influence of Hybridization and Substitution on the Properties of the CH…O Hydrogen Bond J. Phys. Chem. A 105,10607 (2001).
    [227]M. DOMAGALA. S. J. GRABOWSKI. C-H…N and C-H…S Hydrogen Bonds-Influence of Hybridization on Their Strength J. Phys. Chem. A 109,5683 (2005).
    [228]R. VISWANATHAN, A. ASENSIO, J. J. DANNENBERG, Cooperative Hydrogen-Bonding in Models of Antiparallel β-Sheets J. Phys. Chem. A 108,9205 (2004).
    [229]B. Q. WANG. Z. R. LI, D. WU. X. Y. HAO, R. J. LI. C. C. SUN, Single-electron hydrogen bonds in the methyl radical complexes H3C...HF and H3C...HCCH:an ab initio study Chem. Phys. Lett.375,91 (2003).
    [230]E. Y. MISOCHKO. V. A. BENDERSKII, A. U. GOLDSCHLEGER, A. V. AKIMOV, A. F. SHESTAKOV, Formation of the CH3-HF Complex in Reaction of Thermal F Atoms with CH4 in Solid Ar J. Am. Chem. Soc.117. 11997(1995).
    [231]H. TACHIKAWA, J. Phys. Chem. A A Direct Ab Initio Dynamics Study on the Finite Temperature Effects on the Hyperfine Coupling Constant of a Weakly Bonded Complex 102,7065 (1998).
    [232]Y. H. CHEN, E. TSCHUIKOW-ROUX, A. RAUK, Intermediate complexes and transition structure for the reactions methyl+hydrogen halide.fwdarw. methane+halogen:application of G1 theory J. Phys. Chem.95,9832 (1991).
    [233]M. IGARASHIA, T. ISHIBASHIA, H. TACHIKAWA, A direct ab initio molecular dynamics study of the finite temperature effects on the hyperfine coupling constant of methyl radical-water complexes J. Mol. Struct. Theochem.594,61 (2002).
    [234]B. S. JURSIC. Hybrid density functional theory study of proton transfer between methane and methyl radical Chem. Phys. Lett.244,263 (1995).
    [235]S. HAMMERUM, Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence J. Am. Chem. Soc.131,8627 (2009).
    [236]Q. Z. LI. X. L. AN, F. LUAN, W. Z. LI, B. A. GONG, J. B. CHENG, J. Z. SUN, Cooperativity between two types of hydrogen bond in H3C-HCN-HCN and H3C-HNC-HNC complexes J. Chem. Phys.128, 154102-1 (2008).
    [237]J. W. WHITTAKER, Free Radical Catalysis by Galactose Oxidase Chem. Rev,103,2347(2003).
    [238]M. LUCARINI, V. MUGNAINI, G. F. PEDULLI, M. GUERRA, Hydrogen-Bonding Effects on the Properties of Phenoxyl Radicals. An EPR, Kinetic, and Computational Study J. Am. Chem. Soc.125,8318 (2003).
    [239]J. J. RUSSELL, J. A. SEETULA, R. S. TIMONEN. D. GUTMAN, D. F. NAVA. Kinetics and thermochemistry of the tert-butyl radical. Study of the equilibrium tert-C4H9+HBr.dblharw. iso-C4H10+Br J. Am. Chem. Soc. 110.3084 (1988).
    [240]P. METRANGOLO, F. MEYER. T. PILATI. G. RESNATI, G.TERRANEO, Halogen bonding in supramolecular chemistry Angew. Chem.. Int. Ed.47,6114 (2008).
    [241]P. METRANGOLO. G. RESNATI, Halogen bonding:A paradigm in supramolecular chemistry Chem. Eur. J.7,2511 (2001).
    [242]M. D. GARCIIA. V. BLANCO. C. PLATAS-IGLESIAS. C. PEINADOR. J. M. QUINTELA, Interplay between Halogen/Hydrogen Bonding and Electrostatic Interactions in 1,1'-Bis(4-iodobenzyl)-4,4 '-bipyridine-1,1'-diium Salts Growth. Des.9.5009 (2009).
    [243]A. R. VOTH, F. A. HAYS. P. S. HO, Biological Sciences-Biophysics Proc. Natl. Acad. Sci. USA 104,6188 (2007).
    [244]R. Y. LI. Z. R. LI, D. WU, Y. LI, W. CHEN, C. C. SUN, Study of π Halogen Bonds in Complexes C2H4-nFn-ClF (n=0-2) J. Phys. Chem. A 109,2608 (2005).
    [245]Q. Z. LI, Y. L. WANG. Z. B. LIU. W. Z. LI, J. B. CHENG, B. A. GONG, J. Z. SUN, An unconventional halogen bond with carbene as an electron donor:An ab initio study Chem. Phys. Lett.469,48 (2009).
    [246]Y. H. WANG, J. W. ZOU, Y. X. LU, Q. S. LU, H. Y. XU, Int. J. Quantum Chem.107,501 (2007).
    [247]K. BOUBEKEUR, J. L. SYSSA-MAGALE, P. PALVADEAU, B. SCHOLHORN, Tetrahedron Lett.47,1249 (2006).
    [248]Q. Z. LI, X. L. AN, B. A. GONG. J. B. CHENG, Non-additivity of methyl group in the single-electron halogen bond of CH3-BrH complex J. Mol. Struct:Theochem 866.11 (2008).
    [249]S. J. GRABOWSKI. E. BILEWICZ. Cooperativity halogen bonding effect-Ab initio calculations on H2CO...(ClF)n complexes Chem. Phys. Lett.427,51 (2006).
    [250]P. HOBZA, Z. HAVLAS. Blue-Shifting Hydrogen Bonds Chem. Rev. 100,4253 (2000).
    [251]W. Z. WANG. P. HOBZA, Origin of the X-Hal (Hal=C1, Br) Bond-Length Change in the Halogen-Bonded Complexes J. Phys. Chem. A 112,4114 (2008).
    [252]W. Z. WANG, N. B. WONG, W. X. ZHENG, A. M. TIAN, Theoretical Study on the Blueshifting Halogen Bond J. Phys. Chem. A 108,1799 (2004).
    [253]A. RAGHAVENDRA, E. ARUNAN, Unpaired and a Bond Electrons as H, Cl. and Li Bond Acceptors:An Anomalous One-Electron Blue-Shifting Chlorine Bond J. Phys. Chem. A 111,9699 (2007).
    [254]S. F. BOYS, F. BERNARDI, Mol. Phys.19,553 (1970).
    [255]E. D. GLENDENING, A. E. REED, J. E. CARPENTER, F. WEINHOLD, NBO Version 3.1
    [256]F. BIEGLER-KONIG, AIM2000, University of Applied Sciences, Bielefeld, Germany,2000.
    [257]R. TAYLOR, O. KENNARD, Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds J. Am. Chem. Soc.104,5063 (1982).
    [258]Q. Z. LI, G. S. WU, Z. W. YU, The Role of Methyl Groups in the Formation of Hydrogen Bond in DMSO-Methanol Mixtures J. Am. Chem. Soc.128,1438(2006).
    [259]Q. Z. LI, X. L. AN, F. LUAN, W. Z. LI, B. A. GONG, J. B. CHENG, J. Phys. Chem. A 112,3985 (2008).
    [260]J. W. ZOU, Y. J. JIANG, M. GUO, G. X HU, B. ZHANG, H. C. LIU. Q. S YU, Ab Initio Study of the Complexes of Halogen-Containing Molecules RX (X=Cl, Br, and I) and NH3:Towards Understanding the Nature of Halogen Bonding and the Electron-Accepting Propensities of Covalently Bonded Halogen Atoms [J]. Chem. Eur. J.2005,11:740.
    [261]Y. LI, D. WU. Z. R. LI. W. CHEN. C. C. SUN, Do single-electron lithium bonds exist? Prediction and characterization of the H3C-Li-Y,, Y=H, F. OH, CN, NC. and CCH…complexes J. Chem. Phys.125, 084317-1 (2006).
    [262]Q. Z. LI. Y. F. WANG. W. Z. LI, J. B. CHENG, B. A. GONG. J. Z. SUN, Prediction and characterization of the HMgH…LiX (X=H, OH, F, CCH, CN. and NC) complexes:a lithium-hydride lithium bond Phys. Chem. Chem. Phys.11,2402 (2009).
    [263]Q. Z. LI, H. Z. WANG, Z. B. LIU, W. Z. LI, J. B. CHENG, B. A. GONG, J. Z. SUN. Ab Initio Study of Lithium-Bonded Complexes with Carbene as an Electron Donor J. Phys. Chem. A 113,14156 (2009).
    [264]I. V. ALABUGIN. M. MANOHARAN, S. PEABODY, F. WEINHOLD, Electronic Basis of Improper Hydrogen Bonding:A Subtle Balance of Hyperconjugation and Rehybridization J. Am. Chem. Soc.125.5973 (2003).
    [265]Q. Z. LI, X. L. AN. B. A. GONG. J. B. CHENG. Cooperativity between OH…O and CH…O Hydrogen Bonds Involving Dimethyl Sulfoxide-H2O-H2O Complex J. Phys. Chem. A 111,10166 (2007).
    [266]R. RIVELINO. P. CHAUDHURI. S. CANUTO, Quantifying multiple-body interaction terms in H-bonded HCN chains with many-body perturbation/coupled-cluster theories J. Chem. Phys.118,10593 (2003).
    [267]U. KOCH. P. L. A. POPELIER, Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density J. Phys. Chem.99,9747 (1995).
    [268]P. L. A. POPELIER, Characterization of a Dihydrogen Bond on the Basis of the Electron Density J. Phys. Chem. A 102.1873 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700