武汉长江一级阶地铁深基坑渗流应力耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武汉地区深基坑事故中,九成以上是因为地下水控制失效造成的。其中,承压水含水层在长江一级阶地中普遍存在,且含水层厚度很大,承压水头很高,成为武汉地区深基坑工程的一大特点。针对武汉长江一级阶地地铁深基坑,研究其降水与开挖施工过程中引起的地面沉降以及基坑稳定等影响与变化规律具有重要的现实意义。
     (1)基于地下水渗流计算与三维比奥固结理论,对深基坑降水与开挖的流固耦合效应进行了分析,建立了渗流场与应力场耦合计算模型。并对三维快速拉格朗日有限差分程序FLAC3D的流固耦合计算模式进行了研究。(2)对武汉长江一级阶地地下水埋藏类型与其对深基坑危害特点作了总结与分析,重点研究了武汉长江一级阶地的承压水特征。利用FLAC3D对某竖井基坑施工过程进行了数值模拟,计算结果与监测结果吻合较好,验证了FLAC3D流固耦合模型和编程思路的合理性与正确性。(3)最后针对处于长江一级阶地的武汉市地铁四号线一期工程工业路车站,使用FLAC3D对其降水与开挖施工过程进行了渗流应力耦合模拟,分别对各种工况条件下的地表沉降、孔隙水压力特征、坑底隆起、动水压力等计算结果进行了研究,并对地下连续墙深度、承压水位变化影响、耦合与不耦合等情况进行了对比与分析。
     通过对上述计算结果进行研究与分析,获得了一些有意义的规律。其中,地表沉降形成了二次函数曲线分布形态的沉降凹槽,降水引起的沉降要比开挖引起的大;武汉长江一级阶地承压水水头高,在施工过程中坑底向上回弹隆起较大;地下连续墙以下渗流速度最大,容易发生渗透破坏,随着挡墙高度的增加,渗流路径加长,会导致水头损失的增加,渗流速度减小;武汉长江一级阶地承压水与江水有密切的水力联系,承压水头越高,降水引起的地表沉降越大;相较于不考虑流固耦合计算,考虑耦合的计算结果与工程实际规律更为吻合,能起到更好的预测与信息化施工
     论文成果在一定程度上弥补了对武汉长江一级阶地地貌条件下渗流场与地下水控制研究的不足。为该基坑施工过程中的防水止水与加固设计提供了理论依据,有益于信息化施工;并为今后类似的工程设计与施工提供了参考与借鉴。
One reason for 90% deep foundation pit incidents in Wuhan, was failure of controlling underground water. Among them, confined water aquifer is very common in the First Yangtze River's terrace, the aquifer is thick, and the water head is high, which is very typical in deep foundation ditch project of Wuhan. Therefore, studying on change law of land subsidence and foundation stability caused by precipitation and excavation is of important practical significance.
     The major works are as follows:(1) Based on groundwater seepage calculation and three dimensional Biot consolidation theory, fluid-solid coupling effect of precipitation and excavation about deep foundation pit is analyzed. Seepage field and stress field coupling calculation model is established. And the fluid-solid coupling calculation model by using FLAC3D was studied. (2) Groundwater type and disaster of First Yangtze River's terrace in Wuhan foundation are summarized and analyzed, and the confined water are studied mainly. Then the construction process of a shaft excavation are simulated by using FLAC3D, The numerical simulation results show good agreement with the monitoring data, which verify rationality of the FLAC3D fluid-solid coupling model and the programming ideas. (3) Finally, seepage-stress coupling simulation of Gongye station's precipitation and excavation is carried out with FLAC3D, and all the results of settlement, pore pressure, swell of pit bottom, hydrodynamic pressure are stydied. Then the affect of changes in diaphragm wall depth, confined water level, coupling or no coupling are compared.
     The results show that, Surface subsidence show a settlement groove of quadratic function curve, causing precipitation than the settlement due to excavation of a large; confined water head is high at Wuhan First Yangtze River's terrace, swell of pit bottom is large; Seepage velocity is largest under the diaphragm wall, prone to infiltration and sabotage, as the wall height increases, longer flow paths, will lead to increased head loss and flow rate decreases; Confined water of Wuhan First Yangtze River's terrace is closely associated with the river, confined water head is higher, surface subsidence is larger; Compared to no coupling, coupling the results considering the actual rule is more consistent with the project, can play a better prediction and information for construction.
     This paper makes up for preliminary study on seepage and groundwater control of Wuhan First Yangtze River's terrace. It provides a theoretical basis for waterproof and reinforcement design in foundation construction process, and it provides an experience and reference for design and construction of similar projects in future.
引文
[1]Terzaghi K., Peck R.B., Soil mechanics in engineering practice.2nd ed., John Wiley and Sons, New York,1967
    [2]Pio-Go Hsieh, Chang-Yu Ou, Shape of ground surface settlement profiles caused by excavation. Can. Geotech. J.,1998.Vol35.(6).1004~1017
    [3]Peck R.B., Deep excavation and tunneling in soft ground. In Proc. of 7th Int. Conf. on Soil Mechanics and Founding Engineering, MEXICO,1969.225~290
    [4]Clough G.W., O'Rourke T.D., Construction-induced movements of in situ walls. In Proc. of Design and Performance of Earth Retaining Structures, ASCE Special Conf., New York,1990.439~470
    [5]Ou C.Y., Hsieh P.G., and Chiou D.C., Characteristics of ground surface settlement during excavation. Can. Geotech. J.,1993.Vol30.(5).758~767
    [6]Ou C.Y., Liao J.T., Lin H.D., Performance of diaphragm wall constructed using top-down method. J. of Geotechnical and Geoenvironmental Engineering, ASCE,1998.Vol124.(9).987~1008
    [7]Nicholson D.P., The design and performance of the retaining wall at Newton Station. In Proc. of Singapore Mass Rapid Transit Conf., Singapore,147~154
    [8]侯学渊,陈永福.深基坑开挖引起周围地基土沉陷的计算[J].岩土工程师,1989.1.(1).1~13
    [9]唐孟雄,赵锡宏.基坑开挖挡土墙的有限元模型[J].同济大学学报,1998.26.(5).516~521
    [10]刘建航.软土基坑工程中的时空效应理论与实践[J].地基处理,1999.10.(4).3~14
    [11]俞建霖.基坑性状的三维数值分析研究[J].建筑结构学报,2002.23.(4).65~70
    [12]杨林德,时蓓玲.基坑变形及其安全性的随机预测[J].同济大学学报,2002.30.(4).403~408
    [13]施成华,彭立敏.基坑开挖及降水引起的地表沉降预测[J].土木工程学报,2006.39.(5).117~121
    [14]王建秀,吴林高等.地铁车站深基坑降水诱发沉降机制及计算方法[J].岩石力学与工程学报,2009.28.(5).1010~1019
    [15]Bowles J.E., Foundation analysis and design.4th ed. Mcgraw-Hill Book Company, New York,1988
    [16]Caspe M.S., Surface settlement adjacent to braced open cuts. J. of the Soil Mechanics and Foundations Division, ASCE,1966.Vol92.51~59
    [17]Nicholson D.P., The design and performance of the retaining wall at Newton Station. In Proc. of Singapore Mass Rapid Transit Conf., Singapore,147~154
    [18]Seok J.W. et al, Evaluation of ground and building settlement near braced excavation sites by model testing. Can. Geotech. J.,2001.Vol38.(5).1127~1133
    [19]张勇,赵云云.基坑降水引起地面沉降的实时预测[J].岩土力学,2008.29.(6).1593~1596
    [20]骆祖江,刘金宝,李朗.第四纪松散沉积层地下水疏降与地而沉降三维全耦合数值模拟[J].岩土工程学报,2008.30.(2).193~198
    [21]谬俊发.考虑含水层组三维抽水压密变形的粘弹性越流及地面沉降研究[D].博士学位论文,上海,同济大学,1993
    [22]张荣堂.宁波市地面沉降机制研究和物理数学模型的建立[D].硕士学位论文,武汉:中国地质大学,1988
    [23]张优闯,李少云,郭志成.基坑开挖降水引起周围地表沉降分析[J].建筑科学,1997(1)
    [24]胡钧,杨熙章.上海人民大舞台商厦深基坑监测与分析[J].同济大学学报。1997.25(5).604~608
    [25]王怀忠.宝钢1580热轧漩流流池施工力学分析[J].工程力学(增刊),2001.527~531
    [26]刘祖德.武汉高层建筑深基坑地下水防治的工程实践中的若干问题[J].岩土工程技术,
    1997.4.
    [27]孙淑贤.考虑渗流力的基坑涌砂分析[J].工程勘查,199812.32~39
    [28]许光森.渗透系数的简易计算方法[J].东北水力水电,1992.12.21~23
    [29]李洁,沈少波.高层建筑深基坑降水研究[J].工程力学(增刊),1998
    [30]王智勇,周建群等.深基坑降水对周边环境影响分析[J].地下工程与隧道,2000.3
    [31]WANG J X, HU L S, WU L G, et al. Hydraulic barrier function of the underground continuous concrete wall in the pit of subway station and its optimization[J]. Environmental Geology, 2009.57.(2).447~453
    [32]陈健.某临江超深基坑工程降水计算与设计分析[J].地下空间与工程学报2009.12.(5).1355~1360
    [33]刘国彬,贾付波.基坑回弹时间效应的试验研究[J].岩石力学与工程学报,2007.26.(zl)13040~3004
    [34]吴林高,刘陕南,李恒仁.工程降水设计施工与基坑渗流理论[M].北京:人民交通出版社,2003.
    [35]贾彩虹,王翔,王媛.考虑渗流-应力耦合作用的基坑变形研究[J].武汉理工大学学报,2010.32.(1).119~122
    [36]李筱艳.基于位移反分析的深基坑渗流场与应力场完全耦合分析[J].岩石力学与工程学报,2004-23.(4).1269~1274
    [37]张延军,王恩志等.非饱和土中的流固耦合研究[J],岩土力学.2004.25.(6).999~1004
    [38]李培超.多孔介质流固耦合渗流数学模型研究[J].岩石力学与工程学报,2004.23(16).2842~2842
    [39]Long Michael, Database for retaining wall and ground movements due to deep excavations. J. of Geotechnical and Geoenvironmental Engineering.2001.Vol.127.(3).203~224
    [40]Su S.F., Liao H.J., Lin Y.H., Base stability of deep excavation in anisotropic soft clay. J. of Geotechnical and Geoenvironmental Engineering,1998.Vol124.(9).809~819
    [41]Hamdy Faheem et al, Two-dimensional base stability of excavations in soft soils using FEM. Computers and Geotechnics,2003.Vol30.(2).141~163
    [41]刘学增,朱合华.考虑动态施工过程的岩土介质横观各向同性粘弹性反分析及其工程应用[J].岩土工程学报,2002.24.(1).89~92
    [42]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑出版社,1997.
    [43]王翔.南京地铁珠江路站基坑开挖支护设计[D].南京:河海大学,2004.
    [44]姜忻良,宗金辉.基坑开挖工程中渗流场的三维有限元分析[J],岩土工程学报,2006.28.(5).564~568
    [45]吴波,刘维宁.隧道降水施工地表沉降的渗流-应力耦合分析[J],岩石力学与工程学报,2006.25.(2).2980~2984
    [47]崔亚莉,邵景力,谢振华.基于MODFLOW的地面沉降模型研究[J].岩土力学,2008.(5).19~22
    [48]徐耀德,童利红.利用Modflow预测某基坑降水引起的地面沉降[J].水文地质工程地质,2008.(6).96~98
    [49]冯晓腊,熊文林.三维水土耦合模型在深基坑降水计算中的应用[J].岩石力学与工程学报,2005.24.(7).37~41
    [50]平扬,徐燕萍,白世伟.深基坑工程渗流-应力耦合分析数值模拟研究[J].岩土力学,2001.22.(1).37~41
    [51]杨志锡,叶为民,杨林德.基坑工程中应力场与渗流场直接耦合的有限元法[J].勘察科学技术,2001.(3):32~36
    [52]Chang-Yu Ou, Bor-Yuan Shiau, Analysis of the corner effect on excavation behaviors. Can. Geotech. J.,1998.Vol.35.(3).532~540
    [53]Lee Fook-Hou, Yong Kwet-Yew, Quan Kevin C.N., Effect of corners in strutted excavation:field monitoring and case histories. J. of Geotechnical and Geoenvironmental Engineering, 1998.Vol.124.(4).339-349
    [54]朱合华,杨林德,桥本正.深基坑工程动态施工反演分析与变形预报[J].岩土工程学报,1998.20.(4).30~35
    [55]常晓林.岩体稳定渗流与应力状态的耦合分析及其工程应用初探,第一届全国计算岩土力学研讨会论文集[C],四川:西南交通大学出版社,1987:335~343
    [56]Fredlund D G. Bringing unsaturated soil mechanics into engineering practice [A]. Proc of 2 International Conference on Unsaturated Soils(Vol 2). Beijing,1998.1~36.
    [56]谢康和,柳崇敏等。成层土中基坑开挖降水引起的地表沉降分析。浙江大学学报(工学版)。2002.36(3).239~242.
    [57]李涛,曲军彪,周彦军等.深基坑降水对周围建筑物沉降的影响[J].北京工业大学学报,2009.35.(12).1630~1635
    [58]高俊合,赵维炳,周成.考虑固结、土—结构相互作用的基坑开挖有限元分析[J].岩土工程学报,1999.21.(5).628~630
    [59]徐争光,基坑降水的渗流场与应力场耦合及优化设计[M].福州大学硕士学位论文,2004
    [60]Itasca Software comp. Theory and background, Constitutive model:theory and implementation[P]. Us2 er Manual of FLAC3D 2.0,2002.
    [61]刘波,韩彦辉.FLAC原理、实例与应用指南[M].人民交通出版社,2005.9.
    [62]杨林德,时蓓玲,杨超.基坑变形及其安全性的随机预测.同济大学学报[J].2002.30.(4).403~408
    [63]宋榜慈,李受祉等.武汉地区工程中的地下水问题及其处理对策.工程勘察,2004.(5).646~654
    [64]胡涛,冯晓腊,熊文林等.武汉地区基坑降水引起的地面沉降机理及定量预测[J].土工基础,2002.16.(2).18~50
    [65]武汉建设监理协会.武汉地区深基坑工程理论与实践[M].武汉:武汉工业大学出版社,1999
    [66]冯晓腊,王宇.汪玉松.武汉地区因地下水引起的深基坑岩土工程问题综述[R].1999
    [67]王才权.武汉一级阶地深基坑降水与地面沉降机理[R].1999
    [68]范士凯.论不同地质条件下深基坑的变形破坏类型、主要岩土工程问题及其支护设计对策[J].资境与工程源环,2006.20.(增).645~655
    [69]机械工业第三勘察设计研究院.武汉市轨道交通四号线一期工程Ⅳ标段(工业路站)岩土工程勘察报告
    [70]胡涛,冯晓腊,熊文林等.多层地基深基坑的渗流稳定问题探讨[J].岩石力学与工程学报,2009.28.(10).2018~2023
    [71]缪俊发,娄荣祥,方兆昌等.上海地区的承压含水层降水设计方法[J].地下空间与工程学,2010.6.(1).167~172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700