家蚕第2白卵性状相关基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(Silkworm, Bombyx mori)第2白卵(white egg2, w-2:10-16.1)突变性状适合作为家蚕转基因筛选标记,但该性状表达的生化过程和分子机制尚不明瞭。本实验以家蚕正常型黑卵品种菁松A及其第2白卵近等基因系菁松A白为生物材料,综合利用家蚕抑制消减杂交文库cDNA芯片、全基因组芯片、表达谱测序技术和实时荧光定量PCR技术,研究获取家蚕第2白卵及卵色性状相关的基因信息,为揭示家蚕第2白卵形成的分子机制提供工作基础。
     1.利用抑制消减杂交和cDNA芯片检测技术研究家蚕第2白卵相关基因
     构建了家蚕转色期蚕卵黑卵对第2白卵的抑制消减杂交cDNA文库,随机选取300个消减文库cDNA制作芯片进行检测,获得了转色期蚕卵黑卵和第2白卵品系差异表达基因11个。11个基因中J241文库序列在黑白卵品系之间表达量差异最大,24h和48h黑卵比白卵上调5752.60倍和7951.40倍,J241基因在黑卵品系转色期黑卵中是一种大量表达的基因,而在白卵中J241不表达,通过RACE等技术明确了差异表达的J241基因是黑卵特有序列类型。
     家蚕受精卵注射J241基因的dsRNA未能有效阻止蚕卵色素合成过程,推测该基因的作用位点不在眼色素合成的主要途径上。
     2.应用家蚕全基因组芯片研究家蚕第2白卵性状相关基因
     利用23K家蚕全基因组芯片检测技术,对家蚕黑卵和第2白卵品系间转色期蚕卵差异表达基因进行了研究。经家蚕全基因组芯片检测,获得24h卵龄差异表达基因163个,白卵对黑卵基因表达最高上调倍数为33.00倍,最高下调倍数为32.47倍;获得48h卵龄差异表达基因186个,白卵对黑卵基因表达最高上调倍数为14.52倍,最高下调倍数为22.83倍。
     GO分析表明,差异表达基因涉及到细胞组分、生物学过程、分子功能全方位的改变和调整,24h时点差异表达基因在分子功能、生物过程、细胞组分基因分别占64%、27%和9%,48h时点差异表达基因在分子功能、生物过程及细胞组份上各占56%、27%和17%。代谢通路分析表明,黑卵和白卵品系间24h时点在8个代谢通路、48h时点在23个代谢通路出现基因差异表达,24h和48h时点均呈现差异表达的基因有26个,其中明确功能的17个基因涉及8个代谢酶类基因、3个胞间和胞内运输相关蛋白、3个调控和受体蛋白等。
     实时荧光定量RT-PCR验证结果显示,定量PCR和芯片检测结果高度相关,在24h或48h黑白卵样本间最大差异表达基因的差异倍数达到826倍。不同卵色品系转色卵中β-20-羟基类固醇脱氢酶、醛脱氢酶—9、thioredoxin domain containing4、microsomal glutathione transferase GSTMIC1及ATP-binding cassette transporter等色氨酸代谢、色素运输及氧化还原反应相关基因有表达差异。
     3.应用表达谱测序技术研究家蚕第2白卵性状相关基因
     利用Solexa高通量表达谱测序技术,对家蚕黑卵和第2白卵品系差异表达基因进行了研究。白卵样品获得有效标签(clean Tag)3493817个、有效标签种类(Distinct clean Tags)112384个;黑卵样品获得有效标签2497077个、有效标签种类95089个。饱和度分析表明本实验测序获得标签数量已能真实反映样品的基因表达情况。黑卵样本匹配(Mapping)获得13501个家蚕基因,白卵样本匹配获得14342个基因,匹配基因数已能够充分代表样本的基因表达信息。
     在家蚕黑卵及第2白卵品系间转色卵检出859个表达差异的基因,其中白卵品系上调表达基因595个、下调表达基因264个。有93个匹配基因只在黑卵或白卵一方检出,认为可能包含了第2白卵性状表达相关的基因。
     379个已知功能的差异表达基因涉及161个代谢通路,其中新陈代谢途径的基因89个,核糖体通路的基因19个,参与嘌呤代谢基因16个、参与氧化磷酸化的基因13个、参与嘧啶代谢的基因11个等。
     与家蚕眼色素合成原料——色氨酸代谢通路有5个差异基因参与,蚕卵多巴脱羧酶(EC:4.1.1.28)基因和色氨酰-tRNA合成酶(EC:6.1.1.2)在第2白卵中的表达调控保持了卵内色氨酸代谢的动态平衡。
     绝大部分基因实时荧光定量RT-PCR定量检测结果与表达谱测序结果倾向一致,黑卵和白卵之间差异表达基因的最大差异倍数达到16158倍。
     上述研究获得了大量第2白卵性状相关的差异表达基因信息,通过这些信息的深入挖掘,进一步开展基因克隆和功能验证分析,将促进家蚕第2白卵和卵色性状相关分子机制的解析。
The white egg2mutant (w-2) of the silkworm, Bombyx mori, is suitable as a screening marker for screening of transgenic silkworm because of its features, such as egg and eye color, regular hereditary. However, the biochemical processe and molecular mechanism of the w-2mutant still remains unclear so far. In this study, the multidisciplinary approach combined with cDNA microarray based on SSH library, silkworm genome microarray, expression sequencing, and Real-time quantitative PCR, was employed to explore the differentially expressed genes in wild type strain Jingsong A and its near-isogenic line w-2mutant Jingsong A white, the current study provide useful data for further studying of the molecular mechanism of the white egg2mutant.
     1. The differentially expressed genes identified by SSH and cDNA microarray analysis
     Based on construction of suppression subtractive hybridization cDNA library from wild type strain Jingsong A and its near-isogenic line w-2mutant,300clones were randomly selected for further analysis of cDNA microarray, and finally11differentially expressed genes were identified.
     J241exhibited the most different expression level between wild type Jingsong A and mutant Jingsong A white among these11genes. The expression difference between wild type and mutant reached5752.60and7951.40folds at24hour point and48hour point after normally incubated respectively. In the early development stage of egg, J241was found to be abundantly expressed in wild type, but no expression was observed in w-2mutant.. The result of RACE shows that J241is specific sequence splicing only in wild type Jingsong A.
     After microinjection of double-stranded RNA (dsRNA) of J241into the wild type eggs, no inhibitory effect was observed on the ommochrome pigment formation, indicating that J241is not the core gene on the course of ommochrome biosynthesis.
     2. The differentially expressed genes identified by silkworm genome microarray
     At the early stage of embryonic development of wild type Jingsong A and mutant Jingsong A white,163and186differentially expressed genes were identified by23K silkworm genome microarray at24hour and48hour respectively. The maximal up-regulation in mutant was33.00folds higher, and maximal down-regulation was32.47folds lower compared to wild type at24hour point, whereas the maximal up-regulation reached14.52folds, and maximal down-regulation22.83folds at48hour point.
     26genes were identified to differentially express between wild type and w-2mutant, representing8%of total differentially expressed genes, among them, there are17genes with known function including8metabolic enzymes,3intercellular or intracellular transport-related proteins, and3regulatory and receptor proteins.
     Analysis of GO and metabolic pathway has demonstrated that differential expressions of genes involve in cellular components, biological processes, and molecular functions, including involvement of eight metabolic pathways at24hour point and23metabolic pathways at48hour point respectively.
     The further validation using real-time quantitative RT-PCR indicated that the degree of concordance between data generated by the two methods was high, and the maximal differential expression reached826folds between wild type and w-2mutant.
     3. The differentially expressed genes identified by expression profile sequencing
     Solexa sequencing, a high-throughput expression profile sequencing technology, was employed to explore the differentially expressed genes during certain development stage in egg of silkworm. In this experiment, we got3493817clean tags and112384distinct clean tags from the time course mixture sample of w-2mutant, and2497077clean tags and95089distinct clean tags from wild type respectively. Saturation analysis showed that the sequence data of this experiment was a true reflection of the expressed genes in these two wild type and mutant samples.
     All these distinct tags of wild type were mapped to13501silkworm genes, and the matching ratio is up to35.30%. These distinct tags of w-2mutant were mapped to14342genes, and the matching ratio is up to39.46%, suggesting that the data of sole sequence have been fully representative of gene expression profile in wild type and mutant.
     In this study,859differentially expressed genes were identified by sole sequencing between wild type and white egg2mutant.595genes of them are up-regulated, and264genes are down-regulated in w-2mutant. Interestingly, there are93genes specifically expressed only in wild type or w-2mutant. It is most likely that among these differentially expressed genes, some are involved in the regulation of w-2mutant phenotype, and worth to be further investigated.
     379differentially expressed genes are annotated to161metabolic pathways, including in89genes in metabolic pathway,19genes in ribosomal channels,16genes in purine metabolism,13genes in oxidative phosphorylation, and11genes in pyrimidine metabolism.
     There are five differentially expressed genes involved in tryptophan pathway, which metabolites are the source of eye pigment synthesis. Among them, dopa decarboxylase (EC:4.1.1.28) gene and L-tryptophanyl-tRNA synthetase gene (EC:6.1.1.2) expressed in w-2mutant are likely required to maintain the in vivo dynamic balance of the tryptophan metabolism.
     The results obtained from the expression profile sequencing analysis are perfectly consistent with data of real-time quantitative RT-PCR. The maximal differential expression level is up to16158times tested by real time quantitative RT-PCR between wild type and w-2mutant.
     The present study has harvested tons of information on genes differentially expressed in wild type or w-2mutant, and will be helpful to elucidate the molecular mechanism of the white egg2mutant.
引文
1. Abraham, E.G., Sezutsu, H., Kanda, T., Sugasaki, T., Shimada, T.and Tamura, T. Identification and characterization of a silkworm ABC transporter gene homologous to Drosophila white.2000, Mol General Genet 264:11-19.
    2. Adorjan P, Distler J, Lipscher E, et al. Tumor class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res,2002, 30(5):e21.
    3. Albert T J, Molla M N, Muzny D M, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods,2007,4(11):903-905.
    4. Bangur CS, Switzer A. Fan L. et al. Identification of genes over-expressed in small cell lung carcinoma using suppression subtractive hybridization and cDNA microarray expression analysis. Oncogene,2002.21(23):3814-3825.
    5. Barad O, Meiri E, Avniel A. MicroRNA expression detected by oligonucleotide microarrays:system establishment and expression profiling in human tissues. Genome Res.2004,14(12):2486-2494.
    6. Becker, E. Die pigmente der ommin- und ommatiingruppe, eine neue klasse von naturfarbstoffen. Naturwissenschaften,1941a,29,237-238.
    7. Becker, E. Uber die natur des augenpigments von ephestia kuhniella und seinen vergleich mit den augenpigmenten anderer insekten. Biol. Zbl.1939 59,597-627.
    8. Berezikov E, Thuemmler F. Van Laake L W, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet,2006,38(12):1375-1377.
    9. Bernstein E., Caudy, A.A., Hammond, S.M. and Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference.2001, Nature 409:363-366.
    10. Bonse, A. Uber das auftreten von pterinen. tryptophan unde dessen derivate in verschiedenen organen der mutante white von Drosophila melanogaster. Z. Naturf.1969,24b,128-131.
    11. Butenandt, A., Biekert, E. and Linzen. B. Uber ommochrome, XIV. Zur verbreitung der ommine im tierreich. Hoppe-seyler's Z. physiol. Chem.1958b, 313.251-258.
    12. Butenandt, A., Weidel, W. and Schlossberger. H.3-oxy-kynurenin als cn+-gen-abhangiges glied im intermediaren tryptophan-stoffwechsel. Z. Naturf. 1949,4b,242-244.
    13. Butennandt, A., Weidel, W. and Becker, E. Kynurenin als augenpigmentbildung auslosendes agens bei insekten. Naturwissenschaften,1940a,28,63-64.
    14. Chee M, Yang R, Hubbel E, et al. Accessing genetic information with high density DNA arrays. Science,1996,274:610-614.
    15. Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell,2008,133(6): 1106-1117.
    16. Dahl F, Stenberg J, Fredriksson S, et al. Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc Natl Acad Sci USA, 2007.104(22):9387-9392.
    17. Diatchenko I, Lau YF. Campbell AP. et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proc Natl Acad Sci U S A.1996.93(12): 6025-6030.
    18. Egelhaaf, A. Uber das wirkungsmuster des a-locus von ephestia kukniella Z. Vererblehre.1963a,94,348-384.
    19. Euskirchen G M, Rozowsky J S, Wei C L, et al. Mapping of transcription factor binding regions in mammalian cells by ChlP:comparison of array- and sequencing-based technologies. Genome Res,2007,17(6):898-909.
    20. Friedman, M. and Finley. J. W. Methods of tryptophan analysis. J. agr. Fd Chem. 1971,19,626-631.
    21. Fujii H, Banno Y. Doira H, Kihara H, Kawaguchi Y,1998. Genetical stocks and mutations of Bombyx mori:important genetic resources. Fukuoka, Japan:Kyushu University,29-52.
    22. Gao L, Cheng L, Zhou JN. et al. DNA microarray:a high through put approach for methylation detection. Colloids Surf B Biointerfaces,2005,40(3-4):127-131.
    23. Ginzinger DG. Gene quantification using realtime quantitative PCR:an emerging technology hits the mainstream. Exp Hematol,2002;30:503-512.
    24. Graf, G. E. Biochemical predetermination in Drosophila. Experrientia,1957,13, 404-405.
    25. Green, M. M. Mutant isoallels at the vermilion locus in Drosophila melanogaster. Proc. Natn. Acad. Sci. U.S.A.1952,38,300-305.
    26. Hammond, S.M., Caudy, A.A. and Hannon, G.J. Posttranscriptionalgene silencing by double-stranded RNA.2001, Nature Rev Genet 2:110-119.
    27. Harris T D, Buzby P R, Babcock H, et al. Single-molecule DNA sequencing of a viral genome Science,2008,320(5872):106-109.
    28. Hell RA, Schena M, Chai A, et al. Discovery and analysis of inflammatory disease related genes using cDNA microarrays. Pro Nati Acad Sci USA,1997, 94:2150-2155.
    29. Hillier L W, Marth G T, Quinlan A R, et al. Whole-genome sequencing and variant discovery in C. elegans. Nat Methods,2008,5(2):183-188.
    30. Hirata, Y., Nakanishi, K. and Kikkawa, H. Crystalline+chromogen obtained from Bombvx mori. Science,1950,112,307-308.
    31. Hirata, Y., Nakanishi, K. and Kikkawa, H. Crystals of-chromogen obtained in silkworms. Jap. J. Gentic.1949,24,190.
    32. Hong SM, Nho SK, Kim NS, Lee JS, Kang SW. Gene expression profiling in the silkworm, Bombyx mori, during early embryonic development.Zoolog Sci.2006 Jun;23(6):517-28.
    33. Houwing S, Kamminga L M, Berezikov E, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell,2007,129(1): 69-82.
    34. Inagami. K. The mechanism of formation of tryptophan pigments and the metablism of tryptophan in silkworm. Bull. Kumamoto sericult. Exp. Stat.1958, 6,5-58.
    35. Ishiguro,I., Nagamura, Y. and Hara, A. Studies on the formation of phenoxazine pigment from 0-aminophenol derivatives by hemoglobin. I. Conversion of 3-oh-anthranilic acid into cinnabarinic acid in the presence of Mn2+. Yakugaku Zasshi,1971a,91,760-765.
    36. Ishiguro, I., Nagamura, Y. and Yamamoto, T. Formation of phenoxazine pigment and conversion of 3-hydroxy-kynurenine in the silkorm with metamorphosis. Seikagaku,1971b,43,401-407.
    37. Johnson D S, Mortazavi A, Myers R M, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science,2007,316(5830):1497-1502.
    38. Kawase, S. Studies on the pigments found in the integument of Bombyx mori L.1. Red pigment and some other epidermal pigments. J. sericult. Sci. Japan,1955,24, 69-76.
    39. Kikkawa, H. Biochemical genetics of Bombyx mori (silkworm). Adv. Genet. 1953,5,107-140.
    40. Kikkawa, H. Mechanism of pigment formation in Bombyx and Drosophila. Genetics. Princeton.1941,28.587-607.
    41. Koga. N. and Goda. Y. 3-hydroxy-kynurenin in frish gelegten Bombyx. Eiern. Hoppe-seyler's Z. phyiol. Chem.1962.328,272-274.
    42. Koga, N. and Osanai. M. Der Gehalt an tryptophan, kynurenin. 3-hydroxy-kynurenin und ommochromen bei den iiberwinternden eiern des seidenspinners Bombyx mori wahrend der entwicklung. Hoppe-seyler's Z. physiol. Chem.1967,348,979-982.
    43. Komoto N, Quan GX, Sezutsu H, Tamura T.A single-base deletion in an ABC transporter gene causes white eyes, white eggs, and translucent larval skin in the silkworm w-3(oe) mutant.Insect Biochem Mol Biol.2009 Feb:39(2):152-6. Epub 2008 Oct 22.
    44. Kubler, H. Untersuchungen zur biogenese und verbreitung der ommochrome. Doctoral thesis, University of Munich.1960.
    45. Linzen, B. and Hendrichs-Hertel, U. Kynurenin-3-hydroxylase in der metamorphose von Bombyx mori rb:organ- und stadienspezifische wechsel der enzymaktivitat. Wilhelm roux arch. Entwmech. Org.1970,165,26-34.
    46. Linzen, b. Tryptophan catabolism in silkworm metamorphosis:changes in total matter. DNA, free, and protein-bound tryptophan. J. Insect Physiol.1971a,17. 2005-2016.
    47. Linzen, B., The tryptophan to ommochrome pathway in insects. Advances in Insect Physiology.1974,10:117-246.
    48. Lipshutz RJ, Morris D, Chee M, et al. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques,1995,19(3):442-447.
    49. Lisitsyn N,wiggler M.Cloning the differences between two complex genomes.science,1993,259:946.
    50. Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet,2008.24(3):133-141.
    51. Maxwell S A, Davis GE. Gene expression profiling of p53-sensitive and resistant tumor cells using DNA microarray[J]. Apoptosis,2004(9):171-179.
    52. Misquitta, L. and Paterson, B.M. Targeted disruption of gene function in Drosophila by RNA interference (RNAi):a role for nautilus in embryonic somatic muscle formation.1999, Proc Natl Acad Sci USA 96:1451-1456.
    53. Mita K, Kasahara M, Sasaki S, Nagayasu Y, et.al The genome sequence of silkworm, Bombyx mori. DNA Res.2004,29; 11(1):27-35
    54. Monk M. Epigenetic programming of differential gene expression in development and evolution. Dev Genet,1995,17(3):188-197.
    55. Morin R D, O'Connor M D, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res,2008,18(4):610-621.
    56. Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods,2008,5(7):621-628.
    57. Noji T, Ote M, Takeda M, Mita K, Shimada T, Kawasaki H.Isolation and comparison of different ecdysone-responsive cuticle protein genes in wing discs of Bombyx mori. Insect Biochem Mol Biol.2003 Jul;33(7):671-9.
    58. Oudes A J, Roach J C, Walashek L S, et al. Application of Affymetrix array and Massively Parallel Signature Sequencing for identifica-tion of genes involved in prostate cancer progression. BMC Cancer,2005,5:86.
    59. Qingyou Xia, Zeyang Zhou, Cheng Lu, et al A draft sequence for the genome of the domesticated silkworm(Bombyx mori). Science,2004,306:1937-1940
    60. Qingyou Xia, Daojun Cheng et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biology 2007,8:R162 (doi:10.1186/gb-2007-8-8-r162)
    61. Quan GX, Kanda T, Tamura T.Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Mol Biol.2002 Jun;11(3):217-22.
    62. Quan GX. Kim I, Komoto N, Sezutsu H. Ote M, Shimada T, Kanda T, Mita K, Kobayashi M, Tamura T.Characterization of the kynurenine 3-monooxygenase gene corresponding to the white egg 1 mutant in the silkworm Bombyx mori.Mol Genet Genomics.2002 Mar;267(1):1-9.
    63. Rebrikov DV, De sai SM. Siebert PD. et al. Suppression subtractive hybridization. Methods Mol Biol,2004,258 1107-134.
    64. Rho J. Ahmann CR, Socci ND, et al. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis. DNA Cell Biol.2002.21(8)1541-549.
    65. Robertson G, Hirst M, Bainbridge M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods,2007,4(8):651-657.
    66. Ruby J G, Jan C, Player C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell,2006,127(6): 1193-1207.
    67. Schefe JH, Lehmann KE, Buschmann IR, et al. Quantitative real-time RT-PCR data analysis:current concepts and the novel "gene expression's CT difference" formula. Journal of molecular medicine 2006 Nov:84(11):901-10.
    68. Schena M, Heller RA, et al. Microarrays:biotechnology discovery platformfor functional genomics. Trends Biotechnol.1998 (16):301-306.
    69. Schena M. Shalon D. Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995, 270(5235):467-470.
    70. Schlossberger. H. G. Synthese und physiologische bedeutung des 3-oxykynurenin. eines zwischenproduktes bei der bildung der ommochrome aus tryptophan imm insektenorganismus.1949, Ph. D. Thesis, University of Tubingen.
    71. Schuster S C. Next-generation sequencing transforms today's biology. Nat Methods,2008,5(1):16-18.
    72. Shoe marker D D, Linsley PS. Recent developments in DNA microarrays. Curr Op in Microbiol,2002,5(3):334-337.
    73. Stanley Fields. Proteomics:proteomics in genomeland. Science,2001,291:1221-1224.
    74. Stark A, Kheradpour P, Parts L, et al. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res,2007,17(12): 1865-1879.
    75. Sugarbaker D J, Richards W G, Gordon G J, et al. Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci USA,2008,105(9): 3521-3526.
    76. Sultan M, Schulz M H, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 2008,321 (5891):956-960.
    77. Tamura Toshiki, Thibert Chantal, Royer Corinne Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature biotechnology,2000,18(1):81-84
    78. Tatum, E. L. Development of eye-colors in Drosophila:Bacterial synthesis of v+hormone, Proc. Natn. Acad. Sci. U.S.A.1939,25,486-490.
    79. Tazima Y,1951. The Recent Advances in Gene-analysis of the silkworm. Gihodo, Tokyo.69-85.
    80. Van Orsouw N J, Hogers R C, Janssen A, et al. Complexity reduction of polymorphic sequences (CRoPS):a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE,2007,2(11):e1172.
    81. Wei dong D, Marsac C, Kruschina M, et al. Functionalized self- assembled monolayer on gold for detection of human mitochondrial tRNA gene mutations. Anal Biochem,2003,322(1):14-25.
    82. Xia Q, Wang J, Zhou Z, et al The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol.2008 Dec;38(12):1036-45. Epub 2008 Dec 16.
    83. Xu X R, Huang J, Xu Z G, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA,2001,98(26):5.
    84. Xue-Xia Miaob. Shi-Jie Xu, Ming-Hui Li, Mu-Wang Li et al Simple sequence repeat-based consensus linkage map of Bombyx mori. PNAS,2005.102(45): 16303-16308
    85. Yamamoto K, Nohata J, Kadono-Okuda K. et al A BAC-based integrated linkage map of the silkworm Bombyx mori Genome Biol.,2008,28; 9(1):R21
    86. Yan PS, Chen CM, Shi H, et al. Dissecting comples epigenetic alterations in breast cancer using CpGisland microarrays. Cancer Res.2001.61 (23) 8375-8380.
    87. Zamore. P.D., Tuschl. T., Sharp. P.A. and Bartel, D.P. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21-23 nucleotide intervals. 2000, Cell 101:25-33.
    88. Zhang B, Nie X, Xiao B, et al. Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray. Genes Chromosomes Cancer.2003,38(1)180-90.
    89. Zhang G H, Shi D R, Liang X M, et al. Comparision of HER2/neu oncogene detected by chromogenic in situ hybridization and immunohistochemistry in breast cancer. Zhonghua Bing Li Xue Za Zhi,2006,35(10):580-583.
    90. Zhao T, Li G,Mi S, et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev,2007,21(10):1190-1203.
    91. Ziegler.I and Feron, M. Quantitative bestimmung der hydrierten pterine und des xanthommatins in den augen von ceratitis capitata wild. (Dipt., Trypetidae). Z. Naturf.1965,20b,318-322.
    92. Ziegler,I. and Harmsem, R. The biology of pteridines in insects. Adv. Insect Physiol.1969,6,139-203.
    93. Ziegler, I. and Jaenicke, L., Zur wirkungsweise des white-allels bei Drosophila melanogster. Z. Vererblehre,1959,90.53-61.
    94. Ziegler, I. Genetic aspects of ommochrome and pterine pigments,4dv. Genet. 1961,10,349-403.
    95.蒋同庆,蚕体遗传学,1948,昆明:大华印书馆,35-37.
    96.李翠玲,张国政,夏定国,赵浩勤,张业顺.家蚕第2白卵近等基因系差异表达基因的研究.2008,蚕业科学,34(4):613—618.
    97.鲁成,王枫,向仲怀,蒋同庆,1988.家蚕锈色卵的遗传学研究.蚕学通讯,7(4):1-8.
    98.吕鸿声等,中国养蚕学,1990,上海科学技术出版社。
    99.马家宝.SSH技术及其在肿瘤研究中的应用.中国肺癌杂志,2005,8(6).
    100.马原松,石毅.生物芯片的研究现状与展望.安徽农业科学,2006,34(7)1304-1308.
    101.宁章勇,赵德明,杨建民等.实时荧光定量PCR检测PrP基因表达标准品质粒和标准曲线的构建.中国兽医学报,2005, 25(6).
    102.欧阳松应,杨冬,欧阳红生等.实时荧光定量PCR技术及其应用.生命的化学,2004,24(1).
    103.田村俊树 行弘研司 长谷川毅 河本夏雄 蚕B m w h i t e遗伝子 公開特许公报(A)2000,特開2000-94(p2000-94A).
    104.王科,王晓雄,石炳毅.实时荧光定量PCR在细胞因子mRNA检测研究中的应用.北京生物医学工程,2006,25(2):217-221.
    105.王涛,陆应麟.抑制消减杂交技术的原理及应用.国外医学分子生物学分册,1998,20(6).
    106.王艳,蒋磊,李韶山.拟南芥CHS基因表达的实时荧光定量PCR检测。植物学通报,2005,22(5):594-598.
    107.向仲怀,蚕丝生物学,2005,北京:林业出版社.107-132.
    108向仲怀,家蚕遗传育种学,1994,北京:农业出版社,7-33。
    109向仲怀,鲁成,蒋同庆,秦俭.家蚕隐性灰色卵的遗传学研究.1993,蚕学通讯,13(4):16-19.
    110.中国农业科学院蚕业研究所主编,家蚕遗传育种学,1981,科学出版社
    111.朱燕.DNA甲基化的分析与状态检测.现代预防医学,2005,32(9):1070-1073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700