几种倍半硅氧烷的合成及其聚苯乙烯复合材料燃烧性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
倍半硅氧烷是指所有符合经验公式RSiO_(1.5)(这里R代表氢或任何烷基、烯基、芳基或有机功能取代的烷基、烯基、芳基)的有机无机化合物。因其具有特殊的微观结构、良好的热稳定性、优异的介电性能,同时还具有良好的反应可控性能,自上世纪六十年代以来被广泛研究。本文在大量文献调研的基础上,综述了梯形倍半硅氧烷和笼型倍半硅氧烷的合成、表征以及在复合材料中的应用,在此基础上,对于梯形倍半硅氧烷的合成、侧基聚合、真空炭化、有机改性作了一系列的研究;对比了有卤体系和无卤体系笼型倍半硅氧烷的对聚苯乙烯的阻燃性能的改善以及作用机制;合成了笼型倍半硅氧烷-表面活性剂的层状纳米杂化材料,尝试将其应用于聚苯乙烯复合材料,改善了复合材料的燃烧性能。
     归纳起来,本文的主要工作主要涉及以下几个方面:
     (1)关于梯型倍半硅氧烷的热稳定性能研究。采用小分子有机胺(正丁胺)作为模版,以逐步水解缩合的方式,合成乙烯基梯形倍半硅氧烷,对其结构和热性能行进表征;在乙烯基梯形倍半硅氧烷的结构基础之上,采用热催化聚合的方式,使其侧链乙烯基的同侧定向聚合,得到具有四条平行主链的硅氧碳氢聚合物,使用核磁共振氢谱、核磁共振碳谱、X射线衍射、红外光谱、扫描电镜和透射电镜对产物的结构、侧基聚合的机理进行了充分的表征和探讨。这种聚合物具有更高的热稳定性能,并对热稳定性提高的原因进行了解释。研究了侧链聚合的梯型倍半硅氧烷的高温真空炭化行为,根据XRD、质量变化和元素分析的结果,得出了700℃是该种物质从侧基降解失重到双链平行交联的转折温度;利用梯型硅氧烷高热稳定的这一特点,通过溶液插层和热(250℃)处理的办法,将耐高温的梯型结构大分子引入有机土中,替换其中的表面活性剂成份,得到具有更高热稳定性的倍半硅氧烷改性土。
     (2)四甲基铵笼型硅酸盐和溴化苯基笼型倍半硅氧烷的合成、表征及其聚苯乙烯复合材料的阻燃性能研究。使用正硅酸乙酯和四甲基氢氧化铵,采用水解缩合的方法制备笼型八(四甲基铵)八硅酸盐(TMN-POSS),将其作为聚苯乙烯(PS)树脂的添加剂,采用熔融共混的方法制备了TMN-POSS/PS复合材料。实验结果表明,20%和30%TMN-POSS/PS复合材料的热释放速率峰值比PS纯样分别下降31.7%和54.6%,平均值分别下降17.6%和41.5%;同时复合材料的燃烧过程中的CO释放速率峰值分别比纯的PS下降55.3%和66.1%,浓度也有相应规律的变化;CO_2浓度比PS纯样分别下降31.1%和62.0%;CO_2释放速率峰值分别下降23.8%和53.1%;20%和30%TMN-POSS/PS复合材料的氧指数从PS纯样的16.5分别提高到22和23。
     以苯基三氯硅烷为起始原料,通过水解缩合、催化重排的办法制备了八聚苯基笼型倍半硅氧烷(Ph-POSS),在Fe粉催化条件下将溴元素引入Ph-POSS的苯环得到Br-POSS;使用该种Br-POSS和Sb_2O_3的混合物(3∶1,质量比)作为聚苯乙烯(PS)树脂的添加剂,采用熔融共混法制备(Br-POSS+Sb_2O_3)/PS复合材料。实验结果表明,(Br-POSS+Sb_2O_3)的含量在15%以上时可以在聚合物中形成三维空间网络结构,这种分布的协效体系可以使得复合材料的热释放速率峰值从树脂纯料的900kW/m~2以上降到200kW/m~2以下,氧指数从16.5提高到29和30,达到UL-94 V0的阻燃标准。
     进一步的研究分析表明,POSS提高聚合物材料的阻燃性能主要取决于POSS本身核心笼型硅氧结构在材料燃烧中的阻隔作用、POSS有机取代基所包含的高效阻燃元素或基团、POSS在聚合物基体中的分散状况等因素。(TMN-POSS)/PS和(Br-POSS+Sb_2O_3)/PS两种复合材料燃烧性能提高的原因相同之处在都含有POSS笼型硅氧结构,而且POSS都能在聚合物基体中在纳米尺度上均匀分散;不同之处在于POSS的有机取代基团。
     (3)基于离子型笼型倍半硅氧烷—表面活性剂层状杂化材料的相关研究。一方面,使用多电荷阴离子的八磺酸根POSS和十六烷基三甲基溴化铵表面活性剂在水溶液体系里面进行离子交换反应,利用有机-无机不同的相似相容性质通过自组装的手段,得到具有规整的二维层状结构的杂化材料。通过X射线衍射、高分辨透射电镜和扫描电子显微镜等表征手段确定了这种层状结构的存在,而且确定了层间距在3~5nm之间;另一方面,使用多电荷阳离子的笼型八聚(γ-氯化氨丙基)POSS和十二烷基苯磺酸钠在水溶液体系里面进行离子交换反应,也可以得到类似的二维层状结构的杂化材料。实验研究表明,通过调整POSS和表面活性剂的物质的量比例可以改变片层结构,发现当POSS成分大大过量的时候,片层重复单元按照“烷基-POSS-POSS-烷基”顺序排列,对应较大的层间距;当表面活性剂成分大大过量的时候,片层重复单元按照“烷基-POSS”顺序排列,对应较小的层间距。另外,表面活性剂链长对材料层间距的影响,在POSS-表面活性剂比例相同的情况下(比如表面活性剂饱和POSS的情况),表面活性剂烷基链按照类似的方式排列,烷基链的长短(对于直链就是碳原子的个数)以近似线性的规律影响层状杂化材料的层间距。最后,使用这种杂化材料制备PS复合材料,初步对该种复合材料燃烧性能的初步研究表明,1%的添加量对于热释放速率的峰值就有较大的降低,降幅达到50.1%;当含量继续增加时,反而下降的数量并不明显。
Silsesquioxanes are a large branch of organic-inorganic silicon-containing compounds. They can be represented as (RSiO_(3/2))_n, where R can be hydrogen or any alkyl, alkylene, aryl, arylene groups, or organo-functional derivatives of them. Due to its special definite microstructure, good thermal stabilities, excellent dielectric properties, and ideal controllable performance in reactions, silsesquioxanes have attracted considerable research interests since 1960s. In this work, the general synthesis, characterization and applications of ladder-like and cage-like silsesquioxanes have been summarized on the basis of extensive investigation of literatures. The synthesis, side vinyl polymerization, carbonization in vacuum of ladder-like silsesquioxanes and its application in clay modification are studied; the combustion properties and fire retardant mechanism of halogen-free and halogen-containing polyhedral oligomeric silsesquioxanes (POSS)/Ploystrene(PS) system have been investigated and contrasted; POSS-surfactants lamellar hybrids were also prepared in this work, and were used as a special filler for PS in order to improve its combustion properties. In summery, this dissertation is composed of the following parts:
     (1) The synthesis and thermal properties and other related research of ladder-like polyvinylsilsesquioxanes (LPVS). Ladder-like poly(vinylsilsesquioxanes)(LPVS) with substitutional vinyl which was side-by-side polymerized (LPVS-SP) and contains four parallel chains in the skeleton were synthesized by two steps: first, LPVS was prepared by stepwise coupling polymerization on the basis of amido H-bonding self-assembling template from vinyltrichlorosilane (VTCS); then the vinyl of LPVS was polymerized side by BPO at high temperature. The composition and structure of the products have been characterized by ~1HNMR, ~(29)Si NMR, FTIR, TEM, SEM, XRD and elemental analysis, and then its formation mechanism is suggested. LPVS-SP possesses better thermal stabilities than LPVS for its four-parallel-chain structure and stable Si-0 bond. The thermal crosslinking and pyrolysis of LPVS-SP are studied by heating it in vacuum. X-ray diffraction measurements and weight measurements indicate that the turning point temperature from weight loss to inter-molecules thermal crosslinking is around 700°C. At last, LPVS is introduced to modify montmorillonite (MMT): the intercalated LPVS-OMT nanocomposite was prepared by solution blending, and then it is further treated at 250.0°C for 2 hours in order to eliminate surfactant in OMT.. SAXS and TGA suggest that the nanocomposite retains its intercalated structure and exhibits better thermal stability, which implies potential application of this polymer composite.
     (2) Synthesis and characterization of Octa(tetramethylammonium) polyhedral oligomeric silsesquioxanes (TMN-POSS) and Poly(bromophenylsilsesquioxanes) (Br-POSS) and their polystyrene composites enhanced combustion properties. TMN-POSS was synthesized from tetraethoxysilane and (CH_3)_4NOH-5H_2O. It is used as fillers to prepare TMN-POSS/PS composites. When compared to pure PS, PS composites with loads of 20% and 30% of TMN-POSS in the composite can decrease the peak heat release rate(HRR) of composites by 31.7% and 54.6%, the average HRR by 17.6% and 41.5%, the peak CO release rate by 55.3% and 66.1%, the peak CO_2 release rate by 23.8% and 53.1%, the concentration of CO_2 by 31.1% and 62.0% respectively. The Limit Oxygen Index (LOI) also can be raised from 16.5 to 22 and 23 respectively.
     The Octaphenyl POSS (Ph-POSS) is synthesized via the hydrolysis and condensation of phenyltrichlorosilane (PhSiCl_3) and the subsequent rearrangement reaction catalyzed by tetramethylammonium hydroxide. Poly(bromooctaphenylsilsesquioxane) (Br-POSS) are easily synthesized from Ph-POSS via bromination with Br_2/Fe system. Br-POSS together with Sb_2O_3 are used as fillers to prepare (Br-POSS + Sb_2O_3) /PS composites. When (Br-POSS+Sb_2O_3) compositions are as high as 15% and 20%, the peak HRR of composites is decreased from more than 900kW/m~2 to less than 200kW/m~2 , and LOI can be raised from 16.5 to 29 and 30 respectively.
     Improvement of combustion properties of the POSS/polymer composites mainly depends on barrier effect generated from silicon-oxygen cages of POSS, elements or groups of effective flame retardance in organic substituents of POSS, and dispersion of POSS in polymer matrix. There are both similarities and differences between the fire retardant mechanisms of TMN-POSS/PS composites and (Br-POSS+ Sb_2O_3) /PS composites. They contain same silicon-oxygen cages, possess similar dispersions, but have different organic substituents.
     (3) Studies on POSS-surfactants lamellar hybrids. Two-dimensional multilayered complex of Octabenzenesulphonate Polyhedral Oligomeric Silsesquioxane(ObsPOSS) modified by alkyltrimethylammonium bromide (C_nH_(2n+1)N(CH_3)_3Br, CnTAB, where n denotes the carbon number in the alkyl chain) via ion-exchange reaction. Lamellar framework was obtained for the different compatibility between the organic part (ObsPOSS core made up of silicon oxide) and the inorganic part (side group of ObsPOSS and surfactant alkyl chain), the lamellar structure with a layer space from 3 to 5 nm can be confirmed by XRD, TEM and SEM. Similar lamellar hybrids can be obtained from octa(y-chloroammoniumpropyl) polyhedral oligomeric silsesquioxanes (OCAP-POSS) dodecyl benzene sulfonic acid sodium salt (C_(18)H_(29)NaO_3S, DBSS). Further research shows that different POSS to surfactant ratios result in different arrangement of layers: when there exists excessive POSS, the layer is arranged in a "Alkyl-POSS-POSS-Alkyl" sequence; while on the contrary, the layer is in "Alkyl-POSS" sequence. For one kind of lamellar hybrids with a given POSS to surfactant ratio, the layer space of changs linearly as a function of the alkyl chain length of surfactants.
     The synthesized lamellar hybrid has been used as fillers to prepare PS composite with improved combustion properties. A lamellar hybrid content as low as 1% in the composite can cause about a 50.1% decrease of peak HRR, however, a higher content of this hybrid doesn't seem to work.
引文
[1] 欧育湘编著,<<实用阻燃技术>>,北京,化学工业出版社,2002
    [2] 赵小平,聚合物的燃烧过程和阻燃机理,安徽化工,1:5-12,1994
    [3] 欧育湘,陈宇等编著,<<阻燃高分子材料>>,北京,国防工业出版社,2001
    [4] Stams, WH, Edelson D, Macromolecules, 12 (1979) : 797~802,
    [5] Ma ZL, Gao JG, Niu HJ, Ding HT, Journal of Applied Polymer Science, 85(2002):257~262,
    [6] Wu Q, Qu BJ, Polymer Degradation and Stability, 74(2001): 255~261
    [7] Ma ZL, Zhao M, Hu HF, Ding HT, Journal of Applied Polymer Science, 83(2002):3128-3132
    [8] Ma ZL, Zhao M, Hu HF, Ding HT, Journal of Applied Polymer Science, 84(2002):522-527,
    [9] Tang Y, Hu Y, Wang SE Polymer International, 52(2003): 1396-1400,
    [10] Bourbigot S, LeBras M, Dabrowski F, Gilman JW and Kashiwagi T, Fire Materials 24(2002): 201-208
    [11] Chiu S H and Wang W K, Polymer, 39 (1998): 1951-1955
    [12] Bourbigot S, LeBras M, Bugajny M, Dabrowski F, Intumescence and Polymer Blending: An Approach for Flame Retardancy, NISTIR 6242, October 1998. annual conference on fire research, book of abstracts, November2-5, 1998
    [13] Butler KM, Polymeric Foams: Science and Technology. Proceedings. American Chemical Society. ACS Symposium Series 669. Chapter 15. 1997, Khemani, K. C., American Chemical Society, Washington, DC, 214-230 pp, 1997
    [14] 刘霞,李燕芸等,聚合物的燃烧与阻燃,北京石油化工学院学报,6(2):17-24,1998
    [15] Guizhi Li, Lichang Wang, Hanli Ni, Pittman CU: Journal oflnorganic and Organometallic Polymers, 11 (2001), 123~154
    [16] Baney RH, Itoh M, Sakakibara A, Suzuki T, Chemical Reviews 95 (1995): 1409-1430
    [17] Xie ZS , Jin SZ, Wan YZ , et al.. Chinese Journal of Polymer Science, 10 (1992):361
    [18] Xie ZS, He ZQ, Dai DR, et al. Chinese Journal of Polymer Science, 7 (1989) : 183
    [19] 潘慧铭,朱晓滨,胡耀全.改性硅梯型高耐温绝缘密封胶的研究,中国胶粘剂,4 (1995):1
    [20] Tang HD, Sun J, Jiang JQ, Zhou XS, Hu TJ, Xie P, Zhang R, Journal of the American Chemical Society 124 (2002): 10482-10488
    [21] Zhang TY, Deng KL, Zhang PP, et al. Chemistry-A European Journal 12 (2006): 3630-3635
    [22] Zhong GQ, Duan QH, Deng KL, et al. Chinese Journal of Polymer Science 24 (2006): 67-72
    [23] Deng KL, Zhang TY, Zhang XJ, et al. Macromolecular Chemistry and Physics 207 (2006): 404-411
    [24] Wan YZ, Yang LM, Zhang JC, et al. Macromolecules 39 (2006): 541-547
    [25] Duan QH, Zhang TY, Deng KL, et al. Chinese Journal of Polymer Science 23 (2005): 355-361
    [26] Xie P, Zhang RB, Journal of Materials Chemistry 15 (2005): 2529-2550
    [27] Gu HW, Xie P, Fu PT, et al. Advanced Functional Materials 15 (2005): 125-130
    [28] Li H, Yu SY, Shen ZR, et al. Chinese Journal of Polymer Science 22 (2004): 445-451
    [29] Duan QH, Zhang Y, Jiang JQ, et al. Polymer International 53 (2004): 113-120
    [30] Gu HW, Xie P, Shen DY, et al. Advanced Materials 15 (2003): 1355
    [31] Zhu CF, Shang GY, Li BS, et al. Surface and Interface Analysis 35 (2003): 459-462
    [32] Zhang XJ, Xie P, Shen ZR, Jiang JQ, Zhu CF, Li HH, Zhang TY, Han CC, Wan LJ, Yan SK, Zhang RB, Angewandte Chemie-International Edition 45 (2006): 3112-3116
    [33] Waddon AJ, Coughlin EB Chem, Mater., 15(2003), 4555-4561
    [34] Frye CL and Collins WT, Journal of the American Chemical Society. 92(1970)., 5586
    [35] Muller R, Khole R., and Sliwinski S., J. Pract. Chem. 9(1959)., 71
    [36] Sprung MM and Guenther FO, Journal of the American Chemical Society. 77(1955), 3990,
    [37] Barry AJ, Journal of the American Chemical Society. 77(1955), 4248.
    [38] Sprung MM and Guenther FO, Journal of the American Chemical Society. 77(1955), 6045.
    [39] 70. L. H. Vogt and J. F. Brown, Inorganic Chemistry 2(1963)., 189
    [40] Sprung MM and Guenther FO, Journal of the American Chemical Society. 77(1955), 3996.
    [41] Voronkov MG, Lavrent'yev VI, and Kovrigin VM, Journal of Organometallic Chemistry. 220(1981), 285
    [42] Brown JF and Vogt LH, Journal of the American Chemical Society 87(1965), 4313.
    [43] Voronkov MG, Zh. Obshch. Khim. 49(1979), 1522.
    [44] Brown JF, Journal of the American Chemical Society 87(1965), 4317.
    [45] Sprung MM and Guenther FO, Journal of Polymer Science. 28(1958), 17.
    [46] Brown JF, Vogt LH, and Prescott PI, Journal of the American Chemical Society 86(1964), 1120.
    [47] Brown J F, Journal of Polymer Science 83 (1963) 4425.
    [48] 谢萍、李泽、张榕本,具有液晶相态特征的功能化梯型聚硅氧烷,高分子通报,1995年,第二期,65~72
    [49] 沈新春,王大喜 栗秀刚,聚倍半硅氧烷的研究现状和发展趋势有机硅材料,18(2004):22~26
    [50] 吕玲、孟季茹、马晓燕等.有机硅耐热涂料的研究.化工新型材料,28 (2000):31
    [51] 袁立新.自干型耐高温防腐涂料的研制.涂料工业,2001 (10):14
    [52] 叶庆,程汉波,郭炳辉等.改性有机硅耐温防粘涂料的研制.现代涂料与涂装,2001(6):1
    [53] 冯晓峰.耐高温保护涂料的研制.现代涂料与涂装,2001 (5):18
    [54] Bassindale AR, Poumy M, Taylor PG, Hursthouse MB, Angewandte Chemie-lnternational Edition 42 (2003): 3488-3490
    [55] Bassindale AR, Parker DJ, Pourny M, Taylor PG, Horton PN, Hursthouse MB Organometallics 23 (2004): 4400-4405
    [56] Anderson SE, Mitchell C, Haddad TS, Vij A, Schwab JJ, Bowers MT, Chemistry of Materials 18 (2006): 1490-1497
    [57] Takahashi K, Sulaiman S, Katzenstein JM, Snoblen S, Laine RM, Australian Journal of Chemistry 59 (2006): 564-570
    [58] Sulaiman S, Brick CM, De Sana C, Basheer RA, Laine RM, Abstracts of Papers of The American Chemical Society 230:U3673-U3674 358-PMSE 2005
    [59] Suresh S, Zhou WS, Spraul B, Laine RM, Ballato J, Smith DW, Journal of Nanoscience and Nanotechnology 4 (2004): 250-253
    [60] Choi J, Yee AF, Laine RM, Macromolecules 37 (2004): 99-109
    [62] Choi JW, Tamaki R, Kim SG, Laine RM, Chemistry of Materiais 15 (2003): 3365-3375
    [63] Choi J, Yee AF, Laine RM, Macromolecules 36 (2003): 5666-5682
    [64] Tamaki R, Choi JW, Laine RM, Chemistry of Materials 15 (2003): 793-797
    [65] Choi J, Harcup J, Yee AF, Zhu Q, Laine RM, Journal of the American Chemical Society 123 (2001): 11420-11430
    [66] Costa ROR, Vasconcelos WL, Tamaki R, Laine RM, Macromolecules 34 (2001): 5398-5407
    [67] Laine RM, Choi JW, Lee I, Advanced Materials 13 (2001): 800
    [68] Sellinger A, Laine RM, Chemistry of Materials 8 (1996): 1592
    [69] 张立培.官能化笼型倍半硅氧烷( POSS)的合成与表征及其环氧树脂复合材料性能研究[Z].北京:北京化工大学,2000.
    [70] 张辉,岳好峰,夏庆珠 笼形倍半硅氧烷的结构及其应用 理化检验.物理分册
    [71] 李笃信,贾德民,聚合物/无机物纳米复合材料研究进展及应用前景 高分子材料科学与工程 2003年7月第四期22~26
    [72] Usuki A, Kato M, Okada A, Kurauchi T, Journal of Applied Polymer Science 63 (1997): 137-139
    [73] Ikeda Y, Tanaka A, Kohjiya S, Journal of Materials Chemistry 7 (1997): 1497-1503
    [74] Akelah A, Moet A Journal of Materials Science 31 (1996): 3589-3596
    [75] Hasegawa N, Okamoto H, Kato M, Usuki A. Journal of Applied Polymer Science, 78(2000): 1918.
    [76] Haddad TS and Lichtenhan JD, Macromolecules 29(1996), 7302
    [77] Romo-Uribe A, Mather PT, Haddad TS, and Lichtenhan JD, Journal of Polymer Science Part B-Polymer Physics 36(1998), 1857
    [78] Lichtenhan JD, Otonari YA, and Carr MJ, Macromolecules 28(1995), 8435
    [79] Mather PT, Jeon HG, and Romo-Uribe A, Macromolecules 32(1999), 1194.
    [80] Bharadwaj BK, Berry RJ, and Farmer BL, Polymer 41(2000), 7209.
    [81] Tsuchida A, Bolln C, Sernetz FG, Frey H, and Mulhaupt R, Macromolecules 30 (1997),2818.
    [82] Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, and Yee AF, Journal of the American Chemical Society 120(1998), 8380.
    [83] Lee A. and Lichtenhan JD, Macromolecules 31(1998), 4970
    [84] Lee A, Lichtenhan JD, Reinerth WA, Abstracts of Papers of the American ChemicalSociety 219: 128-PMSE Part 2 MAR 26 2000.
    [85] Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, K.Ismail IM, and Burmeister MJ, Chemistry of Materials 8(1996)., 1250
    [86] Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, and Feher FJ, Macromolecules 26(1993), 2141.
    [87] 刘玉荣、黄玉东、张学忠、杨小波,POSS改性传统聚合物的研究进展 宇航材料工艺2005年第2期6~9
    [88] Huanga JC, Hea CB,Yang Xiao et al. Polymer, 44(2003): 4491~4499
    [89] Schwab JJ, Lichtenhan JD. Applied Organometalic Chemistry, 12(1998): 707~713
    [90] Schwab JJ, Lichtenhan JD, Chafee KP et al. Polymer Preprints, Division of Polymer Chemistry,38(1997 ):518-519
    [91] Lichterdaan JD ,Vu NO, Carter JA. Macromolecules, 26(1993):2141~2 142
    [92] Selinger A, Laine RM. Macromolecules 29(1996); 2327~2330
    [93] Hu LJ, Feng Y, Zhao W, Abstracts of Papers of the American Chemical Society 231: - 603-ORGN MAR 26 2006
    [94] Ye YS, Chen WY, Wang YZ, Journal of Polymer Science Part A-Polymer Chemistry 44 (18): 5391-5402 SEP 15 2006
    [95] Su K, Bujalski DR, Eguchi K, et al., Journal of Materials Chemistry 15 (38): 4115-4124 2005
    [96] Su K, Bujalski DR, Eguchi K, et al., Chemistry of Materials 17 (2005): 2520-2529
    [97] Hyeon-Lee J, Kim WC, Min SK, et al., Macromolecular Materials and Engineering 288 (2003): 455-461
    [98] Leu CM , Reddy GM ,Wei KH et al. Chemistry of Materials, 15(2003):2261~2265
    [99] Leu CM ,Chang YT ,Wei KH et al. Macromolecules,;36(2003 ):9122~9127
    [100] 程志君,POSS改性环氧树脂的研究.国防科技大学硕士学位论文,2002:57~5
    [101] Gregory S. Constable, Alan J. Lesser, and E. Bryan Coughlin Macromolecules, 37(2004), 1276-1282
    [102] Haddad TS and Lichtenhan JD, Macromolecules 29(1996), 7302.
    [103] Lichtenhan JD, Otonari YA, and Carr MJ, Macromolecules 28(1995), 8435.
    [104] Tsuchida A, Bolln C, Semetz FG, Frey H, and Mulhaupt R, Macromolecules 30(1997),2818.
    [105] Camiato F, Boccaleri E, Marchese L, et al. European Journal of Inorganic Chemistry (2007): 585-591
    [106] Fina A, Abbenhuis HCL, Tabuani D, et al. Polymer Degradation and Stability 91 (2006): 2275-2281
    [107] Bourbigot S, Duquesne S, Jama C, Macromolecular Symposia 233(2006): 180-190
    [108] Chigwada G, Jash P, Jiang DD, et al. Polymer Degradation and Stability 89 (2005): 85-100
    [109] Jash P, Wilkie CA, Polymer Degradation and Stability 88 (2005): 401-406
    [110] Koo JH, Pilato LA, Sarape Journal 41 (2005): 7-19
    [111] Solarski S, Benali S, Rochery M, et al., Journal of Applied Polymer Science 95 (2005): 238-244
    [112] Devaux E, Rochery M, Bourbigot S, Fire and Materials 26 (2002): 149-154
    [113] 徐加艳,聚合物/氧化石墨纳米复合材料的制备、表征及其燃烧性能的初步研究,中国科技大学博士学位论文,2001年8月
    [114] 汪少锋,PA6、ABS/粘土纳米复合材料的制备及其燃烧性能的研究,中国科学技术大学博士学位论文,2003年6月
    [115] 宋磊,聚合物/改性粘土纳米复合材料的新型合成方法和性能研究,中国科学技术大学博士学位论文,2002年10月
    [116] Tang Y, Hu Y, Zhang R, et al., Macromol Mater Eng 289,191, 2004
    [117] Tang Y, Hu Y, Zhang R, et al., Polymer 45,5317, 2004
    [1] Brown JF, Vogt LH, Katchman A, Eustance KW, Kiser KM, Krantz KW, Journal of the American Chemical Society 82(1960), 6194
    [2] Brown JF, Journal of Polymer Science-Polymer Letter 1(1963), 83.
    [3] Tang HD, Sun J, Jiang JQ, Zhou XS, Hu TJ, Xie P, Zhang R, Journal of the American Chemical Society 124 (2002): 10482-10488
    [4] Zhang TY, Deng KL, Zhang PP, et al. Chemistry-A European Journal 12 (2006): 3630-3635
    [5] Zhong GQ, Duan QH, Deng KL, et al. Chinese Journal of Polymer Science 24 (2006): 67-72
    [6] Deng KL, Zhang TY, Zhang XJ, et al. Macromolecular Chemistry and Physics 207 (2006): 404-411
    [7] Wan YZ, Yang LM, Zhang JC, et al. Macromolecules 39 (2006): 541-547
    [8] Duan QH, Zhang TY, Deng KL, et al. Chinese Journal of Polymer Science 23 (2005): 355-361
    [9] Xie P, Zhang RB, Journal of Materials Chemistry 15 (2005): 2529-2550
    [10] Gu HW, Xie P, Fu PT, et al. Advanced Functional Materials 15 (2005): 125-130
    [11] Gu HW, Xie P, Shen DY, et al. Advanced Materials 15 (2003): 1355
    [12] Zhang XJ, Xie P, Shen ZR, Jiang JQ, Zhu CF, Li HH, Zhang TY, Han CC, Wan LJ, Yah SK, Zhang RB, Angewandte Chemie-lnternational Edition 45 (2006): 3112-3116
    [13] LOYDA, SHEAKJ, Chemical Reviews 95 (1995): 1431-1442
    [14] Liu CQ, Xie P, Dai DR, et al. Polymers for Advanced Technologies 12 (2001): 626-636
    [1] Jung YJ, Kar S, Talapatra S, et al.. NanoLetters, 2006, 6 (3): 413-418
    [2] Vaia R. Nanocomposites - Remote-controlled actuators. Nature materials, 2005, 4(6): 429-430
    [3] Lu YF, Yang Y, Sellinger A, et al.. Nature, 410(2001): 913-917
    [4] Sellinger A, Weiss PM, Nguyen A, et al. Nature, 1998, 394(6690): 256-260
    [5] Galameau A, Barodawalla A, Pinnavaia TJ. Nature, 1995,374(6522), 529-531
    [6] Gilman JW. Applied Clay Science 1999, 15(1-2): 31-49
    [7] Tang T, Chen XC, Meng XY, et al.Angewandte Chemie-International edition, 2005, 44(10): 1517-1520
    [8] Zheng XX, Wilkie CA. Polymer Degradation and Stability, 81 (2003): 539-550
    [9] Tang Y, Hu Y, Li BG, et al. Journal of Polymer Science Part A.Polymer Chemistry, 42(2004): 6163-6173
    [10] Song L, Hu Y, Tang Y, et al. Polymer Degradation and Stability 87(2005): 111-116
    [11] Haggenmueller R, Gommans HH, Rinzler AG, et al. Chemical Physics Letters, 330(2000): 219-225
    [12] Shaffer MSP, Windle AH. Advanced Materials, 11 (1999): 937-941
    [13] Zhang J, Zhang HP, Journal of Fire Sciences 23 (2005) 193.
    [14] Chen DZ, Yang HY, He PS, Zhang WA, Composites Science and Technology 65 (2005) 1593.
    [15] Braun U, Schartel B, Journal of Fire Sciences 23 (2005) 5.
    [16] Balabanovich AI, Journal of Fire Sciences 22 (2004) 163
    [17] Balabanovich AI, Levchik GF, Yang JH, Journal of Fire Sciences 20 (2002) 519.
    [18] Bratm U, Schartel B, Macromolecular Chemistry andPhysics 205 (2004): 2185.
    [19] Simonson M, Tullin C, Stripple H, Chemosphere 46 (2002) 737:
    [20] Levchik SV, Bright DA, Moy P, Dashevsky S, Journal of Vinyl & Additive Technology 6 (2001) 123.
    [21] Murashko EA, Levchik GF, Levchik SV, Bright DA, Dashevsky S, Journal of Fire Sciences 16 (1998) 233.
    [22] Boscoletto AB, Checchin M, Milan L, Pannocchia P, Tavan M, Camino G, Luda MP, Journal of Applied Polymer Science 67 (1998) 2231.
    [23] Benrashid R, Nelson GL, Ferm DJ, Journal of Fire Sciences 12 (1994) 529.
    [24] Boscoletto AB, Checchin M, Tavan M, Camino G, Costa L, Luda MP, Journal of Applied Polymer Science 53 (1994) 121.
    [25] Boscoletto AB, Checchin M, Milan L, Camino G, Costa L, Luda MP, Makromolecular Chemistry-M. Symposia 74 (1993) 35.
    [26] Roma P, Luda MP, Camino G, Makromolecular Chemistry-M. Symposia 74 (1993) 299.
    [27] Checchin M, Boscoletto AB, Camino G, Luda MP, Costa L, Makromolecuiar Chemistry-M. Symposia 74 (1993) 311.
    [28] Dittermar U, Hendan BJ, Florke U and Marsmann HC Journal of Organometallic Chemistry, 489(1995) 185
    [29] Matejka L, Dukh O, Hlavata D, Meissner B and Brus J Macromolecules, 34(2001) 6904
    [30] Kim KI, An JH, Lee JY and Kim JH, Molecular Crystals And Liquid Crystals 424(2004) 25
    [31] Liu YL, Chang GP, Wu CS, Chiu YS, Journal of Polymer Science Part A-Polymer Chemistry 43(2005) 5787
    [32] Hasegawa I, Sakka S, Sugahara Y, Kuroda K, Kato C, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan 98 (7): 647-652 1990
    [33] 胡春野,袁长友,《有机硅材料》15(2001),1
    [34] Brown JF, Vogt LH, Prescott PI, Journal of the American Chemical Society 86 (1964) 1120;
    [35] Ni Y, Zheng SX, Chemistry of Materials 16 (2004) 5141-5148.
    [36] Fina A, Tabuani D, Camiato F, Frache A, Boccaleri E, Camino G, Thermochimica Acta 440 (2006): 36-42
    [37] Brick CM, Tamaki R, Kim SG, Asuncion MZ, Roll M, Nemoto T, Ouchi Y, Chujo Y, Laine RA: Macromolecules 38 (2005): 4655-4660
    [1] Hugget C, Fire and Materials 4(1980),61
    [2] Koo JH, Venumbaka S, Cassidy PE, Fitch JW, Grand AF, Bundick J Fire And Materials 24 (2000): 209
    [3] Nazare S, Kandola B, Horrocks AR Fire And Materials 26 (2002): 191
    [4] Price D, Bullett KJ, Cunliffe LK, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, Joseph P: Polymer Degradation and Stability 88 (2005): 74
    [5] Du LC, Qu BJ, Zhang M Polymer Degradation and Stability 92 (2007): 497
    [6] Camino G, Tartaglione G, Frache A, Manferti C, Costa G Polymer Degradation and Stability 90 (2005): 354
    [7] Zanetti M, Costa L : Polymer 45 (2004): 4367
    [8] ISO 5660-1993 (1993) Fire test-reaction to fire part I: Rate of heat release from building products (Cone Calorimeter Method). International Standards Organization (ISO), Geneva
    [1] Giudice CA, Benitez JC, Anti-Corrosion Methods And Materials 47(2000): 226
    [2] Bemi MG, Lawrence C J, Machin D, Advances in Colloid and Interface Science 98(2002): 217
    [3] Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD, Nature, 396(1998): 152;
    [4] Huo QS, Margolese DI, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, Petroff PM, Schuth F, Stuck5, GD, Nature, 368(1994): 317
    [5] 张学骜、吴文健、刘长利、王建方,自组装制备有机/无机层状复合材料,功能材料,2005年11期,1645~1649
    [6] 潘其维、范星河、陈小芳、周其凤,六面体倍半硅氧烷(POSS)杂化材料化学进展,2006年05期,616~621
    [7] Cassagneau T, Caruso F. Journal of the American Chemical Society, 124(2002): 8172~8180
    [8] Naka K, Itoh H, Chujo Y Nano Letters, 2(2002): 1183~1186
    [9] Zheng L, Hong S, Cardoen G, Burgaz E, Gido SP, Coughlin EB Macromolecules 37(2004): 8606-8611
    [10] Kaneko Y, Iyi N, Matsumoto T, Fujii K, Kurashima K, Fujita T, Journal of Materials Chemistry 13(2003), 2058~2060
    [11] Liu L, Song L, Zhang S, Guo H, Hu Y, Fan WC Materials Letters 60(2006): 1823-1827
    [12] Liu L, Hu Y, Song L, Chen H, Nazare S, Hull TR. Materials Letters 61(2007): 1077-1081
    [13] Gravel MC, Zhang C, Dinderman M, Laine RM, Applied Organometallic Chemistry 13(1999) 329;
    [14] R. M. Laine, C. X. Zhang, A. Sellinger, L. Viculis, Applied Organometallic Chemistr 12(1998) 715;
    [15] F. J. Feher, K. D. Wyndham, Chemical Communications 3(1998) 323;
    [16].Wang X. Q, Naka K, Zhu M. F, Itoh H, Chujo Y., Langmuir 21(2005) 12395.
    [17].Weidner R, Zeller N, Deubzer B, Frey V, US Pat., 5, 047, 492, 1991.
    [18] Waddon AJ, Coughlin EB Chemistry of Materials, 15(2003), 4555-4561

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700