超声评价早期糖尿病心肌病的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景 糖尿病(DM)是一种常见的慢性代谢性疾病,现已经成为世界范围内日益严重的公共健康问题,严重危害着人类健康。糖尿病心肌病是DM的主要并发症之一,它以心肌肥大、心肌及间质纤维化、细胞水平钙转运缺陷、心肌收缩蛋白胶原形成和脂肪酸代谢异常等为特征的一种独特的心肌病变。和DM肾病、DM视网膜病变等其它并发症相比,糖尿病心肌病提出较晚,研究不够深入,发病隐匿,早期诊断方法不够完善,临床重视程度不够,因此,常常受到忽视而最终导致充血性心力衰竭(CHF)。糖尿病心肌病引起的CHF已经占DM死亡总数的30%以上,早期诊断和治疗已经成为刻不容缓的课题,为了更加深入了解糖尿病心肌病的超声表现,我们设计了该课题。
     目的 本实验采用组织多普勒超声(TDI)、彩色多普勒超声(CDFI)等手段来评价链尿佐菌素(STZ)诱导的DM兔早期糖尿病心肌病左室舒张和收缩功能障碍出现、发展的过程和规律,以及两种多普勒超声在诊断方面的价值,结合病理探讨糖尿病心肌病心功能障碍发生的机制。利用超声组织定征(UTC)评价早期实验性糖尿病心肌病心肌声学密度的改变,探讨UTC评价糖尿病心肌病的价值。力图为临床诊断糖尿病心肌病提供重要参考依据。以便早期诊断,及时进行预防和治疗,以延缓糖尿病心肌病的进程,最终减少DM的死亡率。
     方法 采用链尿佐菌素(STZ)复制新西兰实验用大白兔DM模型。56只实验兔用查表法随机抽出10只,作为第1组(正常对照组),其余46只进行DM模型复制,STZ用0.1mmol/L无菌枸橼酸钠缓冲液新鲜配成2%溶液,调节PH至4.5,滤菌器过滤除菌。实验兔禁食18小时,按65mg/kg体重耳缘静脉一次快速注射STZ溶液,24小时内和第5天查血糖,24小时内随机血糖大于340mg/100ml,稳定5天即可作为成功模型。模型复制成功后用查表法随机分成4组,即2周、4周、6周、8周检测组。正常对照组同时经耳缘静脉一次快速注射相应量的生理盐水。使用美国GE公司System Five全身数字化彩色多普勒超声仪,探头频率1.7-10MHz。同时,System Five连接外置式ECHOPAC工作站,图像可存入后进行CDFI、TDI和M型超声分析。System Five连接
    
    第三军医大学硕士研究生论文
    Dazzale数字图像采集器,采集左室短轴和左室长轴舒张末期切面,存入计算
    机,利用Photoshop6.0进行灰阶分析。实验过程中仪器增益、深度等设置保
    持不变。超声检查完毕后,耳缘静脉静推50ml空气处死动物,迅速开胸,摘
    取心脏,生理盐水冲洗干净后用10%福尔马林固定,48h后常规进行苏木精、
    曙红染色(HE)、万吉森染色(vG),光镜检查摄片,观察心脏病理改变。
     结果
     (1) TD工检测到的糖尿病心肌病局部舒张功能减退均出现在模型成功复
    制后第4周,表现为:左室侧壁和后间隔近二尖瓣环处舒张早期峰速度(Ea)
    显著降低(尸<0.05),舒张晚期峰速度(Aa)在所有组中均无明显变化;Ea/Aa
    比值显著减小(P<0.05),Ea、Aa峰倒置,即Ea/Aa<1。随时间推移,以上
    舒张功能损害有加重趋势。
     (2)TDI检测到的糖尿病心肌病局部收缩功能减退均出现在模型成功复制
    后第6周,表现为:左室后间隔和侧壁近二尖瓣环处局部收缩峰速度(Sa)显
    著降低,二尖瓣环水平四个不同部位平均收缩速度值(Vm)显著减小。后间隔
    近二尖瓣环处射血前时间(PEP)在第8周显著延长,侧壁近二尖瓣环处局部
    射血时间(ET)在第8周显著延长,从而可能导致了左室壁收缩的不同步(以
    上所有尸<0.05)。随时间推移,以上收缩功能损害有加重趋势。
     (3)cDF工检测到的左室整体舒张功能的减退出现在模型复制成功后4一8
    周不等,主要表现为:从第4周起,E波减速时间明显缩短(EDT),左室壁僵
    硬度显著增加;,从第6周起,舒张早期峰速度(E)、平均速度(Emean)显著
    降低,充盈晚期峰速度(A)在所有组中均无明显变化,E/A比值显著减小,E、
    A峰倒置,即E/A<1;等容舒张时间(工vRT)则在第8周显著延长(以上所有
    尸<口.OJ。随时间推移,以上舒张功能损害有加重趋势。
     (4)M型超声检测到的左室整体收缩功能的减退均出现在模型复制成功后
    第6周,主要表现为:左室整体射血分数(EFtz)及局部射血分数(LvEF)
    左室短轴缩短率(%FS)降低,左室舒、缩末径及舒、缩末体积均增加(尸<0,05)。
    而室壁厚度及每搏量(SVtz)均无显著变化。
     (5) uTc视频法分析得出:心肌灰阶均值、最大灰阶及灰阶离散度均在模
    型复制成功后第4周均出现显著增加(p<’ 0.0的,而最小灰阶在整个实验过程
    中无显著变化。
    
    第三军医大学硕士研究生论文
     (6)病理检查结果:HE染色可见早期有心室肌细胞肥大,轻度浊肿,胞
    质内出现空泡,微血管充血;以后进一步出现细胞边界变得模糊不清,横纹显
    示不清,心肌纤维及间质纤维结构紊乱,各种早期的改变任可见到,但所有实
    验组冠状动脉均未见动脉粥样硬化斑块,排除了冠状动脉硬化性心脏病的可
    能。VG染色揭示心肌间质的胶原沉积随病期延长而增多,到第8周沉积的胶原
    呈粗大条索状,分布范围增加。
     结论
     (1)糖尿病心肌病左室舒张功能减退以舒张早期峰速度、Ea/Aa或E/A
    比值以及E波减速时间显著
BACKGROUND Diabetes mellitus is a common chronic metabolic disease. It has becoming a severe public health problem. Diabetic cardiomyopathy is a major complication of diabetes mellitus which is a unique cardiomyopathy characterized by myocardium hypertrophy , myocardium fibrosis, transporting defect of calcium of cells level, formation of collagen of contraction protein of myocardium and abnormality of fatty acid metabolism . It is difficult to detect diabetic cardiomyopathy in the earlier period so that it has usually been neglected and could result in congestive heart failure. The death number of congestive heart failure of diabetic cardiomyopathy was over 30% of common death number of diabetes mellitus. Diagnosis and therapy for diabetic cardiomyopathy in the earlier period had already become a pressing problem. To comprehend the ultrasonic manifestation of diabetic cardiomyopathy more deeply, we designed this topic.
    AIM Doppler tissue imaging and colour doppler flow imaging were used to evaluate the diastole and systole dysfunction of left ventricle of diabetic cardiomyopathy induced by STZ in rabbits. The value of this two kind of doppler ultrasound in diagnosis of diabetic cardiomyopathy was matched. The mechanism of dysfunction of left ventricle of diabetic cardiomyopathy was discussed conjugating the display of pathology . Acoustics density of myocardium of diabetic cardiomyopathy was assessed by ultrasonic tissue characterization (UTC) and the value of UTC in diagnosis of earlier period of diabetic cardiomyopathy was appraised too. Our aim was to try hard to provid important useful assisted examination result for clinical doctor, then diabetic cardiomyopathy
    
    
    
    patients could be diagnosed and treated in the earlier period to postpone the development of disease and to reduce the death rate of diabetes mellitus at the last.
    MATERIALS AND METHODS Streptozotocin (STZ) was used to induce diabetes mellitus in New Zealand rabbits. Rabbits whose random sugar in 24 hours was over 340mg/100ml and blood sugar stabilizing for 5 days could be taken as successful model. Cardiac function was examined by DTI.CDFI and M-ultrasound in rabbits model at 2,4,6,8 weeks after the model was established successfully. Digit ultrasound meter GE System Five was used in this experiment, the frequency of detecting head is 1. 7-10MHz. It was contacted with extra-ECHOPAC workstation which pictures could be put in and analysis could be done by CDFI and DTI. In the same time , System Five was contacted with imaging collection meter which could collect imaging of left ventricle of short and long axial diastasis cut from ultrasonic meter. Analysis of gray scala was done by Photoshop6. 0. The layout of meter such as length and gain kept unchanged in the whole process of experiment. Rabbits were killed after ultrasonic examination. Then hearts of rabbits were stained by hematoxylin and eosin(HE) and Van Gieson (VG). Pathologic alteration of hearts were checked by light microscope.
    RESULTS (1) Diastole dysfunction of left ventricle was discovered in STZ-induced diabetic rabbits detected by tissue doppler imaging at the 4th week. They were showed that not only the tite of early period of diastole peak velocity (Ea) in mitral ring lateral wall and post-interval of left ventricle , but also the tite of Ea/Aa reduced notably. (2) Systolic dysfunction of left ventricle was discovered in STZ-induced diabetic rabbits detected by tissue doppler imaging at the 6th week. They were showed that local contraction peak velocity (Sa) of lateral wall and post-septum of mitral ring were decreased strikingly . Mean systole velocity of four various parts of mitral ring
    
    
    
    (Vm) was reduced at the 6th week. Pre-ejection period time (PEP) at post-septum and ejection time(ET) elongated at lateral wall at the 8th week. (3) Diastole dysfunction of left ventricle was founded in STZ-induced diabetic rabbits detected by colour doppler imaging at the 4-8th week. They were showed that deceleration time of E wave (EDT)was shortened at the 4th week. Chamber
引文
1.胡传峰,李立明.2型糖尿病体质因素流行病学研究进展.中国糖尿病杂志,2001,9(1):52-54.
    2.钱荣立.既往开来加强对糖尿病及其并发症防治的临床研究.中国糖尿病杂志,2001,9(1):3.
    3. David SH. Diabetic Cardiomyopathy, a unigue entity or a complication of coronary artery disease. Diabetes Care, 1995;18:708.
    4. Regan TJ, Lyons MM, Ahmed GS. Evidence of cardiomyopathy in familial diabetes mellitus. J Clin Invest, 1977;60:885.
    5. Yellin, E.L., Nikolic, S., and Frater, R.W.M. Left ventricular filling dynamics and diastolic function. Cardiovasc. Dis. 32:247,1990.
    6.张宏,白景文,于德民.糖尿病性肌病的超微病理结构及可能机制.中国糖尿病杂志,2002,10(6):326-329.
    7. Harmon JS, Gleason CE, Tanaka Y. et al. In vivo prevention of hyperglycemia also prevents glucoloxic effects on PDX-1 and insulin gene expression. Diabetes, 1999 Oct, 48(10):1995-1999.
    8. Rodrigues B, Cam MC, McNeill JH. Link Out Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 1998 Mar;180(1-2):53-7.
    9. Vecchini A, Del Rosso F, Binaglia L, et al. LinkOut Molecular defects in sarcolemmal glycerophospholipid subclasses in diabetic cardiomyopathy. J Mol Cell Cardiol 2000 Jun; 32(6): 1061-74.
    10. Sambandam N, Abrahani MA, St Pierre E, Al-Atar O, Cam MC, Rodrigues B.Localization of lipoprotein lipase in the diabetic heart: regulation by acute changes in insulin. Arterioscler Thromb Vasc Biol 1999 Jun;19(6):1526-34.
    11. Tribulova N, Ravingerova T, Volkovova K, et al. Resistance of diabetic rat hearts to Ca overload-related injury. Histochemical and ultrastructural study. Diabetes Res Clin Pract 1996 Jul; 31 Suppl: S113-22.
    12. Welt K, Fitzl G, Schepper A.Experimental hypoxia of STZ-diabetic
    
    rat myocardium and protective effects of Ginkgo biloba extract. Ⅱ. Ultrastructural investigation of microvascular endothelium. Exp Toxicol Pathol 2001 Feb;52(6):503-12.
    13. Fitzl G, Martin R, Dettmer D, et al. Protective effects of Gingko biloba extract EGb 761 on myocardium of experimentally diabetic rats. Ⅰ: ultrastructural and biochemical investigation on cardiomyocytes. Exp Toxicol Pathol 1999 May;51(3):189-98.
    14. Yecchini A, Del Rosso F, Binaglia L, et al. LinkOut Molecular defects in sarcolemmal glycerophospholipid subclasses in diabetic cardiomyopathy. J Mol Cell Cardiol 2000 Jun;32(6):1061-74.
    15. ambandam N, Abrahani MA, St Pierre E, Al-Atar O, Cam MC, Rodrigues B.Localization of lipoprotein lipase in the diabetic heart: regulation by acute changes in insulin. Arterioscler Thromb Vasc Biol 1999 Jun;19(6):1526-34.
    16.姚建,陈名道.糖尿病肾病及早期预防.中华内分泌代谢杂志,2002,18 (4):330-331.
    17. UK prospective diabetes study(UKPDS) group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). Lancet, 1998,352:837-840.
    18.王伯云,李玉松,黄高升,张远强主编,常用的特殊染色方法,病理学技术,人民卫生出版社,2000年6月第一版:142-147.
    19.程明亮,刘三都主编,肝纤维化的病理学研究,肝纤维化的基础研究及临床,人民卫生出版社,1996年8月第一版:118-121.
    20.孟萍.内分泌及代谢疾病动物模型.见:魏弘主编.实验动物学.成都:四川科学技术出版社,1998,第一版,349.
    21. Karnafel W.Diabetic cardiomyopathy Pathophysiology and clinical implications. Przegl Lek, 2000;57 Suppl 4:9-11.
    22. Tribulova N, Ravingerova T, Volkovova K, et al. Resistance of diabetic rat hearts to Ca overload-related injury. Histochemical and ultrastructural study. Diabetes Res Clin Pract 1996 Jul;31 Suppl:S113-22.
    23. Welt K, Fitzl G, Schepper A.Experimental hypoxia of STZ-diabetic
    
    rat myocardium and protective effects of Ginkgo biloba extract. Ⅱ. Ultrastructural investigation of microvascular endothelium. Exp Toxicol Pathol 2001 Feb;52(6):503-12.
    24. Fitzl G, Martin R, Dettmer D, et al. Protective effects of Gingko biloba extract EGb 761 on myocardium of experimentally diabetic rats. Ⅰ: ultrastructural and biochemical investigation on cardiomyocytes. Exp Toxicol Pathol 1999 May; 51(3): 189-98.
    25. Yellin, E.L.,Nikolic, S., and Frater, R.W.M. Left ventricular filling dynamics and diastolic function. Cardiovasc. Dis. 32:247,1990.
    26. Little, W.C.Enhanced load dependenced of relaxation in heart failure: Clinical implications. Circulation 85: 2326, 1992
    27. Courtois, M., Mechem, C.J.,Barzilai, B.,et al. Delineation of determinants of left ventricular early filling: Saline versus blood infusion Circulation 90:2041,1994.
    28. Appleton, C.P.Doppler assessment of left ventricular diastolic function: The refinements continue. J.Am.Coll.Cardiol.21:1697,1993.
    29. A ppleton, C.P.,and Hatle, L.K. The natural history of left ventricular filling abnormalities: Assessment by two-dimensional and Doppler echocardiography. Echocardiography 9:437,1992.
    30. Ohno, M.,Cheng, C.P.,and Little, W.C.Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure Circulation 89:2241,1994
    31. Hori, M., Kitakaze, M., Ishida, Y., et al. Delayd end ejection increased isovolumic ventricular relaxation rate in isolated perfused canine hearts. Circ. Res. 68: 300-308, 1991.
    32. Leite-Moreira, A.F., and gillebert,T.C.Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation 90: 2481-2491, 1994.
    33. Flarsheim CE, Grupp IL, Matlib MA. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am J Physiol 1996 Jul; 271(1Pt 2): H192-202.
    
    
    34. Fitzl G, Martin R, Dettmer D, et al. Protective effects of Gingko biloba extract EGb 761 on myocardium of experimentally diabetic rats. Ⅰ: ultrastructural and biochemical investigation on cardiomyocytes. Exp Toxicol Pathol 1999 May;51(3):189-98.
    35. Malhotra A, Sanghi V.Regulation of contractile proteins in diabetic heart. Cardiovasc Res 1997 Apr; 34(1): 34-40.
    36. Malhotra A, Lopez MC, Nakouzi A.Troponin subunits contribute to altered myosin ATPase activity in diabetic cardiomyopathy. Mol Cell Biochem 1995 Oct 18; 151(2): 165-72.
    37. Golfman LS, Takeda N, Dhalla NS.Cardiac membrane Ca(2+)-transport in alloxan-induced diabetes in rats. Diabetes Res Clin Pract 1996 Jul;31 Suppl: S73-7.
    38. Hoit BD, Castro C, Bultron G, et al. Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail 1999 Dec;5(4):324-33.
    39. Joffe Ⅱ, Travers KE, Perreault-Micale CL, et al. Abnormal cardiac function in the streptozotocin-induced non-insulin-dependent diabetic rat: noninvasive assessment with doppler echocardiography and contribution of the nitric oxide pathway. J Am Coll Cardiol 1999 Dec;34(7):2111-9.
    40.曾欣,舒先红,何梅先,等.多普勒组织成像评价左室整体功能最佳部位的选择.中国超声医学杂志,2002,18(2):105-107.
    41. Dermeaux G, Ovize M, Loufoua J, et al. Doppler tissue imaging quantifes regional wall motion during myocardial ischemia and repercussion. Circulation, 1998,97:1970-1977.
    42. Assmann PE, Slager CJ, Dreysse, et al. Two-dimensional echocardiographic analysis of the dynamic geometry of the left ventricular: The basis for an improve model of wall motion. J Am Soc Echocardiogr, 1988;1:393-405.
    43. Slager CJ, Hooghoudt TE, Serruys PW, et al. Quantitative assessment of regionalleft ventricular motion using endocardial landmarka. J Am Coll Cardiol, 1986;7:317-326.
    
    
    44. Issaazk, Munoz del Romeral L, Lee E, et al. Ouantation of the motion of the cardiac base in normal subjects by Doppler echocardiography, J Am Soc Echocardiogr, 1993,6:166-167.
    45.陈立军,李守军,李永清,等.心肌存活性对冠状动脉旁路移植术左室整体功能的影响.中华超声影像学杂志,2000,9(3):133-136.
    46. Rambaldi R, Poldermans D, Vletter WB, et al. Doppler tissue imaging in the new era of digital echocardiography. 6 Ital Cardol, 1997,27:827-839.
    47.田新桥,钱蕴秋.多普勒组织成像在冠心病诊断中的应用及进展.中国超声医学杂志,2000,16(2):153-155.
    48.王志刚.超声组织定征:射频法与视频法的临床应用.中华超声影像学杂志.2001,10(6):325-327.
    49. Scheter So, Teichkloz LE, Klig V, et al. Ultrasonic tissue characterization review of a noninvasive technique for assessing myocardial viability. Echocardiography, 1996, 69:415-430.
    50. Morales MA, Ferdeghini EM, Piacenti M, et al. Age dependency of myocardial struture: a quantitative two-dimensional echocardiographic study in a normal population. Echocardialgraphy, 2000 Apt, 17(3):201-8.
    51. Lin LC, Yen RF, Hwang JJ, et al. Ultrasonic tissue characterization evaluates myocardial viability and ischemia in patients with cornonary artery disease. Ultrasound Med Biol. 2000 Jun, 26(5): 259-69.
    52.夏红梅,高云华,扬成业.声学密度定量评价尿毒症性心肌损害的临床研究.中国超声医学杂志,1999,15(7):500-503.
    53.刘汉英.综合超声技术对心肌疾患的诊断价值.中国循环杂志,1996,11:252-254.
    54. Mimbs JW, O'Donnell M, Baunens D, et al. The dependence of ultrasonic attenuation and backscatter on collagen content in dog and rabbit hearts. Circ Res, 1980,47:49-58.
    55. Doering CW, Jalil JE, Janiki TS, et al. Collagen network remodeling and diastolic stiffness of rat left ventricle with pressure
    
    overload hypertrophy. Cardiovasc Res, 1988,22:686-695.
    56.胡英,沈学东,蔡乃绳等.超声心肌密度定量与心肌间质Ⅰ、Ⅲ型胶原的关系.中华超声影像学杂志,2000,3:182-183.
    57. Obrien PD, Obrien JR WD, Rhyne TL, et al. Relation of ultrasonic backscatter and acoustic propagation properties to myofibrillar length and myocardial thickness. Circulation, 1995, 91: 171-175.
    58. Takiuchi, Ito H, Iwakura K, et al. Ultrasonic tissue characterization predicts myocardial viability in early stage of reperfused acute myocardial infarction Circulation, 1998,97:356-362.
    59. Pinamonti B, Picano E, Ferdeghini EM, et al. Quantitative texture analysis in two dimensional echocardiaography: Application to the diagnosis of myocardial amyloidosis. J AM Coll Cardiol, 1989, 14(3): 66-71.
    60. Hopkins WE, Waggoner AD, gussak H, et al. Quantitative ultrasonic tissue characterization of myocardium in cyanotic adults with an unrepaired congenital heart defect. Am J Cardiol, 1994, 74(9): 930-934.
    61. Davison G, Hall CS, miller JG, et al. Cellular mechanisms of captopril-induced matrix remodeling in Syrian hamster cardiomyopathy. Circulation, 1994, 90(3): 1334-1342.
    62.王玉,朱文玲.声学密度定量技术在急性心肌梗塞早期预测再灌注心肌的存活.中国超声医学杂志,2000,11:838-841.
    63.陈祎,沈学东,杨英珍等.心肌组织特征超声显像评价临床急性病毒性心肌炎.中国超声医学杂志,2000,8:568-570.
    64. Di Bello V, Talarico L, Picano E, et al. Increased echodensity of myocardial wall in the diabetic heart: an ultrasound tissue characterization study. J Am Coll Cardiol 1995 May;25(6):1408-15.
    65. Di Bello V, Giampietro O, Matteucci E, et al. Ultrasonic tissue characterization analysis in type 1 diabetes: a very early index of diabetic cardiomyopathy? G Ital Cardiol 1998 Oct; 28(10): 1128-37.
    66.章天乔.糖尿病患者左心室心肌超声背向散射积分心动周期变动量与左
    
    心室舒张功能的关系探讨.中国超声医学杂志,2002年,18(5):363-366.
    67. Schecter SO, Teichholz LE, Klig V, et al. Ultrasonic tissue characterization: Review of a non-invasive technique for assessing myocardial viability. Echocardiography, 1996, 13(4): 415-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700