舒张性心力衰竭的发病机制及药物干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:兔舒张性和收缩性心衰模型的建立及心室重构的比较
     【研究目的】分别建立兔舒张性心衰和收缩性心衰的模型,并比较它们之间心功能和心室重构的差异。
     【研究方法】新西兰白兔随机分为3组:假手术组、收缩性心衰组和舒张性心衰组(每组8只),采用腹主动脉缩窄术建立舒张性心衰模型,用主动脉瓣破瓣术建立收缩性心衰模型;使用心脏彩超和血流动力学检测心功能,用酶联免疫吸附法测定血清中B型脑钠肽、肾上腺素和去甲肾上腺素的含量;用HE染色和VG染色观察各组心肌组织的病理情况,用天狼猩红染色测定胶原面积(CA)、容积分数(CVF)及Ⅰ/Ⅲ型胶原的面积比值,用羟脯氨酸法测定心肌胶原含量(CC)。
     【研究结果】术后12周,与假手术组相比,舒张性心衰组左室壁明显增厚,心肌僵硬度增大,E/A比值明显增大,等容舒张期时间明显延长,心室舒张末压明显增大而射血分数正常,间质胶原含量、面积、容积分数及Ⅰ/Ⅲ型面积比值均显著升高(P均<0.01);收缩性心衰组左心室腔明显扩大,心室射血分数降低,心室舒张末压明显增大,间质胶原含量、面积及容积分数明显升高,但Ⅰ/Ⅲ型胶原面积比值下降(P<0.05或P<0.01)。此外,两心衰组的左房内径及血清中的B型脑钠肽、肾上腺素和去甲肾上腺素的含量均较假手术组显著升高(P<0.01)。
     【结论】成功构建了兔舒张性心衰和收缩性心衰模型,收缩性心衰模型表现为左室腔明显扩大,室壁未见增厚;而舒张性心衰模型左室壁明显增厚,心腔未见扩大,且心肌间质重构较前者更为显著。
     第二部分:兔舒张性和收缩性心衰模型之间钙渗漏特点的比较
     【研究目的】比较兔舒张性心衰和收缩性心衰模型之间钙渗漏特点以及相关调节蛋白表达和活性的差异并探讨其可能的机制。
     【研究方法】用钙离子荧光成像仪进行肌浆网钙渗漏的检测,采用分子生物学技术(RT-PCR和Western blot)检测各组心肌组织中FK506结合蛋白12.6(FKBP12.6)、Ca~(2+)/钙调素依赖的蛋白激酶Ⅱ(CaMKⅡ)、蛋白激酶A(PKA)、兰尼碱受体(RyR2)及其磷酸化位点表达和磷酸化状态,利用γ-32P底物掺入法测定CaMKⅡ、PKA的活性。
     【研究结果】与假手术组相比,在舒张性心衰组中没有检测到明显的肌浆网钙渗漏,FKBP12.6在心肌中的表达总量显著下降(P<0.05),PKA的表达和活性均明显升高(P<0.05或P<0.01),以及该酶在RyR2的磷酸化位点(RyR2-P2809)的磷酸化状态也显著增高(P<0.05),而CaMKⅡ的表达和活性及其在RyR2的磷酸化位点(RyR2-P2815)的磷酸化状态则无明显改变;在收缩性心衰组中检测出异常增高的钙渗漏(P<0.01),FKBP12.6在心肌中的总表达量及其与RyR2的结合量均显著下降(P<0.05),PKA和CaMKⅡ的表达和活性及其它们在RyR2的磷酸化位点的磷酸化状态均显著升高(P<0.05或P<0.01)。
     【结论】在收缩性心衰模型中发现了异常增高的钙渗漏,而在舒张性心衰模型中并未检测到类似的现象,这可能是舒张性心衰保留有正常的心室收缩功能的原因之一,CaMKⅡ在肌浆网钙渗漏中可能起着更为关键的作用。
     第三部分:兔舒张性和收缩性心衰模型之间钙回摄功能的比较
     【研究目的】比较兔舒张性心衰和收缩性心衰模型之间钙回摄功能及其钙调节相关蛋白的表达和活性的差异并探讨其可能的机制。
     【研究方法】用钙离子荧光成像仪进行肌浆网钙回摄功能的检测,采用分子生物学技术(RT-PCR和Western blot)检测各组心肌组织中肌浆网钙泵(SERCA2a)、受磷蛋白(PLB)、Ca~(2+)/钙调素依赖的蛋白激酶Ⅱ(CaMKⅡ)、蛋白激酶A(PKA)和蛋白磷脂酶(PP1α)等蛋白的表达,利用γ-32P底物掺入法测定CaMKⅡ、PKA的活性。
     【研究结果】与假手术组相比,舒张性心衰组和收缩性心衰组中钙回摄量均显著下降(P<0.01),SERCA2a在心肌中的表达量和活性也均显著下降(P<0.05),且PKA的表达和活性均明显升高(P<0.05或P<0.01),PP1α的表达量也显著升高(P<0.05)。在舒张性心衰组中NCX、PLB及其磷酸化位点(Ser-16)的表达水平和磷酸化状态无明显改变;而在收缩性心衰组中PLB及其磷酸化位点(Ser-16)的表达水平和磷酸化状态也明显降低(P<0.05),但NCX的蛋白表达水平却明显升高(P<0.05)。
     【结论】舒张性心衰和收缩性心衰模型中肌浆网钙回摄功能、SERCA2a的表达和活性均显著下降,收缩性心衰模型中NCX的表达明显升高;舒张性心衰模型中NCX的表达无明显改变,这可能是两种心衰发病机制不同的原因之一。
     第四部分:阿托伐他汀对兔舒张性心衰模型心室重构及钙调节相关蛋白表达的影响
     【研究目的】研究阿托伐他汀对舒张性心衰心室重构及钙调节相关蛋白表达的影响。【研究方法】新西兰白兔随机分为3组:假手术组、舒张性心衰组和阿托伐他汀组(每组8只),采用腹主动脉缩窄术建立舒张性心衰模型,阿托伐他汀组腹主动脉缩窄术后24h给予阿托伐他汀5mg.kg~(-1).d~(-1),通过心脏超声和血流动力学检查比较三者心功能的差异,通过HE染色和VG染色观察各组心肌组织的病理情况的差异,通过心肌胶原含量(CC)测定(羟脯氨酸法)和天狼猩红染色(PSR)测定胶原面积(CA)、容积分数(CVF)及Ⅰ/Ⅲ型胶原的面积比值比较三者间质重构的差异。通过Western blot比较各组心肌组织中肌浆网钙泵(SERCA2a)、蛋白激酶A(PKA)和蛋白磷脂酶(PP1α)表达的差异。
     【研究结果】术后12周,与假手术组相比,舒张性心衰组心超检查发现室间隔和左室后壁明显增厚,左房内径明显扩大,E/A比值明显升高、等容舒张期时间显著延长(P均<0.01),而射血分数正常;血流动力学左室舒张末压力明显升高,左室松弛时间常数(tau)也显著延长(P<0.01);间质胶原含量、总面积、容积分数及Ⅰ/Ⅲ型面积比值均显著升高(P<0.01),心肌组织中SERCA2a蛋白表达明显下降,PKA和PP1α蛋白表达则明显升高(P<0.05)。阿托伐他汀组的室间隔、左室后壁、间质胶原含量、总面积和容积分数均明显低于舒张性心衰组,但略高于假手术组(P<0.05或P<0.01),而上述其余指标与假手术组比无明显改变。
     【结论】:阿托伐他汀可以显著改善压力负荷导致的心室重构并能调节其钙调节相关蛋白的表达,从而延缓整个病理过程发展到舒张性心衰。
     第五部分:替米沙坦对兔舒张性心衰模型心室重构及钙调节相关蛋白表达的影响
     【研究目的】探讨替米沙坦对舒张性心衰的心室重构及钙调节相关蛋白表达的影响。
     【研究方法】新西兰白兔随机分为3组:假手术组、舒张性心衰组和替米沙坦组(每组各8只),舒张性心衰组采用腹主动脉缩窄术,替米沙坦组于腹主动脉缩窄术后给予替米沙坦10mg.kg~(-1).d~(-1),通过心脏超声和血流动力学检测比较三者心功能的差异,通过HE染色和VG染色比较各组心肌组织的病理情况的差异,通过心肌胶原含量(CC)测定(羟脯氨酸法)和天狼猩红染色测定胶原面积(CA)、容积分数(CVF)及Ⅰ/Ⅲ型胶原的面积比值比较三者间质重构的差异,通过Western blot比较各组心肌组织中SERCA2a、PKA和PP1α表达的差异。
     【研究结果】术后12周左右,舒张性心衰组与假手术组相比,心超显示左室后壁和室间隔明显增厚,左房内径显著增大,E/A比值明显升高、等容舒张期时间显著延长(P均<0.01),但射血分数正常;血流动力学显示左室舒张末压力明显升高,左室松弛时间常数也显著延长(P<0.01);间质胶原总面积、胶原含量、容积分数及Ⅰ/Ⅲ型胶原面积比值均显著升高(P均<0.01),心肌组织中SERCA2a蛋白表达显著下降,PKA和PP1α蛋白表达则明显升高(P均<0.05)。而替米沙坦组的室间隔厚度、左室后壁厚度、间质胶原总面积、胶原含量和容积分数均明显低于舒张性心衰组,但又略高于假手术组(P<0.05或P<0.01),而上述其余指标与假手术组相比则无明显改变。
     【结论】:替米沙坦可以显著改善压力负荷诱导的心室重构并能调节其钙调节相关蛋白的表达,从而延缓整个病理过程发展到舒张性心衰。
PartⅠ: Establishment and comparison in rabbit models with diastolic heart failure and systolic heart failure
     Objective: To establish the diastolic heart failure (DHF) and systolic heart failure (SHF) rabbit models respectively, and to compare the differences in cardiac function and ventricular remodeling between them.
     Methods: New Zealand white rabbits were randomly divided into three groups (n=8 in each group): sham operation (SO) group, DHF group, and SHF group. The DHF model was established by abdomial aorta constriction, and the SHF model was established by aortic insufficiency. Cardiac function was measured by echocardiography and hemodynamic assays. The BNP (B-type brain natriuretic peptide), NE (norepinephrine), and EPI (epinephrine) were measured by Enzyme-Linked Immunosorbent Assays (ELISA). The pathological stutas was observed by HE stain and VG stain. The collagen content (CC) was detected through hydroxyproline colorimetric assay and collagen area (CA), collagen volume fraction(CVF) and area ratio ofⅠtoⅢtype collagen were detected by PSR stain.
     Results: After surgery 12 weeks, compared with the SO group, there was significantly increased ventricular wall thickness and stiffness, increased E/A and LVEDP, prolonged IVRT and tau (P<0.01), but normal left ventricular ejection fraction (LVEF), and significantly increasing CC, CA, CVF and area ratio ofⅠtoⅢtype collagen in DHF group(P<0.01); there were significantly enlarged left ventricular chamber, decreased LVEF, increased LVEDP, and significantly increasing collagen content, CA, CVF but decreased ratio ofⅠtoⅢtype collagen in SHF group(P<0.05 or P<0.01). Moreover, there were increased LAd, BNP, NE and EPI in both of DHF and SHF groups (P<0.01).
     Conclution: The DHF and SHF rabbit models were established successfully, there was enlarged left ventricular chamber and unchanged ventricular wall thickness in the SHF model; whereas there was increased ventricular wall thickness and unchanged ventricular chamber in the DHF model, and more severe interstitial remodeling than that in the former.
     PartⅡ: The differences in sarcoplasmic reticulum Ca~(2+) leak characters between systolic and diastolic heart failure rabbit models
     Objective: To compare the differences in Ca~(2+) leak characters and the expression and activities of the related proteins, and to investigate the potential mechanisms.
     Methods: The SR Ca~(2+) leak was measured with a calcium imaging device. The expression of FK-506 binding protein 12.6 (FKBP12.6), Ca~(2+)/calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA), ryanodine receptor (RyR2) and its phosphorylation sites were evaluated by RT-PCR and Western blots. The activities of PKA and CaMKⅡwere detected byγ-32P substrate incorporation.
     Results: Compared with the SO group, in the DHF group, there was reduced total amount of FKBP12.6 (P<0.05), increased expression and activity of PKA (P<0.05 or P<0.01) and its phosphorylation site RyR2-P2809 in the RyR2 (P<0.05), but no prominent Ca~(2+) leak; whereas in the SHF group, there was significantly enhanced SR Ca~(2+) leak (P<0.01), reduced total amount of FKBP12.6 and association amount of FKBP12.6-RyR2 (P<0.05), increased expression and activity of PKA and CaMKII and their phosphorylation status in the RyR2-P2809 and RyR2-P2815 (P<0.05 or P<0.01).
     Conclution: In the SHF group, there was abnormal enhanced SR Ca~(2+) leak, but the prominent SR Ca~(2+) leak is not observed in DHF model, which may be one of the reasons in preserved systolic function, and CaMKII possibly plays more important role in SR Ca~(2+) leak.
     PartⅢ: The differences in sarcoplasmic reticulum Ca~(2+) re-uptake function between systolic and diastolic heart failure rabbit models
     Objective: To compare the differences in calcium re-uptake function and the expression and activities of the calcium regulation related proteins, and to investigate the potential mechanisms.
     Methods: The SR Ca~(2+) re-uptake function was measured with a calcium imaging device. The expression of sarcoplasmic reticulum calcium adenodine triphosphatase2a (SERCA2a), CaMKII, PKA, PP1α, phospholamban (PLB) and its phosphorylation site (Ser-16) were evaluated by RT-PCR and Western blots. The activities of PKA and CaMKⅡwere detected byγ-32P substrate incorporation.
     Results: Compared with the SO group, there was reduced Ca~(2+) re-uptake amount (P<0.01) and the expression and activity of SERCA2a (P<0.05 or P<0.01), increased the expression and activity of PKA and PP1αin both of DHF and SHF groups (P<0.05 or P<0.01). In the DHF group, there was unchanged the expression of NCX, PLB and its phosphorylation site (Ser-16); whereas in the SHF group, there was reduced expression of PLB and its phosphorylation site Ser-16 (P<0.05), but significantly increased expression of NCX (P<0.05).
     Conclution: There was reduced Ca~(2+) re-uptake function, reduced expression and activities of SERCA2a in both of DHF and SHF groups, and there was increased expression of NCX in the SHF group, whereas there were unchanged expression of NCX in the DHF group, which may be one of the reasons in different pathogenesis between the two HF models.
     PartⅣ: The effect of Atorvastatin on ventricular remodeling and expression of calcium regulatory proteins in the diastolic heart failure rabbit model
     Objective: To investigate the effect of atorvastatin on ventricular remodeling and expression of calcium regulatory proteins in the diastolic heart failure rabbit model.
     Methods: New Zealand white rabbits were randomly divided into three groups (n=8 in each group): sham operation (SO) group, DHF group, and atorvastatin group. The DHF model was established by abdomial aorta constriction, and the atorvastatin model was supplied as 5mg.kg-1.d-1 after the operation of abdomial aorta constriction 24 hours. Cardiac function was measured by echocardiography and hemodynamic assays. The pathological stutas was observed by HE stain and VG stain. The collagen content (CC) was detected through hydroxyproline colorimetric assay and collagen area (CA), collagen volume fraction(CVF) and area ratio ofⅠtoⅢtype collagen were detected by PSR stain. The expression of SERCA2a, PKA and PP1αwere evaluated by Western blots.
     Results: After surgery 12 weeks, compared with the SO group, there was significantly increased IVSd, LVPWd and LAd, increased E/A and LVEDP, prolonged IVRT and tau (P<0.01), but normal left ventricular ejection fraction (LVEF), and significantly increased CC, CA, CVF and area ratio ofⅠtoⅢtype collagen (P<0.01), reduced the expression of SERCA2a (P<0.05), increased the expression of PKA and PP1α(P<0.05) in the DHF group. And IVSd, LVPWd, CC, CA, CVF in atorvastatin group were lower than those in the DHF group(P<0.01), but little higher than those in the SO group(P<0.05 or P<0.01), and the other data above-mentioned were unchanged in atorvastatin group. Conclution: Atorvastatin can significantly improve the pressure overload induced ventricular remodeling and regulate the expression of calcium regulatory proteins, thus it can postpone the whole pathological progression develop to DHF.
     PartⅤ: The effect of Telmisartan on ventricular remodeling and expression of calcium regulatory proteins in the diastolic heart failure rabbit model
     Objective: To investigate the effect of telmisartan on ventricular remodeling and expression of calcium regulatory proteins in the diastolic heart failure rabbit model.
     Methods: New Zealand white rabbits were randomly divided into three groups (n=8 in each group): sham operation (SO) group, DHF group, and telmisartan group. The DHF model was established by abdomial aorta constriction, and the telmisartan model was supplied as 10mg.kg~(-1).d~(-1) after the operation of abdomial aorta constriction 24 hours. Cardiac function was measured by echocardiography and hemodynamic assays. The pathological stutas was observed by HE stain and VG stain. The collagen content was detected through hydroxyproline colorimetric assay and collagen area (CA), collagen volume fraction(CVF) and area ratio ofⅠtoⅢtype collagen were detected by PSR stain. The expression of SERCA2a, PKA and PP1αwere evaluated by Western blots.
     Results: After about surgery 12 weeks, compared with SO group, there was significantly increased IVSd, LVPWd and LAd, increased E/A and LVEDP, prolonged IVRT and tau (P<0.01), but normal left ventricular ejection fraction (LVEF), and significantly increased CA, CC, CVF and area ratio ofⅠtoⅠtype collagen (P<0.01), reduced the expression of SERCA2a (P<0.05), increased the expression of PKA and PP1α(P<0.05) in the DHF group. And IVSd, LVPWd, CC, CA, CVF in telmisartan group were lower than those in the DHF group(P<0.01), but little higher than those in the SO group(P<0.05 or P<0.01), and the other data above-mentioned were unchanged in telmisartan group.
     Conclution: Telmisartan can significantly improve the pressure overload induced ventricular remodeling and regulate the expression of calcium regulatory proteins, thus it can postpone the whole pathological progression develop to DHF.
引文
1. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology[J]. Eur Heart J. 2007, 28: 2539-2550.
    2. McMurray JV, Pfeffer M. Heart failure[J]. Lancet. 2005, 365: 1877-1889.
    3. Katz AM, Zile MR. New molecular mechanism in diastolic heart failure[J]. Circulation. 2006, 113: 1922-1925.
    4. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function[J]. Circulation. 2002, 105: 1387-1393.
    5. Vinereanu D, Nicolaides E, Tweddel AC, et al.‘‘Pure’’diastolic dysfunction isassociated with long-axis systolic dysfunction. Implications for the diagnosis and classification of heart failure[J]. Eur J Heart Fail. 2005, 7: 820-828.
    6. Kitzman DW, Little WC, Brubaker PH, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure[J]. JAMA. 2002, 288: 2144-2150.
    7. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis[J]. J Am Coll Cardiol. 2004, 43: 317-327.
    8. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction[J]. N Engl J Med. 2006, 355: 251-259.
    9. Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study[J]. N Engl J Med. 2006, 355: 260-269.
    10. He KL, Dickstein M, Sabbah HN, et al. Mechanisms of heart failure with well preserved ejection fraction in dogs following limited coronary microembolization [J]. Cardiovasc Res. 2004, 64(1):72-83.
    11. Kobayashi M, Machida N, Mitsuishi M, et al. Beta-blocker improves survival, left ventricular function, and myocardial remodeling in hypertensive rats with diastolic heart failure [J]. Am J Hypertens. 2004, 17(12):1112-1119.
    12. Munagala VK, Hart CY, Burnett JC Jr, et al. Ventricular structure and function in aged dogs with renal hypertension:a model of experimental diastolic heart failure[J]. Circulation. 2005, 111(9): 1128-1135.
    13.钟明,张薇,卜培莉,等.兔舒张性心力衰竭模型的建立[J].基础医学与临床. 2001, 21(4): 379-382.
    14.蔡毅,何昆仑,闫丽辉,等.新西兰兔腹主动脉缩窄术(肾动脉上)后心肌收缩和舒张功能的变化[J].中国康复理论与实践. 2007, 13(3): 245-247.
    15. Duan DD. A leakage leads to failure: roles of sarcoplasmic reticulum Ca2+ leak via RyR2 in heart failure progression[J]. Hypertension. 2010, 55:849-851.
    16. Lehnart SE, Terrenoire C, Reiken S, et al. Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias[J]. Proc Natl Acad Sci. 2006, 103: 7906-7910.
    17. Dibb KM,Graham HK,Venetucci LA, et al. Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart [J].Cell Calcium. 2007,42: 503-512.
    18. Inesi G, Prasad AM, Pilankatta R. The Ca(2+) ATPase of cardiac sarcoplasmic reticulum:hysiological role and relevance to diseases [J].Biochem Biophys Res Commun. 2008, 369:182-187.
    19. Wisloff U, Loennechen JP, Currie S, et al. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction[J]. Cardiovasc Res. 2002, 54(1): 162-174.
    20. Teucher N, Prestle J, Seidler T, et al. Excessive sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression causes increased sarcoplasmic reticulum Ca2+ uptake but decreases myocyte shortening[J]. Circulation. 2004, 110(23): 3553-3559.
    21. Currie S, Smith GL. Enhanced phosphorylation of phospholamban and downregulation of sarcoendoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure[J]. Cardiovasc Res. 1999, 41: 135–146.
    22. Ai X, Curran JW, Shannon TR, et al. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure[J]. Circ Res. 2005, 97: 1314-1322.
    23. Hu ST, Shen YF, Liu GS, et al. Altered intracellular Ca2+ regulation in chronic rat heart failure[J]. J Physiol Sci. 2010, 60(2): 85-94.
    24.赵冰.阿托伐他汀的临床研究进展[J].中国药房. 2010, 21(24): 2303-2304.
    25.叶红梅.他汀类药物临床研究进展[J].中国药师. 2009, 12(2): 176.
    26. Kelynaek KJ, Hewitson TD, Martic M, et al. Lovastatin down regulates renal myofibroblast function in vitro[J]. Nephron. 2002, 91: 701-707.
    27. Porter KE, Turner NA, O'Regan DJ, et al. Simvastatin reduces human atrial myofibmblast proliferation independently of cholesmrol lowering via inhibition of RhoA[J]. Cardiovasc Res. 2004, 61:745-755.
    28.乔延国,黄志刚,梁立武.步行试验评价阿托伐他汀钙改善心功能衰竭转归初步观察[J].实用医学杂志. 2009, 25(7): 1130.
    29. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases[J]. Pharmacol Rev. 2000, 52: 11–34.
    30. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomized trial–the Losartan Heart Failure Survival Study ELITE II[J]. Lancet. 2000, 355:1582-1587.
    31. Kim S, Yoshiyama M, Izumi Y, et al. Effects of Combination of ACE Inhibitor and Angiotensin Receptor Blocker on Cardiac Remodeling, Cardiac Function, and Survival in Rat Heart Failure[J]. Circulation. 2001, 103: 148-154.
    32. Yoshida J, Yamamoto K, Mano T, et al. AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure[J]. Hypertension. 2004, 43:686-691.
    1. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of theEuropean Society of Cardiology[J]. Eur Heart J. 2007, 28: 2539-2550.
    2. McMurray JV, Pfeffer M. Heart failure[J]. Lancet. 2005, 365: 1877-1889.
    3. Chatterjee K, Massie B. Systolic and Diastolic Heart Failure: Differences and Similarities[J]. J Card Fail. 2007, 13:569-576.
    4. Chatterjee K. Diastolic and systolic heart failured similarities and differences part I[J]. Cardiol Rounds. 2005, 9: 9.
    5. van Heerebeek L, Borbély A, Niessen HW, et al. Myocardial structure and function differ in systolic and diastolic heart failure[J]. Circulation. 2006, 113:1966-1973.
    6. Katz AM, Zile MR. New molecular mechanism in diastolic heart failure[J]. Circulation. 2006, 113: 1922-1955.
    7. He KL, Dickstein M, Sabbah HN, et al. Mechanisms of heart failure with well preserved ejection fraction in dogs following limited coronary microembolization [J]. Cardiovasc Res. 2004, 64(1):72-83.
    8. Kobayashi M, Machida N, Mitsuishi M, et al. Beta-blocker improves survival, left ventricular function, and myocardial remodeling in hypertensive rats with diastolic heart failure [J]. Am J Hypertens. 2004, 17(12):1112-1119.
    9. Munagala VK, Hart CY, Burnett JC Jr, et al. Ventricular structure and function in aged dogs with renal hypertension:a model of experimental diastolic heart failure [J]. Circulation. 2005, 111(9): 1128-1135.
    10.钟明,张薇,卜培莉,等.兔舒张性心力衰竭模型的建立[J].基础医学与临床. 2001, 21(4):379-382.
    11.蔡毅,何昆仑,闫丽辉,等.新西兰兔腹主动脉缩窄术(肾动脉上)后心肌收缩和舒张功能的变化[J].中国康复理论与实践. 2007, 13(3): 245-247.
    12. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function[J]. Circulation. 2002, 105: 1387-1393.
    13. Vinereanu D, Nicolaides E, Tweddel AC, et al.‘‘Pure’’diastolic dysfunction is associated with long-axis systolic dysfunction. Implications for the diagnosis and classification of heart failure[J]. Eur J Heart Fail. 2005, 7: 820-828.
    14. Liao L, Jollis JG, Anstrom KJ, et al. Costs for heart failure with normal vs reduced ejection fraction[J]. Arch Intern Med. 2006, 166(1):112-118.
    15. Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejectionfraction in a population-based study[J]. N Engl J Med. 2006, 355(3):260-269.
    16. Aurigemma GP. Diastolic heart failure a common and lethal condition by any name[J]. N Engl J Med. 2006, 355(3):308-310.
    17. Kitzman DW, Little WC, Brubaker PH, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure[J]. JAMA. 2002, 288: 2144-2150.
    18. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis[J]. J Am Coll Cardiol. 2004, 43: 317-327.
    19.王磌,张运,张梅等.舒张性心力衰竭动物模型建立的方法学研究[J].心脏杂志. 2001, 13 (6): 470-472.
    20.王瑞芳,何昆仑,杨泉,等.压力负荷诱导的大鼠舒张性心力衰竭模型的建立[J].中华保健医学杂志. 2009, 11(2): 92-95.
    21. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction[J]. N Engl J Med. 2006, 355: 251-259.
    22. Al-Khatib SM, Shaw LK, O'Connor C, et al. Sudden cardiac death in patients with diastolic heart failure[J]. Circulation. 2006, 114: II-404.
    23. Fischer M, Baessler A, Hense HW, et al. Prevalence of left ventricular diastolic dysfunction in the community. Results from a Doppler echocardiographic-based survey of a population sample[J]. Eur Heart J. 2003, 24: 320-328.
    24. Doi R, Masuyama T, Yamamoto K, et al. Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats[J]. J Hypertens. 2000, 18: 111-120.
    25. Baicu CF, Zile MR, Aurigemma GP, et al. Left ventricular systolic performance, function and contractility in patients with diastolic heart failure[J]. Circulation. 2005, 111: 2306-2312.
    26. Aurigemma GP, Zile MR, Gasch WH. Contractile behavior of the left ventricle in diastolic heart failure[J]. Circulation. 2006, 113: 296-304.
    27. Wang J, Kurrelmeyer KM, Torre-Amione N, et al. Systolic and diastolic dyssynchrony in patients with diastolic heart failure and the effect of medical therapy[J]. J Am Coll Cardiol. 2007, 49: 88-96.
    28.邹操,刘志华,赵彩明,等.超容量负荷联合压力负荷制备家兔心衰模型的可行性探讨[J].实验动物与比较医学. 2005, 25: 211-214.
    29.曲辅政,刘志华,赵彩明,等.压力负荷联合超容量负荷致家兔心力衰竭模型的建立[J].江苏医药. 2008, 34(4): 380-382.
    30. Konstam MA. Systolic and diastolic dysfunction in heart failure? Time for a new paradigm[J]. J Cardiac Failure. 2003, 9: 1-3.
    31. Shimizu M, Umeda K, Sugihara N, et al. Collagen remodelling in myocardia of patients with diabetes[J]. J Clin Pathol. 1993, 46: 32-36.
    32. Liu J, Masurekar MR, Vatner DE, et al. Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart[J]. Am J Physiol Heart Circ Physiol. 2003, 285: H2587-2591.
    33. Mukherjee D, Sen S. Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats[J]. Circ Res. 1990, 67: 1474-1480.
    34. Mukherjee D, Sen S. Alteration of cardiac collagen phenotypes in hypertensive hypertrophy: role of blood pressure[J]. J Mol Cell Cardiol. 1993, 25:185-196.
    35. Burgess ML, Buggy J, Price RL, et al. Exercise- and hypertension-induced collagen changes are related to left ventricular function in rat hearts[J]. Am J Physiol Heart Circ Physiol. 1996, 270:H151-159.
    36.江永红,黄晶.心肌僵硬度与间质胶原重构的关系[J].国外医学-心血管疾病分册. 2004, 31(4): 207-210.
    37. Baicu CF, Stroud JD, Livesay VA, et al. Changes in extracellular collagen matrix alter myocardial systolic performance[J]. Am J Physiol Heart Circ Physiol. 2003, 284: H122-132.
    38.杨俊,黄从新,江洪.心力衰竭与心肌胶原重构[J].临床医学. 2005, 11(3): 222-224.
    39.张召才,杨英珍,陈灏珠.心肌纤维化的研究进展[J].临床心血管病杂志. 2004, 20(1): 58-60.
    40. Brower GL, Gardner JD, Forman MF, et al. The relationship between myocardial extracellular matrix remodeling and ventricular function[J]. Eur J Cardiothorac Surg. 2006, 30: 604-610.
    41. Bishop JE, Laurent GJ. Collagen turnover and its regulation in the normal and hypertrophying heart[J]. Eur Heart J. 1995, 16:38-44.
    42.潘文晶.高血压病与左室重构[J].广西医学. 1999, 21(2): 289-291.
    43. Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure[J]. J Card Fail. 2002, 8:S264–S268.
    44. Calderone A, Takahashi N, Izzo NJ, et al. Pressure-and volume-induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs[J]. Circulation. 1995, 92:2385–2390.
    1. Katz AM, Zile MR. New molecular mechanism in diastolic heart failure[J]. Circulation. 2006, 113: 1922-1925.
    2. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function[J]. Circulation. 2002, 105: 1387-1393.
    3. Vinereanu D, Nicolaides E, Tweddel AC, et al.‘‘Pure’’diastolic dysfunction is associated with long-axis systolic dysfunction. Implications for the diagnosis and classification of heart failure[J]. Eur J Heart Fail. 2005, 7: 820-828.
    4. Kitzman DW, Little WC, Brubaker PH, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure[J]. JAMA. 2002, 288: 2144-2150.
    5. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis[J]. J Am Coll Cardiol. 2004, 43: 317-327.
    6. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction[J]. N Engl J Med. 2006, 355: 251-259.
    7. Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study[J]. N Engl J Med. 2006, 355: 260-269.
    8. Duan DD. A leakage leads to failure: roles of sarcoplasmic reticulum Ca~(2+) leak via RyR2 in heart failure progression[J]. Hypertension. 2010, 55:849-851.
    9. Lehnart SE, Terrenoire C, Reiken S, et al. Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias[J]. Proc Natl Acad Sci. 2006, 103: 7906-7910.
    10. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts[J]. Cell. 2000, 101:365-376.
    11. Wehrens XH, Lehnart SE, Reiken SR, et al. Ca~(2+)/calmodulin-dependent protein kinaseII phosphorylation regulates the cardiac ryanodine receptor[J]. Circ Res. 2004, 94: e61–e70.
    12. Kranias EG, Schwartz A, Jungmann RA. Characterization of cyclic
    3':5'-amp-dependent protein kinase in sarcoplasmic reticulum and cytosol of canine myocardium[J]. Biochim Biophys Acta. 1982, 709: 28-37.
    13. Doi M, Yano M, Kobayashi S, et al. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor[J]. Circulation. 2002, 105: 1374-1379.
    14. Goueli BS, Hsiao K, Tereba A, et al. A novel and simple method to assay the activity of individual protein kinases in a crude tissue extract[J]. Anal Biochem. 1995, 225: 10-17.
    15. M. Kawai, M. Konishi. Measurement of sarcoplasmic reticulum calcium content in skinned mammalian cardiac muscle[J]. Cell Calcium. 1994, 16: 123–136.
    16. Terentyev D, Gyorke I, Belevych AE, et al. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca~(2+) leak in chronic heart failure[J]. Circ Res. 2008, 103:1466-1472.
    17. Tateishi H, Yano M, Mochizuki, et al. Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca~(2+) leak in failing hearts[J]. Cardiovasc Res. 2009, 81:536-545.
    18. Mackiewicz U, Lewartowski B. The effect of sarcoplasmic reticulum Ca~(2+) leak on contractile activity of guinea pig heart myocytes depends in activity of sarcoplasmic reticulum Ca~(2+)-ATPase and Na+/Ca~(2+) exchanger[J]. J Physiol Pharmacol. 2008, 59: 287-300.
    19. George CH. Sarcoplasmic reticulum Ca~(2+) leak in heart failure: mere observation or functional relevance[J]? Cardiovasc Res. 2008, 77: 302-314.
    20. Ono M, Yano M, Hino A, et al. Dissociation of calmodulin from cardiac ryanodine receptor causes aberrant Ca~(2+) release in heart failure[J]. Cardiovasc Res. 2010, 13:1-24.
    21. Yano M, Ono K, Ohkusa T, et al. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca~(2+) leak through ryanodine receptor in heart failure[J]. Circulation. 2000, 102: 2131-2136.
    22. Huang F, Shan J, Reiken S, et al. Analysis of calstabin-2 (FKBP12.6)-ryanodine receptor interactions: rescue of heart failure by calstabin2 in mice[J]. Proc Natl Acad Sci. 2006, 103: 3456-3461.
    23. Prestle J, Janssen PM, Janssen AP, et al. Overexpression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptor-mediated Ca(~(2+)) leak from the sarcoplasmic reticulum and increases contractility[J]. Circ Res. 2001, 88: 188-194.
    24. Wehrens XH, Lehnart SE, Huang F, et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death[J]. Cell. 2003, 113: 829-840.
    25. Morimoto S, O-Uchi J, Kawai M, et al. Protein kinase A-dependent phosphorylation of ryanodine receptors increases Ca~(2+) leak in mouse heart[J]. Biochem Biophys Res Commun. 2009, 390:87-92.
    26. Ai X, Curran JW, Shannon TR, et al. Ca~(2+)/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca~(2+) leak in heart failure[J]. Circ Res. 2005, 97: 1314-1322.
    27. Maier LS, Zhang T, Chen L, et al Transgenic CaMKIIδc overexpression uniquely alters cardiac myocyte Ca handling: reduced SR Ca load and activated SR Ca release[J]. Circ Res. 2003, 92: 904-911.
    28. Xiao B, Sutherland C, Walsh MP, et al. Protein kinase A phosphorylation at serine-2808 of the cardiac Ca~(2+)-release channel does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6) [J]. Circ Res. 2004, 94: 487–495.
    29. Li Y, Kranias EG, Mignery GA, et al. Protein kinase A phosphorylation of the ryanodine receptor does not affect Ca sparks in permeabilized mouse ventricular myocytes[J]. Circ Res. 2002, 90: 309–316.
    30. Guo T, Zhang T, Mestril R, et al.. Ca~(2+)/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes[J]. Circ Res. 2006, 99:398-406.
    31. Xiao B, Jiang MT, Zhao M, et al. Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure[J]. Circ Res. 2005, 96: 847-855.
    32. Su Z, Sugishita K, Li F, et al. Effects of FK506 on [Ca~(2+)]i differ in mouse and rabbit ventricular myocytes. J Pharmacol Exp Ther. 2003, 304: 334-341.
    33. Fill M, Copello JA. Ryanodine receptor calcium release channels[J]. Physiol Rev. 2002, 82: 893-922.
    34. Guo T, Cornea RL, Huke S, et al. Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and the effects on Ca sparks[J]. Circ Res. 2010, 106: 1743-1752.
    35. Xiao J, Tian X, Jones PP, et al. Removal of FKBP12.6 does not alter the conductance and activation of the cardiac ryanodine receptor or the susceptibility to stress-induced ventricular arrhythmias[J]. J. Biol. Chem. 2007, 282: 34828-34838.
    36. Curran J, Hinton MJ, Rios E, et al. Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulindependent protein kinase[J]. Circ. Res. 2007, 100: 391-398.
    37. Huke S, Bers DM. Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes[J]. Biochem Biophys Res Commun. 2008, 376: 80-85.
    38. Jones PP, Meng X, Xiao B, et al. Localization of PKA phosphorylation site, Ser(2030), in the three-dimensional structure of cardiac ryanodine receptor[J]. Biochem. J. 2008, 410: 261-270.
    39. Terentyev D, Belevych AE, Terentyeva R, et al. miR-1 overexpression enhances Ca(~(2+)) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56 alpha and causing CaMKII-dependent hyperphosphorylation of RyR2[J]. Circ Res. 2009, 104: 514-521.
    40. Terentyev D, Gyorke I, Belevych AE, et al. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca~(2+) leak in chronic heart failure[J]. Circ Res. 2008, 103: 1466-1472.
    1. Lloyd-jones DM, Larson MG, Leip EP, et al. Framingham heart study. Lifetime risk for developing congestive heart failure: the Framingham Heart Study [J].Circulation. 2002, 106: 3068-3072.
    2. Dibb KM,Graham HK,Venetucci LA, et al. Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart [J].Cell Calcium. 2007, 42: 503-512.
    3. Inesi G, Prasad AM, Pilankatta R. The Ca(~(2+)) ATPase of cardiac sarcoplasmic reticulum:hysiological role and relevance to diseases [J].Biochem Biophys Res Commun. 2008, 369:182-187.
    4. Katz AM, Zile MR. New molecular mechanism in diastolic heart failure[J]. Circulation. 2006, 113: 1922-1925.
    5. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function[J]. Circulation. 2002, 105: 1387-1393.
    6. Vinereanu D, Nicolaides E, Tweddel AC, et al.‘‘Pure’’diastolic dysfunction is associated with long-axis systolic dysfunction. Implications for the diagnosis and classification of heart failure[J]. Eur J Heart Fail. 2005, 7: 820-828.
    7. Kitzman DW, Little WC, Brubaker PH, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure[J]. JAMA. 2002, 288: 2144-2150.
    8. Wisloff U, Loennechen JP, Currie S, et al. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca~(2+) sensitivity and SERCA-2 in rat after myocardial infarction[J]. Cardiovasc Res. 2002, 54(1): 162-174.
    9. Teucher N, Prestle J, Seidler T, et al. Excessive sarcoplasmic/endoplasmic reticulum Ca~(2+)-ATPase expression causes increased sarcoplasmic reticulum Ca~(2+) uptake but decreases myocyte shortening[J]. Circulation. 2004, 110(23): 3553-3559.
    10. Currie S, Smith GL. Enhanced phosphorylation of phospholamban and downregulation of sarcoendoplasmic reticulum Ca~(2+) ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure[J]. Cardiovasc Res. 1999, 41: 135–146.
    11. Ai X, Curran JW, Shannon TR, et al. Ca~(2+)/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca~(2+) leak in heart failure[J]. Circ Res. 2005, 97: 1314-1322.
    12. Hu ST, Shen YF, Liu GS, et al. Altered intracellular Ca~(2+) regulation in chronic rat heart failure[J]. J Physiol Sci. 2010, 60(2): 85-94.
    13.郭晓强,时兰春.受磷蛋白与心力衰竭[J].心脏杂志. 2005, 17 (5): 487-489.
    14. Kirby TL, Karim CB, Thomas DD. Electron paramagnetic resonance reveals a large-scale conformational change in the cytop lasmic domain of phospholamban upon binding to the sarcop lasmic reticulum Ca-ATPase[J]. Biochemistry. 2004, 43(19): 5842 - 5852.
    15. JanczewskiAM, ZahidM, Lemster BH, et al. Phospholamban gene ablation improves calcium transients but not cardiac function in a heart failure model[J]. Cardiovasc Res.2004, 62 (3): 468–480.
    16. Periasamy M, Bhupathy P, Babu GJ. Regulation of sarcoplasmic reticulum Ca~(2+) ATPase pump expression and its relevance to cardiac muscle physiology and pathology[J]. Cardiovasc Res. 2008, 77(2):265-273.
    17. Pogwized SM, Qi M, Yuan W, et al. Upregulation of Na+-Ca~(2+) exchanger expression and function in arrythmogenic rabbit model of heart failure l [J]. Circ Res. 1999, 85: 1009-1019.
    18. Conway SJ, Koushik SV. Cardiac sodium-calcium exchanger: a double-edged sword l [J]. Cardiovasc Res. 2001, 52: 194-197.
    19. Kranias EG, Schwartz A, Jungmann RA. Characterization of cyclic
    3':5'-amp-dependent protein kinase in sarcoplasmic reticulum and cytosol of canine myocardium[J]. Biochim Biophys Acta. 1982, 709: 28-37.
    20. Doi M, Yano M, Kobayashi S, et al. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor[J]. Circulation. 2002, 105: 1374-1379.
    21. Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure[J]. J Mol Cell Cardiol. 2002, 34: 951-969.
    22. Houser SR, Margulies KB. Is depressed myocyte contractility centrally involved in heartfailure?[J] Circ Res. 2003, 92: 350-358.
    23. Bers DM. Cardiac excitation-contraction coupling[J]. Nature. 2002, 415: 198-205.
    24. van der Velden J, Merkus D, Klarenbeek BR, et al. Alterations in myofilament function contribute to left ventricular dysfunction in pigs early after myocardial infarction[J]. Circ Res. 2004, 95(11): e85-95.
    25. Zarain2Herzberg A. Regulation of the sarcoplasmic reticulum Ca~(2+)-ATPase expression in the hypertrophic and failing heart[J]. Can J Physiol Pharmacol. 2006, 84(5): 509-521.
    26. Leszek P, Szperl M, Klisiewicz A, et al. Alterations in calcium regulatory protein expression in patients with preserved left ventricle systolic function and mitral valve stenosis[J]. J Card Fail. 2008, 14(10): 873-880.
    27.钟明,张运,张薇,等.舒张性心力衰竭患者Ca~(2+)调控蛋白基因转录和蛋白质表达的研究[J].中华心血管病杂志. 2001, 29(1): 37-40.
    28. MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiaccontractility[J]. Nat Rev Mol Cell Biol. 2003, 4: 566–577.
    29. MacLennan DH, Asahi M, Tupling AR. The regulation of SERCA-type pumps by phospholamban and sarcolipin[J]. Ann N Y Acad Sci. 2003, 986: 472–480.
    30. MacLennan DH, Abu-Abed M, Kang C. Structure–function relationships in Ca(~(2+)) cycling proteins[J]. J Mol Cell Cardiol. 2002, 34: 897–918.
    31. Bhupathy P, Babu GJ, Periasamy M. Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca(~(2+)) ATPase. J Mol Cell Cardiol. 2007, 42: 903–911.
    32. Brittsan AG, Kranias EG. Phospholamban and cardiac contractile function[J]. J Mol Cell Cardiol. 2000, 32: 2131–2139.
    33. Frank K, Kranias EG. Phospholamban and cardiac contractility[J]. Ann Med. 2000, 32: 572–578.
    34. Vangheluwe P, Schuermans M, Zador E, et al. Sarcolipin and phospholamban mRNA and protein expression in cardiac and skeletal muscle of different species[J]. Biochem J. 2005, 389: 151–159.
    35. Armoundas AA, Rose J, Aggarwal R, et al. Cellular and molecular determinants of altered Ca~(2+) handling in the failing rabbit heart: primary defects in SR Ca~(2+) uptake and release mechanisms[J]. Am J Physiol Heart Circ Physiol. 2007, 292(3): H1607-H1618.
    36. Nef HM, Mollmann H, Skwara W, et al. Reduced sarcoplasmic reticulum Ca~(2+) -ATPase activity and dephosphorylated phospholamban contribute to contractile dysfunction in human hibernating myocardium[J]. Mol Cell Biochem. 2006, 282(1-2): 53-63.
    37. Metcalfe EE, Traaseth NJ, Veglia G. Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban [J]. Biochemistry. 2005, 44: 4386-4396.
    38. Mueller B, Karim CB, Negrashov IV, et al. Direct detection of phospholamban and sarcoplasmic reticulum Ca-ATPase interaction in membranes using fluorescence resonance energy transfer [J]. Biochemistry. 2004, 43: 8754-8765.
    39. Mattiazzi A, Mundi?a-Weilenmann C, Guoxiang C, et al. Role of phospholamban phosphorylation on Thr17 in cardiac physiological and pathological conditions[J]. Cardiovasc Res. 2005, 68(3): 366-375.
    40. Boknik P, Heinroth-Hoffmann I, Kirchhefer U, et al. Enhanced protein phosphorylation in hypertensive hypertrophy[J]. Cardiovasc Res. 2001, 51: 717–728.
    41. Mills GD, Kubo H, Harris DM, et al. Phosphorylation of phospholamban atthreonine-17 reduces cardiac adrenergic contractile responsiveness in chronic pressure overload-induced hypertrophy[J]. Am J Physiol Heart Circ Physiol. 2006, 291: H61–H70.
    42. Sande JB, Sjaastad I, Hoen IB, et al. Reduced level of serine(16) phosphorylated phospholamban in the failing rat myocardium: a major contributor to reduced SERCA2 activity[J]. Cardiovasc Res. 2002, 53: 382–391.
    43. Schmidt U, Hajjar RJ, Kim CS, et al. Human heart failure: cAMP stimulation of SR Ca(~(2+))-ATPase activity and phosphorylation level of phospholamban[J]. Am J Physiol. 1999, 277: H474–H480.
    44. Schwinger RH, Munch G, Bolck B, et al. Reduced Ca(~(2+))-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation[J]. J Mol Cell Cardiol. 1999, 31: 479–491.
    45. Brixius K, Wollmer A, Bolck B, et al. Ser16-, but not Thr17-phosphorylation of phospholamban influences frequency-dependent force generation in human myocardium[J]. Pflugers Arch. 2003, 447: 150–157.
    46. El-Armouche A, Pamminger T, Ditz D, et al. Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts[J]. Cardiovasc Res. 2004, 61: 87–93.
    47. Mills GD, Kubo H, Harris DM, et al. Phosphorylation of phospholamban at threonine-17 reduces cardiac adrenergic contractile responsiveness in chronic pressure overload-induced hypertrophy[J]. Am J Physiol Heart Circ Physiol. 2006, 291(1): H61-70.
    48. Schmitt JP, Ahmad F, Lorenz K, et al. Alterations of phospholamban function can exhibit cardiotoxic effects independent of excessive sarcoplasmic reticulum Ca~(2+)-ATPase inhibition[J]. Circulation. 2009, 119(3): 436-444.
    1. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricularejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology[J]. Eur Heart J. 2007, 28: 2539-2550.
    2. McMurray JV, Pfeffer M. Heart failure[J]. Lancet. 2005, 365: 1877-1889.
    3. Chatterjee K, Massie B. Systolic and Diastolic Heart Failure: Differences and Similarities[J]. J Card Fail. 2007, 13:569-576.
    4. Chatterjee K. Diastolic and systolic heart failured similarities and differences part I[J]. Cardiol Rounds. 2005, 9: 9.
    5. van Heerebeek L, Borbély A, Niessen HW, et al. Myocardial structure and function differ in systolic and diastolic heart failure[J]. Circulation. 2006, 113:1966-1973.
    6. Katz AM, Zile MR. New molecular mechanism in diastolic heart failure[J]. Circulation. 2006, 113: 1922-1955.
    7.赵冰.阿托伐他汀的临床研究进展[J].中国药房. 2010, 21(24): 2303-2304.
    8.叶红梅.他汀类药物临床研究进展[J].中国药师. 2009, 12(2): 176.
    9. Kelynaek KJ, Hewitson TD, Martic M, et al. Lovastatin down regulates renal myofibroblast function in vitro[J]. Nephron. 2002, 91: 701-707.
    10. Porter KE, Turner NA, O'Regan DJ, et al. Simvastatin reduces human atrial myofibmblast proliferation independently of cholesmrol lowering via inhibition of RhoA[J]. Cardiovasc Res. 2004, 61:745-755.
    11.乔延国,黄志刚,梁立武.步行试验评价阿托伐他汀钙改善心功能衰竭转归初步观察[J].实用医学杂志. 2009, 25(7): 1130.
    12. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction[J]. N Engl J Med. 2006, 355: 251-259.
    13. Al-Khatib SM, Shaw LK, O'Connor C, et al. Sudden cardiac death in patients with diastolic heart failure[J]. Circulation. 2006, 114: II-404.
    14. Fischer M, Baessler A, Hense HW, et al. Prevalence of left ventricular diastolic dysfunction in the community. Results from a Doppler echocardiographic-based survey of a population sample[J]. Eur Heart J. 2003, 24: 320-328.
    15. Doi R, Masuyama T, Yamamoto K, et al. Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats[J]. J Hypertens. 2000, 18: 111-120.
    16. Baicu CF, Zile MR, Aurigemma GP, et al. Left ventricular systolic performance, function and contractility in patients with diastolic heart failure[J]. Circulation. 2005,111: 2306-2312.
    17. Aurigemma GP, Zile MR, Gasch WH. Contractile behavior of the left ventricle in diastolic heart failure[J]. Circulation. 2006, 113: 296-304.
    18. Wang J, Kurrelmeyer KM, Torre-Amione N, et al. Systolic and diastolic dyssynchrony in patients with diastolic heart failure and the effect of medical therapy[J]. J Am Coll Cardiol. 2007, 49: 88-96.
    19. Nishikawa H, Miura S, Zhang B, et al. Statins induce the regression of left ventricular mass in patient s with angina[J]. Circ J. 2004, 68: 121-125.
    20. Wu Y, Yang HC, Chen X. The effects of simvastatin on cardiac hypertrophy and association on calcium channel modulation in rats with myocardial hypertrophy induced by abdominal aortic constriction[J]. Zhonghua Xin Xue Guan Bing Za Zhi. 2009, 37(4): 352-357.
    21. Gómez-Garre D, González-Rubio ML, Mu?oz-Pacheco P, et al. Rosuvastatin added to standard heart failure therapy improves cardiac remodelling in heart failure rats with preserved ejection fraction[J]. Eur J Heart Fail. 2010, 12(9):903-912.
    22. Wu Y, Liu J. Simvastatin attenuated cardiac hypertrophy via inhibiting JAK-STAT pathways. Zhonghua Xin Xue Guan Bing Za Zhi. 2008, 36(8): 738-743.
    23. Rashid M, Tawara S, Fukumoto Y, et al. Importance of Rac1 signaling pathway inhibition in the pleiotropic effects of HMG-CoA reductase inhibitors[J]. Circ J. 2009, 73(2): 361-370.
    24.谭安雄,李金成,粟顺善,等.阿托伐他汀改善自发性高血压大鼠心室重构的机制[J].中华高血压杂志. 2007, 15: 497-500.
    25. Dominika I , Margot R , Markus P , et al. Induction of connective tissue growth factor by angiotensinⅡ: Integration of signaling pathways[J]. Arterioscler Thromb Vasc Biol. 2003, 23:1782-1787.
    26. Delas Heras N, Ruiz Ortega M, Ruperez M, et al. Role of connective tissue grow th factor in vascular and renal damage associated wit h hypertension in rats. Interactions with angiotensin II[J]. Journal o f the Renin Angiotensin Aldoster one System. 2006, 7(4): 192-200.
    27. Planavila A, Laguna JC, Vázquez-Carrera M. Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation [J]. Biochim Biophys Acta. 2005, 1687 (1-3): 76-83.
    28. Sawyer DB, Siwik DA, Xiao L, et al. Role of oxidative stress in myocardial hypertrophy and failure [J]. J Mol Cell Cardiol. 2002, 34: 379-388.
    29. Li JM, Gall NP, Grieve DJ, et al. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure[J]. Hypertension. 2002, 40: 477-484.
    30. Inamoto S, Yoshioka T, Yamashita C, et al. Pitavastatin reduces oxidative stress and attenuates intermittent hypoxia-induced left ventricular remodeling in lean mice[J]. Hypertens Res. 2010, 33(6): 579-586.
    31. Yagi S, Akaike M, Aihara K, I, et al. Endothelial nitric oxide synthase-independent protective action of statin against angiotensin II-induced atrial remodeling via reduced oxidant injury[J]. Hypertension. 2010, 55(4): 918-923.
    32. Kang BY, Mehta JL. Rosuvastatin attenuates Ang II--mediated cardiomyocyte hypertrophy via inhibition of LOX-1[J]. J Cardiovasc Pharmacol Ther. 2009, 14(4): 283-291.
    33. Xu L, Li ZL, Zhao LY, et al. Effects of simvastatin on DNA synthesis in rat cardiac fibroblasts[J]. Nan Fang Yi Ke Da Xue Xue Bao. 2006, 26(2):205-7, 213.
    34. Yamamoto C, Fukuda N, Jumabay M, et al. Protective effects of statin on cardiac fibrosis and apoptosis in adrenomedullin-knockout mice treated with angiotensin II and high salt loading[J]. Hypertens Res. 2010.
    35. Shyu KG, Wang BW, Chen WJ, et al. Mechanism of the inhibitory effect of atorvastatin on endoglin expression induced by transforming growth factor-beta1 in cultured cardiac fibroblasts[J]. Eur J Heart Fail. 2010, 12(3): 219-226.
    36. Jarai R, Kaun C, Weiss TW, et al. Human cardiac fibroblasts express B-type natriuretic peptide: fluvastatin ameliorates its up-regulation by interleukin-1alpha, tumour necrosis factor-alpha and transforming growth factor-beta[J]. J Cell Mol Med. 2009, 13(11-12): 4415-4421.
    37. Zhai Y, Gao X, Wu Q, et al. Fluvastatin decreases cardiac fibrosis possibly through regulation of TGF-beta(1)/Smad 7 expression in the spontaneously hypertensive rats[J]. Eur J Pharmacol. 2008, 587(1-3):196-203.
    38. Xu Z, Okamoto H, Akino M, et al. Pravastatin attenuates left ventricular remodeling and diastolic dysfunction in angiotensin II-induced hypertensive mice[J]. J Cardiovasc Pharmacol. 2008, 51(1): 62-70.
    39. Lee TM, Lin MS, Chou TF, et al. Additive effects of combined blockade of AT1receptor and HMG-CoA reductase on left ventricular remodeling in infarcted rats[J]. Am J Physiol Heart Circ Physiol. 2006, 291(3):H1281-1289.
    40. Zhao XY, Li L, Zhang JY, et al. Atorvastatin prevents left ventricular remodeling in spontaneously hypertensive rats[J]. Int Heart J. 2010, 51(6): 426-431.
    41. Wang YJ, Fu GS, Chen FM, et al. The effect of valsartan and fluvastatin on the connective tissue growth factor expression in experimental diabetic cardiomyopathy[J]. Zhonghua Nei Ke Za Zhi. 2009, 48(8): 660-665.
    42. Saka M, Obata K, Ichihara S, et al. Attenuation of ventricular hypertrophy and fibrosis in rats by pitavastatin: potential role of the RhoA-extracellular signal-regulated kinase-serum response factor signalling pathway[J]. Clin Exp Pharmacol Physiol. 2006, 33(12):1164-1171.
    43. Xing XQ, Xu J, LüXW, et al. Effects of losartan and simvastatin on collagen content, myocardial expression of MMP-2 mRNA, MMP-9 mRNA and TIMP-1 mRNA, TIMP-2 mRNA in pressure overload rat hearts[J]. Zhonghua Xin Xue Guan Bing Za Zhi. 2009, 37(10): 887-91.
    44. Qin YW, Ye P, He JQ, et al. Simvastatin inhibited cardiac hypertrophy and fibrosis in apolipoprotein E-deficient mice fed a "Western-style diet" by increasing PPARαandγexpression and reducing TC, MMP-9, and Cat S levels[J]. Acta Pharmacol Sin. 2010, 31(10):1350-1358.
    45. Simko F. Statins: a perspective for left ventricular hypertrophy treatment[J]. Eur J Clin Invest. 2007, 37(9):681-691.
    46. He YP, Zhao LY, Zheng QS, et al. Involvement of ERK and AKT signaling in the growth effect of arginine vasopressin on adult rat cardiac fibroblast and the modulation by simvastatin[J]. Mol Cell Biochem. 2008, 317(1-2): 33-41.
    47. Sawyer DB, Siwik DA, Xiao L, et al. Role of oxidative stress in myocardial hypertrophy and failure [J]. J Mol Cell Cardiol. 2002, 34:379-388.
    48. Li JM, Gall NP, Grieve DJ, et al. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure[J]. Hypertension. 2002, 40: 477-484.
    49. Habibi J, Whaley-Connell A, Qazi MA, et al. Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, decreases cardiac oxidative stress and remodeling in Ren-transgenic rats[J]. Endocrinology. 2007, 148(5): 2181-2188.
    50. Abe Y, Izumi T, Urabe A, et al. Pravastatin prevents myocardium from ischemia-induced fibrosis by protecting vascular endothelial cells exposed to oxidative stress[J]. Cardiovasc Drugs Ther. 2006, 20(4): 273-280.
    51. Landmesser U, Engberding N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase[J]. Circulation. 2004, 110(14):1933-1939.
    52. Kang L, Fang Q, Hu SJ. Regulation of phospholamban and sarcoplasmic reticulum Ca~(2+)-ATPase by atorvastatin: implication for cardiac hypertrophy[J]. Arch Pharm Res. 2007, 30(5): 596-602.
    53. Zheng X, Hu SJ. Effects of simvastatin on cardiac performance and expression of sarcoplasmic reticular calcium regulatory proteins in rat heart[J]. Acta Pharmacol Sin 2005; 26(6): 696-704.
    54. Zhao H, Liao Y, Minamino T, et al. Inhibition of cardiac remodeling by pravastatin is associated with amelioration of endoplasmic reticulum stress[J]. Hypertens Res. 2008, 31(10): 1977-1987.
    55. Yao L, Chen GP, Lu X, et al. Effects of atorvastatin on calcium-regulating proteins: a possible mechanism to repair cardiac dysfunction in spontaneously hypertensive rats[J]. Basic Res Cardiol. 2009, 104(3):258-268.
    1. Chatterjee K, Massie B. Systolic and Diastolic Heart Failure: Differences and Similarities[J]. J Card Fail. 2007, 13:569-576.
    2. Zile MR, Baicu CF, Bonnema DD. Diastolic heart failure: definitions and terminology[J]. Prog Cardiovasc Dis. 2005, 47:307-313.
    3. Bursi F, Weston SA, Redfield MM, et al. Systolic and diastolic heart failure in the community[J]. JAMA. 2006, 296:2209-2216.
    4. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure?abnormalities in active relaxation and passive stiffness of the left ventricle[J]. N Engl J Med. 2004, 350: 1953-1959.
    5. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part II. Causal mechanisms and treatment[J]. Circulation. 2002, 105: 1503-1508.
    6. Paulus WJ, Tsch?pe C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology[J]. Eur Heart J. 2007, 28: 2539-2550.
    7. Aurigemma GP, Gaasch WH. Diastolic heart failure[J]. N Engl J Med. 2004, 35: 1097-1105.
    8. Katz AM, Zile MR. New molecular mechanism in diastolic heart failure[J]. Circulation. 2006, 113: 1922-1925.
    9. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis[J]. J Am Coll Cardiol. 2004, 43: 317-327.
    10. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases[J]. Pharmacol Rev. 2000, 52: 11–34.
    11. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomized trial–the LosartanHeart Failure Survival Study ELITE II[J]. Lancet. 2000, 355:1582-1587.
    12. Kim S, Yoshiyama M, Izumi Y, et al. Effects of Combination of ACE Inhibitor and Angiotensin Receptor Blocker on Cardiac Remodeling, Cardiac Function, and Survival in Rat Heart Failure[J]. Circulation. 2001, 103: 148-154.
    13. Yoshida J, Yamamoto K, Mano T, et al. AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure[J]. Hypertension. 2004, 43:686-691.
    14. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of Telmisartan as a Unique Angiotensin II Receptor Antagonist With Selective PPAR-Modulating Activity[J]. Hypertension. 2004, 43: 993-1002.
    15. Derosa G, Ragonesi PD, Mugellini A, et al. Effects of telmisartan compared with eprosartan on blood pressure control, glucose metabolism and lipid profile in hypertensive, type 2 diabetic patients: a randomized, double-blind, placebocontrolled 12-month study[J]. Hypertens Res. 2004, 27: 457-464.
    16. Miura S, Kiya Y, Kanazawa T, Imaizumi S, et al. Differential bonding interactions of inverse agonists of angiotensin II type 1 receptor in stabilizing the inactive state[J]. Mol Endocrinol. 2008, 22: 139-146.
    17. Shao J, Nangaku M, Inagi R, et al. Receptor-independent intracellular radical scavenging activity of an angiotensin II receptor blocker[J]. J Hypertens. 2007, 25: 1643-1649.
    18. Paradis P, Dali-Youcef N, Paradis F W, et al. Overexpression of angiotensin II type 1 receptor in cardiomyocytes induces cardiac hypertrophy and remodeling[J]. Proc Natl Acad Sci. 2000, 95: 10140-10145.
    19. Kacimi R, Gerdes AM. Alterations in G protein and MAP kinase signaling pathways during cardiac remodeling in hypertension and heart failure[J]. Hypertension. 2003, 41: 968-977.
    20. Mehta PK,Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system[J]. Am J Physiol Cell Physiol. 2007, 292:C82–C97.
    21. Bkaily GB, Sculptoreanu A, Wang S, et al. Angiotensin II-induced increase of T-type Ca~(2+) current and decrease of L-type Ca~(2+) current in heart cells[J]. Peptides. 2005, 26: 1410-1417.
    22. Nakashima H, Kumagai K, Urata H, et al. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation[J]. Circulation. 2000, 101: 2612-2617.
    23. Ferron L, Capuano V, Ruchon Y, et al. Angiotensin II signaling pathways mediate expression of cardiac T-type calcium channels[J]. Circ Res. 2003, 93: 1241-1248.
    24. Kumagai K, Nakashima H, Urata H, et al. Effects of angiotensin II type I receptor antagonist on electrical and structural remodeling in atrial fibrillation[J]. J Am Coll Cardiol. 2003, 41: 2197-2204.
    25.张利荣,和姬苓.血管紧张素-Ⅱ2型受体基因多态性与高血压心脑血管病的研究进展[J].西部医学. 2010, 22(1): 148-150.
    26. Zou Y, Akazawa H, Qin Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II[J]. Nat. Cell Biol. 2004, 6: 499–506.
    27. Konstam MA. Systolic and diastolic dysfunction in heart failure? Time for a new paradigm[J]. J Cardiac Failure. 2003, 9:1-3.
    28. Aurigemma GP, Zile MR, Gasch WH. Contractile behavior of the left ventricle in diastolic heart failure[J]. Circulation. 2006, 113: 296-304.
    29. Baicu CF, Zile MR, Aurigemma GP, et al. Left ventricular systolic performance, function and contractility in patients with diastolic heart failure[J]. Circulation. 2005, 111:2306-2312.
    30. Liu L, Wang W, Meng X, et al. Left ventricular hypertrophy induced by abdominal aortic banding and its prevention by angiotensin receptor blocker telmisartan--a proteomic analysis[J]. J Physiol Biochem. 2010, 66(4): 329-338.
    31. Ma TK, Kam KK, Yan BP, et al. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status[J]. Br J Pharmacol. 2010, 160(6): 1273-1292.
    32. Krieger MH, Di Lorenzo A, Teutsch C, et al. Telmisartan regresses left ventricularhypertrophy in caveolin-1-deficient mice[J]. Lab Invest. 2010, 90(11):1573-1581.
    33.杨大春,杨永健,张鑫,等.心肌肥厚的PTEN负性调控与血管紧张素Ⅱ受体拮抗剂干预的实验研究[J].中国病理生理杂志. 2008, 24(5): 1032-10341.
    34.张莉娜,毛艳华,石斗飞,等.缬沙坦逆转原发性高血压患者左心室肥厚的相关因素[J].中国心血管杂志. 2008, 13(3): 184-871.
    35.贾楠,黄秋萍,金炜,等.奥美沙坦通过减低整合素β5的表达促进心肌肥大的消退[J].中国心血管杂志. 2007, 12(2): 90-92.
    36. Zhang GX, Kimura S, Murao K, et al. Effects of angiotensin type I receptor blockade on the cardiac Raf/MEK/ERK cascade activated via adrenergic receptors[J]. J Pharmacol Sci. 2010, 113(3): 224-233.
    37. Liang Q, Elson AC, Gerdes AM. p38 MAP kinase activity is correlated with angiotensin II type 1 receptor blocker-induced left ventricular reverse remodeling in spontaneously hypertensive heart failure rats[J]. J Card Fail. 2006, 12(6): 479-486.
    38. Liang B, Leenen FH. Prevention of salt-induced hypertension and fibrosis by AT1-receptor blockers in Dahl S rats[J]. J Cardiovasc Pharmacol. 2008, 51(5): 457-466.
    39. Tsutsui H, Matsushima S, Kinugawa S, et al. Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart[J]. Hypertens Res. 2007, 30(5): 439-449.
    40. Zhang GX, Ohmori K, Nagai Y, et al. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice[J]. J Mol Cell Cardiol. 2007, 42(4): 804-811.
    41. Plosker GL, White WB. Telmisartan/Hydrochlorothiazide: a review of its use as fixed-dose combinations in essential hypertension[J]. Drugs 2008; 68: 1877-1899.
    42. Grassi G, Quarti-Trevano F, Mancia G. Cardioprotective effects of telmisartan in uncomplicated and complicated hypertension[J]. J Renin Angiotensin Aldosterone Syst. 2008, 9: 66-74.
    43. Francischetti EA, Celoria BM, Francischetti A, et al. Treatment of hypertension inindividuals with the cardiometabolic syndrome: role of an angiotensin II receptor blocker, telmisartan[J]. Expert Rev Cardiovasc Ther. 2008, 6: 289-303.
    44. Mizuguchi Y, Oishi Y, Miyoshi H, et al. Beneficial effects of telmisartan on left ventricular structure and function in patients with hypertension determined by two-dimensional strain imaging[J]. J Hypertens. 2009, 27:1892-1899.
    45. Kawai M, Hongo K, Komukai K, et al. Telmisartan predominantly suppresses cardiac fibrosis, rather than hypertrophy, in renovascular hypertensive rats[J]. Hypertens Res. 2009, 32: 604-610.
    46. Varo N, Etayo J, Zalba G, et al. Losartan inhibits the post-transcriptional synthesis of collagen type I and reverses left ventricular fibrosis in spontaneously hypertensive rats[J]. J Hypertens. 1999, 17: 107-114.
    47. Dahlof B, Zanchetti A, Diez J, et al. Effects of losartan and atenolol on left ventricular mass and neurohormonal profile in patients with essential hypertension and left ventricular hypertrophy[J]. J Hypertens. 2002, 20: 1855-1864.
    48. Diez J, Querejeta R, Lopez B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients[J]. Circulation. 2002, 105: 2512-2517.
    49. Yamamoto K, Masuyama T, Sakata Y, et al. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart[J]. Cardiovasc Res. 2002, 55:76–82.
    50. Li H, Gao Y, Grobe JL, et al. Potentiation of the antihypertensive action of losartan by peripheral overexpression of the ANG II type 2 receptor[J]. Am J Physiol Heart Circ Physiol. 2007, 292(2):H727-H735.
    51. Liu YH, Yang XP, Sharov VG, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure: role of kinins and angiotensin II type 2 receptors[J]. J Clin Invest. 1997. 99: 1926-1935.
    52. Matsubara. H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases[J]. Circ Res. 1998, 83: 1182-1191.
    53. Junichi Yoshida, Kazuhiro Yamamoto, Toshiaki Mano, et al. AT1 Receptor Blocker Added to ACE Inhibitor Provides Benefits at Advanced Stage of Hypertensive Diastolic Heart Failure[J]. Hypertension. 2004, 43: 686-691.
    54.曲辅政,刘志华,蒋彬,等.缬沙坦对心力衰竭家兔肌浆网钙ATP酶、蛋白激酶A及磷酸酶1α的影响[J].中华心血管病杂志. 2008, 36(9): 790-793.
    55. Ferreira JC, Moreira JB, Campos JC, et al. Angiotensin receptor blockade improves the net balance of cardiac Ca(~(2+)) handling-related proteins in sympathetic hyperactivity-induced heart failure[J]. Life Sci. 2011, 26[ahead of print].
    1. McMurray JV, Pfeffer M. Heart failure[J]. Lancet. 2005, 365: 1877-1889.
    2. Dhar S, Koul D, D'Alonzo GE Jr. Current Concepts in Diastolic Heart Failure[J]. J Am Osteopath Assoc. 2008, 108(4): 203-209.
    3. Zile MR, Baicu CF, Bonnema DD. Diastolic heart failure: definitions and terminology[J]. Prog Cardiovasc Dis. 2005, 47: 307-313.
    4. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function[J]. Circulation. 2002, 105: 1387-1393.
    5. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction[J]. N Engl J Med. 2006, 355: 251-259.
    6. Haldeman GA, Croft JB, Giles WH, et al. Hospitalization of patients with heart failure: National Hospital Discharge Survey, 1985 to 1995[J]. Am Heart J. 1999, 137: 352–360.
    7. O'Connell JB, Bristow MR. Economic impact of heart failure in the United States: time for a different approach[J]. J Heart Lung Transplant. 1994, 13: S107–S112.
    8. Vasan SR, Benjamin JE, Levy D. Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective[J]. J Am Coll Cardiol. 1995, 26(7): 1564–1574.
    9. Smith GL, Masoudi FA, Vaccarino V, et al. Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline[J]. J Am Coll Cardiol. 2003, 41: 1510-1518.
    10. Yang XS, Sun JP. Advances in diastolic heart failure[J]. World J Cardiol. 2010, 2(3):58-63.
    11. Vasan RS, Larson MG, Benjamin EJ, et al. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a populationbased cohort[J]. J Am Coll Cardiol. 1999, 33: 1948-1955.
    12. Bursi F, Weston SA, Redfield MM, et al. Systolic and diastolic heart failure in the community[J]. JAMA. 2006, 296: 2209-2216.
    13. Liao L, Jollis JG, Anstrom KJ, et al. Costs for heart failure with normal vs reduced ejection fraction[J]. Arch Intern Med. 2006, 166: 112-118.
    14. Tsutsui H, Tsuchihashi M, Takeshita A. Mortality and readmission of hospitalized patients with congestive heart failure and preserved versus depressed systolic function[J]. Am J Cardiol. 2001, 88:530-533.
    15. Aizawa Y, Sakata Y, Mano T, et al. Transition from asymptomatic diastolic dysfunction to heart failure with preserved ejection fraction[J]. Circ J. 2011, 75(3): 596-602.
    16. Baicu CF, Zile MR, Aurigemma GP, et al. Left ventricular systolic performance, function and contractility in patients with diastolic heart failure[J]. Circulation. 2005, 111: 2306-2312.
    17. Vinereanu D, Nicolaides E, Tweddel AC, et al.‘‘Pure’’diastolic dysfunction is associated with long-axis systolic dysfunction. Implications for the diagnosis and classification of heart failure[J]. Eur J Heart Fail. 2005, 7: 820-828.
    18. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology[J]. Eur Heart J. 2007, 28: 2539-2550.
    19. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis[J]. J Am Coll Cardiol. 2004, 43: 317-327.
    20. Fischer M, Baessler A, Hense HW, et al. Prevalence of left ventricular diastolic dysfunction in the community. Results from a Doppler echocardiographic-based surveyof a population sample[J]. Eur Heart J. 2003, 24: 320-328.
    21. Baicu CF, Zile MR, Aurigemma GP, et al. Left ventricular systolic performance, function and contractility in patients with diastolic heart failure[J]. Circulation. 2005, 111: 2306-2312.
    22. Kitzman DW, Little WC, Brubaker PH, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure[J]. JAMA. 2002, 288: 2144-2150.
    23. American Heart Association. Heart disease and stroke statistics-2003 update. Dallas, TX: American Heart Association. 2002.
    24. MERIT-HF Investigators. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-CF) [J]. Lancet. 1999, 353: 2001-2007.
    25. Solomon S, Olofsson B, Finn P, et al. Causes of death across full spectrum of ventricular function in patients with heart failure: The Charm Study:[abstract]. J Am Coll Cardiol. 2004, 45:180A.
    26. Turakhia M, Ali S, Schiller NB, et al. Left ventricular mass predicts death and sudden death in patients with CAD regardless of ejection fraction: data from the Heart and Soul Study[J]. Circulation. 2006, 114: II-400.
    27. Al-Khatib SM, Shaw LK, O'Connor C, et al. Sudden cardiac death in patients with diastolic heart failure[J]. Circulation. 2006, 114: II-404.
    28. Al-Khatib SM, Shaw LK, O'Connor C, et al. Incidence and predictors of sudden cardiac death in patients with diastolic heart failure[J]. J Cardiovasc Electrophysiol. 2007, 18(12): 1231-1235.
    29. Russo C, Jin Z, Homma S, et al. Effect of obesity and overweight on left ventricular diastolic function a community-based study in an elderly cohort[J]. J Am Coll Cardiol. 2011, 57(12):1368-1374.
    30. Redfield MM, Jacobson SJ, Burnett JC, et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failureepidemic[J]. JAMA. 2003, 289: 194-202.
    31. Fonarow GC, ADHERE Scientific Advisory Committee. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure[J]. Rev Cardiovasc Med. 2003, 4(Suppl 7): S21-S30.
    32. Konstam MA. Systolic and diastolic dysfunction in heart failure? Time for a new paradigm[J]. J Cardiac Failure. 2003, 9: 1-3.
    33. Aurigemma GP, Zile MR, Gasch WH. Contractile behavior of the left ventricle in diastolic heart failure[J]. Circulation. 2006, 113: 296-304.
    34. van Heerebeek L, Borbely A, Niessen HW, et al. Myocardial structure and function differ in systolic and diastolic heart failure[J]. Circulation. 2006, 113: 1966-1973.
    35. Wang J, Kurrelmeyer KM, Torre-Amione N, et al. Systolic and diastolic dyssynchrony in patients with diastolic heart failure and the effect of medical therapy[J]. J Am Coll Cardiol. 2007, 49: 88-96.
    36. Chatterjee K. Diastolic and systolic heart failured similarities and differences part I[J]. Cardiol Rounds. 2005, 9: 9.
    37. Chatterjee K, Massie B. Systolic and Diastolic Heart Failure: Differences and Similarities[J]. J Card Fail. 2007, 13:569-576.
    38. Katz AM, Zile MR. New molecular mechanism in diastolic heart failure[J]. Circulation. 2006, 113: 1922-1955.
    39. Heerbeek LV, Borbe’ly A, Hans WM, et al. Myocardial structure and function differ in systolic and diastolic heart failure[J]. Circulation. 2006, 113: 1966-1973.
    40. Kasner M, Westermann D, Lopez B, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction[J]. J Am Coll Cardiol. 2011, 57(8):977-985.
    41. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart[J]. Circ Res. 2002, 90: 520-530.
    42. Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissueinhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease[J]. Circulation. 2006, 113: 2089-2096.
    43. Rossi A, Cicoira M, Golia G, et al. Amino-terminal propeptide of type III procollagen is associated with restrictive mitral filling pattern in patients with dilated cardiomyopathy: a possible link between diastolic dysfunction and prognosis[J]. Heart. 2004, 90: 650-654.
    44. Pfeffer MA, Janice M. Pfeffer memorial lecture[J]. J Card Fail. 2002, 8(Suppl 6): S248-S252.
    45. Bolognese I, Neskovic AN, Parodi G, et al. Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications[J]. Circulation. 2002, 106: 2351-2357.
    46. Chatterjee K, De Marco T, McGlothlin D. Remodeling in systolic heart failure effects of neurohormonal modulators: basis for current pharmacotherapy[J]. Cardiology Today. 2005, 9: 270-277.
    47. Aurigemma GP, Gaasch WH. Diastolic heart failure[J]. N Engl J Med. 2004, 35:1097-1105.
    48. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure-abnormalities in active relaxation and passive stiffness of the left ventricle[J]. NEJM. 2004, 350: 1953–1959.
    49. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part II. Causal mechanisms and treatment[J]. Circulation. 2002, 105:1503-1508.
    50. Maurer MS, Kronzon I, Burkhoff D. Ventricular pump function in heart failure with normal ejection fraction: insights from pressure-volume measurements[J]. Prog Cardiovasc Dis. 2006, 49: 182-195.
    51. Angeja BG, Grossman W. Evaluation and management of diastolic heart failure[J]. Circulation. 2003, 107: 659-663.
    52. Schaefer HH, Dieterle T. Diagnosis and therapy of heart failure with normal ejectionfraction[J]. Ther Umsch. 2011, 68(2):81-87.
    53. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment[J]. Eur Heart J. 2011, 32(6):670-679.
    54. Zannad F, Dousset B, Alla F. Treatment of congestive heart failure: interfering the aldosterone-cardiac extracellular matrix relationship[J]. Hypertension. 2001, 38: 1227-1232.
    55. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-Preserved Trial[J]. Lancet. 2003, 362: 777-781.
    56. Fukuta H, Sane DC, Brucks S, et al. Statin therapy may be associated with lower mortality in patients with diastolic heart failure: a preliminary report[J]. Circulation. 2005, 112: 357-363.
    57. Mozaffarian D, Nye R, Levy WC. Statin therapy is associated with lower mortality among patients with severe heart failure[J]. Am J Cardiol. 2004, 93: 1124-1129.
    1. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure.Randomized Aldactone Evaluation Study Investigators [J]. N Engl J Med. 1999, 341:709–717.
    2. Nattel Stanley, Maguy Ange, Le Bouter, et al. Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation [J]. Physiological Rev. 2007, 87(2): 425-456.
    3. Cheng H, Lederer WJ, Cannel MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle [J]. Science.1993, 262: 740-744.
    4. Litwin SE, Zhang D, Bridge JH. Dyssynchronous Ca(~(2+)) sparks in myocytes from infarcted hearts [J]. Circ Res. 2000, 87: 1040–1047.
    5. Heinzel FR, Bito V, Volders PG, et al. Spatial and temporal inhomogeneities during Ca~(2+) release from the sarcoplasmic reticulum in pig ventricular myocytes [J]. Circ Res. 2002, 91: 1023–1030.
    6. Harris DM, Mills GD, Chen X, et al. Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca~(2+) release [J]. Circ Res. 2005, 96:543–550.
    7. Song LS, Pi Y, Kim SJ, et al. Paradoxical cellular Ca~(2+) signaling in severe but compensated canine left ventricular hypertrophy [J]. Circ Res. 2005, 97:457-464.
    8. Fukumoto GH, Lamp ST, Motter C, et al. Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure [J]. Circ Res. 2005, 96:551–557.
    9. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts [J]. Cell. 2000, 101:365–376.
    10. Li Y, Kranias EG, Mignery GA, et al. Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes [J]. Circ Res. 2002, 90: 309–316.
    11. Bers DM, Eisner DA, Valdivia HH. Sarcoplasmic reticulum Ca~(2+) and heart failure: roles of diastolic leak and Ca~(2+) transport [J]. Circ Res. 2003, 93:487-490.
    12. Guo T, Cornea RL, Huke S, et al. Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and the effects on Ca sparks[J]. Circ Res. 2010, 106: 1743-1752.
    13. Takeshima H, Nishimura S, Matsumoto T, et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor[J]. Nature. 1989, 339: 439-445.
    14. Otsu K, Willard HF, Khanna VK, et al. Molecular cloning of cDNA encoding the Ca~(2+) release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum[J]. J Biol Chem. 1990, 265: 13472-13483.
    15. Hakamata Y, Nakai J, Takeshima H, et al. Primary structure and distribution of a novel ryanodine receptor/calcium release channelfrom rabbit brain [J]. FEBS Lett.1992, 312: 229-235.
    16. Sorrentino V, Volpe P. Ryanodine receptors: How many, where and why [J]? TrendsPharmacol Sci.1993, 14: 98-103.
    17. Laitinen PJ, Brown KM, Piippo K, et al. Mutations of the cardiac ryanodine recep tor (RyR2) gene in familial polymorphic ventricular tachycardia [J]. Circulation. 2001, 103: 485
    18. Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia [J]. Circulation. 2001, 103: 196
    19. Bauce B, Rampazzo A, Basso C, et al. Screening for ryanodine recep tor type 2 mutations in families with effort induced polymorphic ventricular arrhythmias and sudden death: Early diagnosis of asymptomatic carriers [J]. J Am Coll Cardiol. 2002, 40 (2): 341
    20. Laitinen PJ, Swan H, Kontula K. Molecular genetics of exercise-induced polymorphic ventricular tachycardia: Identification of three novel cardiac ryanodine recep tor mutations and two common calsequestrin 2 aminoacid polymorphisms [J]. Eur J Hum Genet. 2003,11 (11): 888
    21. Jiang D, Xiao B, ZhangL, et al. Enhanced basal activity of a cardiac Ca~(2+) release channel ( ryanodine recep tor) mutant associated with ventricular tachycardia and sudden death [J]. Circ Res. 2002, 91(3): 218
    22. Wehrens XH, Lehnart SE, Huang F, et al. FKBP12. 6 deficiency and defedtive calcium release channel (ryanodine receptor) function linked to exercises-induced sudden cardia death [J]. Cell. 2003, 113: 829
    23. Fannie Huang, Jian Shan, Steven Reiken, et al. Analysis of calstabin2 (FKBP12.6)–ryanodine receptor interactions: Rescue of heart failureby calstabin2 in mice [J]. PNAS. 2006, 103: 3456–3461
    24. Ono K, Yano M, Ohkusa T, et al. Altered interaction of FKBP12.6 with ryanodine receptor as a cause of abnormal Ca~(2+) release in heart failure[J]. Cardiovase Res. 2000, 48(2): 323-331
    25. Reiken S, Gaburjakova M, Guatimosim S, et al. Protein kinase A phosphorylation ofthe cardiac calcium release channel (ryanodine receptor) in normal and failing hearts[J]. J Biol Chen. 2003, 278(1): 444-453
    26. Prestle J, Janssen PML, Janssen AP, et al. Overexpression of FK506-Binding Protein FKBP12.6 in Cardiomyocytes Reduces Ryanodine Receptor-Mediated Ca~(2+) Leak From the Sarcoplasmic Reticulum and Increases Contractility[J].Circulation Research. 2001, 88(1): 188-192
    27. Yano M. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure [J]. Circulation. 2003, 107(2): 477-484.
    28.李德,伍卫,骆宁等.钙释放通道稳定蛋白过度表达对心力衰竭心室肌细胞肌浆网功能的影响[J].中国病理生理杂志. 2007, 23(7): 1263-1266.
    29. Yano M, Kobayashi S, Kohno M, et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure[J]. Circulation. 2003, 107: 477–484.
    30. Huang F, Shan J, Reiken S, et al. calstabin2 (FKBP12.6)-ryanodine receptor interactions: rescue of heart failure by calstabin2 in mice[J]. Proc Natl Acad Sci USA. 2006, 103: 3456–3461.
    31. Huke S, Bers DM. Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes[J]. Biochem Biophys Res Commun. 2008, 376: 80-85.
    32. Jones PP, Meng X, Xiao B, et al. Localization of PKA phosphorylation site, Ser(2030), in the three-dimensional structure of cardiac ryanodine receptor. Biochem J. 2008, 410: 261-270.
    33. Ai X, Curran JW, Shannon TR, et al. Ca~(2+)/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca~(2+) leak in heart failure[J]. Circ Res. 2005, 97: 1314–1322.
    34. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts[J]. Cell. 2000, 101: 365–376.
    35. Jiang MT, Lokuta AJ, Farrell EF, et al. Abnormal Ca~(2+) release, but normal ryanodine receptors in canine and human heart failure[J]. Circ Res. 2002, 91: 1015–1022.
    36. Netticadan T, Temsah RM, Kawabata K, et al. Sarcoplasmic reticulum Ca~(2+)/calmodulin-dependent protein kinase is altered in heart failure[J]. Circ Res. 2000, 86: 596–605.
    37. Stange M, Xu L, Balshaw D, et al. Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants[J]. J Biol Chem. 2003, 278: 51693–51702.
    38. Li Y, Kranias EG, Mignery GA, Bers DM, et al. Protein Kinase A Phosphorylation of the Ryanodine Receptor Does Not Affect Calcium Sparks in Mouse Ventricular Myocytes[J]. Circ Res. 2002, 90: 309-316.
    39. Xiao B, Jiang MT, Zhao M, et al. Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure [J]. Circ Res. 2005, 96: 847–855.
    40. Xiao B, Zhong G, Obayashi M, et al. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon betaadrenergic stimulation in normal and failing hearts[J]. Biochem J. 2006, 396: 7–16.
    41. Morimoto S, O-Uchi J, Kawai M, et al. Protein kinase A-dependent phosphorylation of ryanodine receptors increases Ca~(2+) leak in mouse heart[J]. Biochem Biophys Res Commun. 2009, 390: 87-92.
    42. Xiao B, Sutherland C, Walsh MP, et al. Protein kinase A phosphorylation at serine-2808 of the cardiac Ca~(2+)-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP126) [J]. Circ Res. 2004, 94: 487–495.
    43. Currie S, Loughrey CM, Craig MA, et al. Calcium/calmodul independent protein kinase IIδassociates with the ryanodine receptor complex and regulates channel function in rabbit heart[J]. Biochem J. 2003, 377: 357–366.
    44. Sossalla S, Maurer U, Schotola H, et al. Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδ(C) can be reversed by inhibition of late Na(+) current[J]. Basic Res Cardiol. 2011, 106(2): 263-272.
    45. Terentyev D, Belevych AE, Terentyeva R, et al. miR-1 overexpression enhances Ca(~(2+)) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56 alpha and causing CaMKII-dependent hyperphosphorylation of RyR2[J]. Circ Res. 2009, 104: 514-521.
    46. Zhang T, Maier LS, Dalton ND, et al. TheδC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure[J]. Circ Res. 2003, 92: 912–919.
    47. Maier LS, Zhang T, Chen L, et al. Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca~(2+) handling: reduced SR Ca~(2+) load and activated SR Ca~(2+) release[J]. Circ Res. 2003, 92: 904–911.
    48. Wehrens XH, Lehnart SE, Reiken SR, et al. Ca~(2+)/calmodul independent protein kinase II phosphorylation regulates the cardiac ryanodine receptor[J]. Circ Res. 2004, 94: e61– e70.
    49. Tateishi H, Yano M, Mochizuki, et al. Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca~(2+) leak in failing hearts[J]. Cardiovasc Res. 2009, 81:536-545.
    50. Ono M, Yano M, Hino A, et al. Dissociation of calmodulin from cardiac ryanodine receptor causes aberrant Ca~(2+) release in heart failure[J]. Cardiovasc Res. 2010, 13:1-24.
    51. Pogwizd SM, Schlotthauer K, Li L, et al. Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, residual beta-adrenergic responsiveness[J]. Circ Res. 2001, 88: 1159–1167.
    52. Vermeulen JT, McGuire MA, Opthof T, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts[J]. Cardiovasc Res. 1994, 28: 1547–1554
    53. Ai X, Curran JW, Shannon TR, et al. Ca~(2+)/ calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca~(2+) leak in heart failure[J]. Circ Res. 2005, 97: 1314–1322.
    54. Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure[J]. Trends Cardiovasc Med. 2004, 14: 61–66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700