随机风作用下风力发电机齿轮传动系统动力学及动态可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源和环境问题日趋严峻,风能作为一种清洁、可再生能源受到了广泛的关注和应用,风力发电技术也得到了快速的发展。风力发电机齿轮传动系统作为风力发电系统的关键部件之一,主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速,其性能好坏直接决定了风力发电机性能的好坏。由于风力发电机组工作在变载荷的恶劣工况,处于高空架设,维修困难,这就对齿轮传动系统运行的动态性能和可靠性提出了很高的要求。因此,研究在随机风速工况下风力发电机齿轮传动系统的动态特性和可靠性是风力发电机设计中的重要任务之一。
     本课题结合国家自然科学基金资助项目(50975294)的主要内容,并考虑风力发电机在随机风速工况下运行的工作特点,针对风力发电机齿轮传动系统的动力学和动态可靠性问题开展了较全面深入的研究。主要研究内容包括以下方面:
     1.风力发电机随机风速模型研究
     为了更真实的反映传动系统的外部激励,基于风能和风资源的数学描述以及风力发电机的工作特点,研究了风力发电机齿轮传动系统的外部激励。采用基于机器学习的加权最小二乘支持向量机(Weight Sparse Least Squares Support VectorMachines,WSLS-SVM)模拟随机风速,结合风力机气动理论计算得到相应的转矩载荷作为系统的外部激励,为风力发电机齿轮传动系统的动力学分析奠定基础。
     2.风力发电机齿轮传动系统齿轮-轴承耦合动力学研究
     基于齿轮啮合理论和Lagrange方程,考虑了轮齿啮合误差、齿轮副的时变啮合刚度及滚动轴承的时变啮合刚度等因素,运用集中参数法建立了MW级风力发电机齿轮传动系统的耦合动力学模型,计算了风力发电机齿轮传动系统的固有特性,系统地分析了风力发电机齿轮传动系统的内部激励特征。在模拟真实风场随机风速的基础上,将由随机风速变化引起的随机风载荷作为系统的外部激励,求解了风力发电机齿轮传动系统的动态响应,并对齿轮传动系统振动特性进行了分析。求得了在随机风载作用下系统各齿轮和各轴承的动载荷,对比分析了系统动态响应随外部激励变化的规律,为风力发电机动态可靠性分析和疲劳寿命预测提供了基础。
     3.风力发电机齿轮传动系统的动态可靠性分析
     根据随机风作用下各齿轮和轴承的动载荷,基于有限元方法、赫兹接触理论和准静态方法,求得了系统各齿轮副和各轴承的动态接触应力。采用雨流计数法和数理统计理论,得到系统各构件动态接触应力的概率分布形式,并利用MonteCarlo仿真试验得到零件疲劳强度的概率分布。将载荷作用过程视为随机过程,强度视为随机变量,建立零件的随机过程功能函数,利用一次二阶矩和摄动法求得关键零部件的可靠性指标及可靠度随时间变化关系,根据传动系统的结构形式,建立风力发电机齿轮传动系统的动态可靠性模型,进而得到系统的可靠度随时间变化规律。对系统输入随机载荷进行统计分析和分级处理,编制了用于疲劳寿命试验的试验载荷谱,为可靠性动态设计和疲劳破坏试验提供基础。
     4.考虑失效相关的风电齿轮传动系统动态可靠性分析
     在对风力发电机齿轮传动系统各齿轮副和各滚动轴承应力-时间历程统计分析的基础上,考虑在齿轮和轴承的相互耦合作用、零件失效相关性以及强度退化等因素,从系统层面上应用应力-强度干涉模型,将载荷作用过程看作随机过程,建立了考虑失效相关性的风力发电机齿轮传动系统动态可靠性模型,得到了系统可靠性随时间变化规律,研究了强度退化对系统可靠性的影响规律,并与不考虑失效相关性的动态可靠性模型进行对比,揭示出失效相关性对传动系统的可靠度具有正相关的特性。
     5.风力发电机齿轮传动系统疲劳寿命预测
     应用雨流计数法统计循环参量,结合Goodman公式将工作循环应力水平按等寿命原则转换为对称循环下的疲劳应力谱。考虑影响零件疲劳强度的各种因素,由材料的P-S-N曲线得到零件的P-S-N曲线,基于Palmgren-Miner线性累积损伤法则建立了关键零件的疲劳寿命预测模型,对系统各齿轮和轴承的疲劳寿命进行估算,为风力发电机齿轮传动系统的疲劳寿命预测提供了理论方法。
     6.风力发电机齿轮传动系统动态性能与疲劳寿命试验研究
     基于相似原理设计制造了用于试验的风电齿轮箱,搭建了风电试验齿轮箱动态测试和疲劳寿命试验台,开展了试验齿轮箱的动态测试试验和疲劳寿命试验,将仿真模型计算结果和试验结果进行了对比分析,验证了仿真模型的正确性和有效性,对随机风作用下风力发电机齿轮传动系统动力学和可靠性试验研究进行了初步探索,为风力发电机齿轮箱的设计和应用提供了理论和试验基础。
With the increasingly serious problem of energy and environment, the wind energyas a clean and renewable energy has been widely applied and concerned, and the windpower technology also obtained the fast development. As one of key components ofwind turbine, the main function of gear transmission system is to deliver the powergenerated by the wind wheel rotating to the generator and make it obtain thecorresponding speed, which performance directly determines the wind turbineperformance. As the wind turbine working in stochastic load condition, aerial erectingand repair difficulties, the higher dynamic performance and reliability of wind turbinegear transmission system are required. Therefore, research on the dynamic characteristicand the reliability design of wind turbine gear transmission system in stochastic windcondition is one of the important tasks.
     According to the research task of The National Natural Science Fund Project(50975294), and considering the practical operating characteristics of wind turbine instochastic wind conditions, the dynamic and the fatigue reliability problems of windturbine gear transmission system in complex load are investigated fairlycomprehensively and deeply in this dissertation. The main researches are as following:
     1. Stochastic wind speed model of wind turbine
     The external load of wind turbine gear transmission system is researched based onthe working characteristics and the mathematical description of wind energy and windresource. The Weight Sparse Least Squares Support Vector Machines (WSLS-SVM)based on the machine learning language is used to simulate the actual wind speed.Combining with the aerodynamics theory, the torque load is obtained and be used asexternal excitation, which layings the foundation for dynamics analysis of wind turbinegear transmission system.
     2. Dynamic analysis of wind turbine gear transmission system coupled withbearings in stochastic wind condition
     Considering the influences such as the time-vary mesh stiffness, comprehensivemeshing error and time-varying bearing stiffness, a translational-torsional coupleddynamics model of MW level wind turbine gear system is built by usinglumped-parameter method based on the gear meshing theory and the Lagrange function,and the system's natural frequency is calculated. The dynamic response of gear transmission system is obtained and the vibration characteristic is analysed by solvingdynamics differential equation with numerical simulation method based on thestochastic wind prediction model have been built,the change rules of system dynamicresponse with the external excitation are analyzed, the dynamic mesh force of each gearand the nonlinear bearing force of each rolling element bearing are obtained, whichprovide foundation for dynamic reliability analysis and fatigue life prediction of windturbine gear transmission system.
     3. Time-dependent reliability analysis of gear transmission system of wind turbinein stochastic wind condition
     The finite element method, Hertz contact theory and Quasi-static method are usedto obtain the the dynamic contact stress of each gear pairs and each rolling elementbearing on the basis of dynamic load of each gear and each bearing. The rain-flowcounting method and the mathematical statistic theory are used to obtain theprobabilistic distribution function of dynamic contact stress of each gear pair and eachbearing, and the Monte Carlo method is used to obtain the probabilistic distribution ofparts strength. Regarding the load process as random process and considering thestrength as random variable, the random process function is built, and thetime-dependent reliability and the reliability index are calculated by using first-ordersecond-moment and perturbation method. The time-dependent reliability model is builtbased on the series parallel connection between the components in gear transmissionsystem and the rules of system’s reliability changing with time are obtained. Thestatistical analysis and classification of input stochastic load of gear transmission systemare carried out and the test loading spectrum used as fatigue life test is made, thisprovides the research foundations for reliability dynamic design and fatigue lifeprediction.
     4. Time-dependent reliability analysis of gear transmission system of wind turbineconsidering dependent failure
     Considering the factors such as the dependent failure,coupling effect between thegear and the bearing and strength degradation, using the stress strength interferencemodel at the system level, regarding the load process as random process, thetime-dependent reliability model of gear transmission system of wind turbineconsidering dependent failure is built on the basis of the statistical analysis to thedynamic contact stress of each gear pairs and each bearing in gear transmission system,the rules of system reliability varying with time are obtained, the influences of strength degenerate to system reliability are studied, and the results are compared with dynamicreliability model without considering dependent failure.
     5. Fatigue life prediction of wind turbine gear transmission system
     The rain-flow counting method is used to statistics cycle parameters and theworking cycle stress is converted to fatigue stress spectrum in the condition ofsymmetrical cyclic stress in the principle of equal life combining with the Goodmanformulation. Considering all kinds of factors that affect part’s fatigue strength, theP-S-N curve of part is obtained by the P-S-N curve of material, the model for predictingthe fatigue life of key parts and components is set up, and the fatigue life of each gearsand bearing of gear transmission system is estimated on the basis of Palmgren-MinerLinear accumulative damage law, this research supplies theory and method for fatiguelife prediction wind turbine gear transmission system.
     6. Study on the dynamic property testing and the fatigue life experiment of windturbine gear transmission system
     The wind turbine gearbox used testing is designed and manufactured based on thesimilitude theory,the test fig is set up for dynamic characteristics testing and fatigue lifetesting of wind turbine gearbox, the dynamic characteristics testing and fatigue lifetesting of wind turbine gearbox are carried out. The comparison analysis between theorycalculation and test results shows that the theory model is correct and effective. Apreliminary testing research for dynamics and reliability of wind turbine geartransmission system in random wind condition is explored and the research resultsprovide the theory and experiment foundation for design and apply of wind turbinegearbox.
引文
[1]陈予恕,黄文虎,等.机械装备非线性动力学与控制的关键技术[M].机械工业出版社,2011.5.
    [2]叶杭治.风力发电机组控制技术[M].机械工业出版社,2002.
    [3]李本立,宋宪耕,贺得馨,等.风力机结构动力学[M].北京航空航天大学出版社,1999.
    [4] MUSIAL W, BUTTERFIELD S, MCNIFF B. Improving wind turbine gearbox reliability.European Wind Energy Conference, Milan, Italy, NREL/CP-500-41548, May7-10,2007[C],Springfield:U.S Department of Commerce National Technical Information Service,2007.
    [5] Energy information administration (EIA), Renewable Energy consumption and electricitypreliminary2006statistics [R/OL]. http://eia.doe.gov/cneaf/solar.renewables/page.prelimtrends/rea_prereport. html.2007,7.
    [6] World Wind Energy Association WWEA2011. World Wind Energy Report2010[R],2011.
    [7]刘忠明,段守敏,王长路.风力发电齿轮箱设计制造技术的发展展望.机械传动,2006,30(6):1-6.
    [8] Windpower Monthly [R/OL] January2006, www.windpowermonthly.com.
    [9] Tony Burton,武鑫,等译.风能技术/(美)[M].北京:科学技术出版社,2007.
    [10] Torres J L, Garcia A, Blas M De, et al. Forecast of hourly average wind speed with ARMAmodels in Navarre(Spain)[J]. Solar Energy,2005(79):65-77.
    [11] Bossanyi E A. Short term wind prediction using kalman filters [J]. Wind Engineering,1985,9(1):1-8.
    [12] Kariniotakis G, Stavrakakis G N.Wind power forecasting using advanced neural networkmodels [J]. IEEE Trans on Energy Conversion,1996,11(14):762-767.
    [13] Troukalas L H, Unrig R E.Funy and neural approaches in engineering [M]. New York: Wiley,1997.
    [14] Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S, et al. Wind speed and powerforecasting based on spatial correlation models [J]. IEEE Trans on Energy Conversion,1999,14(3):836-842.
    [15] Nichita C,Luca D,Dakyo B etal. Large band simulation of the wind speed for real time windturbine simulators [J], IEEE Trans, Energy Conversion,2002,17(4):523-529.
    [16] Bossanyi E A.Short term wind prediction using Kalman filters [J]. Wind Engineering,1985,9(1):1-8.
    [17]杨秀媛,肖洋,树勇.风电场风速和发电功率预测研究,中国电机工程学报,2005,25(11):1-5.
    [18]丁明,等.风速概率分布参数预测及应用[J],电网技术,2008,32(14):10-14.
    [19]杜颖.基于最小二乘支持向量机的风电场短期风速预测.电网技术[J].2008,32(15):62-66.
    [20]李建林,肖志东,梁亮,等.风能-可再生能源与环境[M].北京:人民邮电出版社,2010,41-43.
    [21]吴学光,陈树勇,戴慧珠.最小误差逼近算法在风电场风能资源特性分析中的应用.电网技术,1998,22(7):69-74.
    [22]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110.
    [23] New-York:John Wiley&Sons Ltd,2005:14-18,173-177.
    [24] Hau E.Wind turbines: fundamentals,technologies, application, economics[M].BerlinHeidelberg:Springer Verlag,2006:98-101,468-470.
    [25] Manwell J F,McGowan J G,Rogers A L.Wind energy explained theory,design andapplication[M].London:John Wiley&Sons Ltd,2002:37-44,57-60,101-105.
    [26]岳一松,蔡旭.风场与风力机模拟系统的设计与实现[J].电机与控制应用,2008,35(4):17-21.
    [27]岳一松.风场与风力机模拟系统的设计与实现[D].上海:上海交通大学,2008.
    [28]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报.2005,25(21):41-44.
    [29]窦真兰,王晗,张秋琼,凌志斌,蔡旭.虚拟风场和风力机模拟系统的实验研究[J].中国电机工程学报,2011,31(20):127-135.
    [30]黄小华,李德源,吕文阁,等.基于人工神经网络模型的风速预测[J].太阳能学报,2011,32(2):193-197.
    [31]黄文杰,傅砾,肖盛.采用改进模糊层次分析法的风速预测模型[J].电网技术,2010,34(7):164-168.
    [32]王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测,电网技术,2010,34(1):179-184.
    [33]郭鹏.残差灰色风速预测最大风能追踪策略研究[J].太阳能学报,2011(4):548-552.
    [34]曾杰,张华.基于最小二乘支持向量机的风速预测模型[J].电网技术,2009,33(18):144-147.
    [35]戴浪,黄守道,黄科元,等.风电场风速的神经网络组合预测模型[J].电力系统及其自动化学报,2011,23(4):27-31.
    [36]蒋小亮,蒋传文,彭明鸿,等.基于时间连续性及季节周期性的风速短期组合预测方法[J].电力系统自动化,2010,34(15):75-79.
    [37]陈盼,陈皓勇,叶荣,等.基于小波包和支持向量回归的风速预测[J].电网技术2011,35(5):177-182.
    [38]曾杰,张华.基于蚁群优化的最小二乘支持向量机风速预测模型研究[J].太阳能学报2011,32(3):296-300.
    [39]彭怀午,刘方锐,杨晓峰.基于组合预测方法的风电场短期风速预测[J].太阳能学报,2011,32(4):543-547.
    [40]张国强,张伯明.基于组合预测的风电场风速及风电机功率预测[J].电力系统自动化,2009,33(18):92-95.
    [41]吴佳梁,王广良,魏振山,等.风力机可靠性工程[M].化学工业出版社,2010,12.
    [42] ANSI/AGMA/AWEA6006-03AGMA.2003.
    [43] GB/T19073-2003.风力发电机组—齿轮箱[M].北京:中国标准出版社,2003.
    [44]秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报,2008,44(7):24-31.
    [45] Epaarachchi J A, Clausen P D. The Development of a Fatigue Loading Spectrum for SmallWind Turbine Blades[J].Journal of Wind Engineering and Industrial Aerodynamics,2006,94(4):207-223.
    [46] Riziotis V A,Voutsinas S G.Fatigue Loads on Wind Turbines of Different Control StrategiesOperating in Complex Terrain [J].Journal of Wind Engineeringand Industrial Aerodynamics,2000,85(3):211-240.
    [47]杨军,秦大同,陈会涛,等.风力发电机传动系统随机风速下的载荷特性研究[J].中国机械工程,2011,22(15):1837-1842.
    [48] R. Kasuba, E. I. Radzimovsky. A multi-purpose planetary gear testing machine for studies ofgear drive dynamics, efficiency, and lubrication [J]. ASME Journal of Engineering forIndustry,1973,95(4):1123-1130.
    [49] R. August, R. Kasuba. Torsional vibrations and dynamic loads in a basic planetary gearsystem[J]. ASME Journal of Vibration Acoustics Stress and Reliability in Design,1986,108(3):348-353.
    [50] A. Kahraman. Planetary gear train dynamics[J]. ASME Journal of Mechanical Design,1994,116(3):714-720.
    [51] A. Kahraman. Natural modes of planetary gear trains[J]. Journal of Sound and Vibration,1994,173(1):125-130.
    [52] P. Velex, L. Flamand. Response of planetary trains to mesh parametric excitations restoredesktop view[J]. ASME Journal of Mechanical Design,1996,118(1):7-14.
    [53] J. Lin and R.G. Parker, Sensitivity of planetary gear natural frequencies and vibration modesto model parameters[J]. Journal of Sound and Vibration,1999,228(1):109-128.
    [54] R.G. Parker. A physical explanation for the effectiveness of planet phasing to suppressplanetary gear vibration[J]. Journal of Sound and Vibration,2000,236(4):561-573.
    [55] J. Lin, R.G. Parker. Planetary gear parametric instability caused by mesh stiffness variation[J].Journal of Sound and Vibration,2002,249(1):129-145.
    [56] R.G. Parker, J. Lin. Mesh phasing relationships in planetary and epicyclic gears[J], ASMEJournal of Mechanical Design,2004,126(2):365-370.
    [57] V. K. Ambarisha, R.G. Parker. Nonlinear dynamics of planetary gears using analytical andfinite element models[J]. Journal of Sound and Vibration,2007,302(3):577–595.
    [58] D.R. Kiracofe, R.G. Parker. Structured vibration modes of general compound planetary gearsystems[J]. ASME Journal of Vibration and Acoustics,2007,129(1):1-16.
    [59] V. Abousleiman, P. Velex, A hybrid3D finite element/lumped parameter model forquasi-static and dynamic analyses of planetary/epicyclic gear sets[J]. Mechanism and MachineTheory,2006,41(6):725-748.
    [60] M. Inalpolat, A.Kahraman. A theroretical and experimental investigation of modulationsidebands of planetary gear sets[J], Journal of Sound and Vibration,2009,323(3):677-696.
    [61]王世宇.基于相位调谐的直齿行星齿轮传动动力学理论与实验研究[D].天津:天津大学,2005.
    [62]王世宇,张策,宋轶民,等.行星传动固有特性分析[J].中国机械工程,2005,16(16):1461-1465.
    [63]宋轶民,许伟东,张策,等.2K-H行星传动的修正扭转模型建立与固有特性分析[J].机械工程学报,2006,42(5):16-21.
    [64]杨通强,宋轶民,张策,等.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报,2005,1(7):50-55.
    [65]孙涛,沈允文,孙智明等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报,2002,38(3):11-15.
    [66] Tao Sun, HaiYan Hu S. Nonlinear dynamics of a planetary gear system with multipleclearances[J]. Mechanism and Machine Theory,2003,38(12):1371-1390.
    [67]孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学[J].清华大学学报(自然科学版),2003,43(5):636-639.
    [68]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报,2002,38(2):44-52.
    [69] M. Inalpolat, A. Kahraman. Dynamic modeling of planetary gears of automatictransmission[J]. Proc. IMechE,Part K: J.Multi-body Dynamics,2008,222:229-242.
    [70] A. Al-shyyab, K. Alwidyan, A. Jawarneh, et al. Non-linear dynamic behaviour of compoundplanetary gear trains: model formulation and semi-analytical solution[J]. Proc. IMechE,Part K:J.Multi-body Dynamics,2009,223:1-11.
    [71] J. Lin and R.G. Parker. Analytical characterization of the unique properties of planetary gearfree vibration[J]. ASME Journal of Vibration and Acoustics,1999,121(3):316-321.
    [72] J. Lin. Analytical investigation of planetary gear dynamics[D]. PhD Thesis, Ohio: The OhioState University,2000.
    [73] Vijaya Kumar Ambarisha, Robert G. Parker.Nonlinear dynamics of planetary gears usinganalytical and finite element models[J], Journal of Sound and Vibration302(2007)577–595.
    [74]王世宇,宋轶民,张策等.行星齿轮传动的共振失效概率[J],天津大学学报,2005,38(12):1122-1128.
    [75] Hoon-Voon Liewa, Teik C. Lim, Analysis of time-varying rolling element bearingcharacteristics[J], Journal of Sound and Vibration283(2005):1163–1179.
    [76] T. C. LIM, R. SINGH, Vibration transmission through rolling element bearings, part I: bearingstiffness formulation [J], Journal of Sound and Vibration,1990,139(2):179-199.
    [77] T. C. LIM, R. SINGH, Vibration transmission through rolling element bearings, part II:system studies [J], Journal of Sound and Vibration,1990,139(2):201-205.
    [78] T. C. LIM, R. SINGH, Vibration transmission through rolling element bearings, part III:Geared rotor system studies [J], Journal of Sound and Vibration,1991,151(1):31-54.
    [79] MUSIAL W,BUTTERFIELD S,MCNIFF B. Improving wind turbine gearbox reliability[C]//European Wind Energy Conference,May7-10,2007,Milan,Italy. Springfield U.SDepartment of Commerce National Technical Information Service,2007:1-13.
    [80] Yi Guo, R. G. Parker. Dynamic modeling and analysis of a spur planetary gear involving toothwedging and bearing clearance nonlinearity [J]. European Journal of Mechanics-A/Solids,2010,29(6):1022-1033.
    [81] J.L.M.Peeters, D.Vandepitte,P.Sas.Analysis of internal drive train dynamics in a wind turbine[J].Wind Energy,2006,9(1-2):141-161.
    [82] J. L. M. Peeters.Simulation of dynamic drive train loads in a wind turbine [D]. Belgium:Katholieke Universiteit Leuven2006.9.
    [83] Jan Helsena, Frederik Vanhollebekeb, Filip De Conincka, et al. Insights in wind turbine drivetrain dynamics gathered by validating advanced models on a newly developed13.2MWdynamically controlled test-rig. Mechatronics,2011,21(4):737–752.
    [84] Jan Helsen, Frederik Vanhollebeke, Ben Marrant. Multibody modelling of varying complexityfor modal behaviour analysis of wind turbine gearboxes.Renewable Energy.2011,36:3098-3113.
    [85] Datong Qin, Jianhong Wang, Teik C. Lim. Flexible multibody dynamic modeling of ahorizontal wind turbine drivetrain system. Journal of Mechanical Design, ASME,2009,131:114501-1:114501-7.
    [86] Jianhong Wang, Datong Qin,Teik C. Limb Dynamic analysis of horizontal axis wind turbineby thin-walled beam theory. Journal of Sound and Vibration.2010,329:3565–3586
    [87]陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究[J].太阳能学报,2003,24(5):729-734.
    [88]朱才朝,黄泽好,唐倩风.风力发电齿轮箱系统耦合非线性动态特性的研究[J].机械工程学报,2005,41(8):203-207.
    [89] W. Bartelmus, R. Zimroz. Vibration condition monitoring of planetary gearbox under varyingexternal load [J], Mechanical Systems and Signal Processing,2009,23(1):246–257.
    [90]孙新利,陆长捷.工程可靠性教程[M].北京:国防工业出版社,2005,1.
    [91]王新刚.零部件时变可靠性稳健优化设计若干问题的研究[D].沈阳:东北大学,2009,11.
    [92]王正.零部件与系统动态可靠性建模理与方法[D].沈阳:东北大学,2007,12.
    [93] Feudenthal A M.Safety of structures.Trans action,ASCE,1947,112:125-180
    [94] Stulen F B.Preventing fatigues.Machine Design,1961,33:159-165.
    [95] Kececioglu D.Designing a specified reliability directly into a component//proceedings of3rdAnnual Aerospace Reliabililty and Maintainability conference, Washington DC,1964:546-656.
    [96] Freedenthal A M.,Garrelts M,Shinozuka M.The analysis of structural safety.Journal SturcturalDivesio,ASCE92,1966:267-325.
    [97] Huagen E B.probabilistic Approaches to Design.New York: John Weily and Sons,1968.
    [98] Kececioglu D. Relibility analysis of mechanical components and systems [J]. NuclearEngneering and Design,1972,19:259-290.
    [99] Surles J G., Padgett W J. Inference for reliability and stress-strength for a sealed burr type Xdistribution [J]. Life time Data Analysis,2001,7:187-200.
    [100] Lyneh J D. On the joint distribution of component failures for monotone load-sharing systems[J]. Journal of Statistieal Planning and Inference,1999,78:13-21.
    [101] ZhaoY X,Gao Q,Wang J N. An approach for determining an appropriate assumeddistribution of fatigue life under limited data [J]. Reliability Engineering and System Safety,2000,67:1-7.
    [102] Saralees Nadarajah.On the moments of the modified Weibull distribution [J]. ReliabilityEngineering and System Safety,2005,90:114-117.
    [103] Weibull W.Fatigue Testing and Analysis of Results.New York: Macmillan Company,1961.
    [104] ASTM American National Standard. ANSI/ASTM,E206-72.1979.
    [105] Rackwitz R. Reliability analysis-A review and some perspectives.Structural Safety,2001,23:565-395.
    [106]谢里阳,何雪宏,李佳.机电系统可靠性与安全性设计[Ml.哈尔滨:哈尔滨工业大学出版2006.
    [107] SALVATORE Benfratello, LIVIA Cirone, FRANC-ESCO Giambanco. A multicriteriondesign of steel frames with shakedown constraints[J]. Computers and Structures,2006(84):269-282.
    [108] CHAUDHURI A, CHAKRABORTY S. Reliability evaluations of3-d frame subjected tonon-stationary earthquake [J]. Journal of Sound and Vibration,2003,295(4):797-808.
    [109] Gunter Beekera,Leonidas CamarinoPoulos,Dimitris Kabranis.Time-depedent reliabilityunder random shoeks [J]. Reliability Engineering and System Safety,2002,24:239-251.
    [110] Chen J J, Zeng Y G, Sun H A.Time-depedent reliability analysis of antenna reflector accuracyunder wind exeitation[J]. Computers&Structures,1996,59:819-822.
    [111] Cazuguel M,Renaud C,Cognard J Y. Time-variant reliability of nonlinear structures:application to a represeniative part of a plate floor[J].Quality and Reliability EngineeringIntemational,2006,22:101-108.
    [112]左勇志,刘西拉.结构动态可靠性的全随机过程模型[J].清华大学学报(自然科学版),2004,44(3):395-397.
    [113]戴志辉,王增平,焦彦军.基于动态故障树与蒙特卡罗仿真的保护系统动态可靠性评估.中国电机工程学报,2011,31(19):105-113.
    [114]许亮斌,陈国明.考虑疲劳失效的海洋平台动态可靠性分析[J].石油学报2007,28(3):131-133.
    [115]许亮斌,陈国明.考虑断裂和腐蚀失效的海洋平台动态可靠性研究[J].石油学报2009,30(1):1132-135.
    [116]王正,谢里阳,李兵.随机载荷作用下的零件动态可靠性模型[J].机械工程学报,2007,43(2):20-25.
    [117]王正,谢里阳,李兵.零件动态可靠性建模及早期失效率研究[J].航空学报,2007,28(6):1378-1382.
    [118]王正,谢里阳.不确定性载荷作用下的零件时变可靠性模型[J].航空学报,2009,30(7):1243-1247.
    [119]谢里阳,王正,周金宇,武滢.机械可靠性基本理论与方法[M].北京:科学出版社,2009.
    [120]王新刚,张义民,王宝艳.机械零部件的动态可靠性灵敏度分析[J].机械工程学报,2010,46(10):188-193.
    [121]张义民.汽车零部件可靠性设计[M].北京:北京理工大学出版社,2000,9.
    [122] EPler E P. Common mode failure considerations in the design of system for Protection andcontrol [J]. Nuclear Safety,1969,10:38-45.
    [123] Vaurio J K. Common cause failure models, data, quantifieation [J]. Reliability Engineeringand System Safety1996,53:85-96.
    [124] Fleming K N. A reliability model for common cause failures in redundant safety systems[C].Sixth annual Pittsburgh conference on modeling and simulation,Pittsburgh,1975.
    [125] Fleming K N,Hunnaman,G W. Common.cause failure considerations in Predicting HTGRcooling system reliability[J]. IEEE Transaction on Reliability,1976,25:171-177.
    [126] Vaurio J K. Availability of redundant safety systems with common mode and undetectedfailures[J].Nuclear Engineering and Design,1980,58:415-424.
    [127] Fleming K N,Mosleh A,Deremer R K. A systematic Proeedure for the incorporation ofcommon cause events into risk and reliability models[J]. Nuelear Engineering and Design,1986,93:245-273.
    [128] Hokstad P.A shoek model for conunon cause failure [J]. Reliability Engineering and SystemSafety,1988,23:127-145.
    [129] Shen Xueqiang, Bai Yan, Dong Yuqiang. Reliability model based on hypergraph fordependent failure system, Procedia Engineering,2012,29:962-968.
    [130] Danling Cheng, Dan Zhu, Robert P. et al. A graph trace based reliability analysis of electricpower systems with time-varying loads and dependent failures. Electric Power SystemsResearch,2009,79:1321–1328.
    [131] Liudong Xing, Leila Meshka, Susan K. Donohue. Reliability analysis of hierarchicalcomputer-based systems subject to common-cause failures. Reliability Engineering andSystem Safety,2007,92:351–359.
    [132] Athena Zitrou, Tim Bedford, Lesley Walls. Bayes geometric scaling model for common causefailure rates. Reliability Engineering and System Safety,2010,95:70–76
    [133] Jussi K. Vaurio.Uncertainties and quantification of common cause failure rates andprobabilities for system analyses,Reliability Engineering and System Safety,2005,90:186–195.
    [134]黄祥瑞.可靠性工程[M].北京:清华大学出版社,1990.
    [135]王光远,谭东耀.失效相关工程系统的可靠度[J].地震工程与工程振动,1992,12(l):1-5.
    [136]王光远,张鹏.具有中介状态的工程系统的可靠性分析[J].土木工程学报.2001,34(3):13-17.
    [137]何钟怡.单一随机扰动源作用下工程结构的失效相关问题[J].地震工程与工程振动,1994,14(2):76-85.
    [138]王学敏,谢里阳,周金宇,共因失效率的不确定性评估[JJ、航空学报,2005,26(l):.446-449.
    [139]周金宇,谢里阳,王学敏.相关失效结构系统可靠度的近似求解方法[J].东北大学学报(自然科学版),2004,25(l):74-77.
    [140]谢里阳,周金宇,李翠玲,等.系统共因失效分析及其概率预测的离散化建模方法.机械工程学报,2006,42(l):62-68.
    [141] Xie Liyang,Zhou Jinyu,Wang Yongyan,etal. Load-strength order statistics interferencemodels for system reliability evaluation [J]. International Journal of Performance Engineering,2005,1(1):23-36.
    [142]王正,谢里阳,李兵.考虑失效相关的系统动态可靠性模型[J].兵工学报,2008,29(8):985-989.
    [143]王正,谢里阳.考虑失效相关的k/n系统动态可靠性模型[J].机械工程学报,2008,44(6):72-78.
    [144]钱文学,谢里阳,尹晓伟.载荷相关多薄弱部位零部件可靠度建模与分析[J].机械工程学报,2010,46(6):182-187.
    [145]王正,康锐,谢里阳.以载荷作用次数为寿命指标的失效相关系统可靠性建模[J].机械工程学报,2010,46(6):188-194.
    [146]周金宇,谢里阳,韩文钦,等.基于Nataf变换的载荷相关系统风险预测方法.机械工程学报,2009,45(8):137-140.
    [147][206]周金宇,谢里阳.多状态系统共因失效机理与定量分析[J].机械工程学报,2008,44(10):77-82.
    [148]李翠玲.系统相关失效概率模型及其不确定性分析[D].沈阳:东北大学,2005,12.
    [149] WANG Zheng, KANG Rui, XIE Liyang. Dynamic reliability modeling of systems withcommon cause failure under random load [J]. Maintenance and Reliability,2009(3):47-53.
    [150]国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011~2020)[M].北京:科学出版社,2010.
    [151]张小丽,陈雪峰,李兵,等.机械重大装备寿命预测综述[J].机械工程学报,2011,47(11):100-116.
    [152]尚德广,王德俊,著.多轴疲劳强度[M].北京:科学出版社,2007.
    [153] Gough H J. The fatigue of metals[M], London: Benn.,1926.
    [154] PARIS P C,ERDOGAN F. A critical analysis of crack propagation laws [J]. Journal of BasicEngineering,1963,85(4):528-534.
    [155] JANSON J. Dugdale-crack in a material with continuous damage formation [J]. EngineeringFracture Mechanics,1977,9(4):891-899.
    [156] MAKKONEN M. Predicting the total fatigue life in metals[J]. International Journal of Fatigue,2009,31(7):1163-1175.
    [157] MOHANTY J R,VERMA B B,RAY P K. Prediction of fatigue crack growth and residual lifeusing an exponential model: Part I (constant amplitude loading)[J]. International Journal ofFatigue,2009,31(3):418-424.
    [158] MOHANTY J R,VERMA B B,RAY P K. Prediction of fatigue crack growth and residual lifeusing an exponential model:Part II (mode-I overload induced retardation)[J]. InternationalJournal of Fatigue,2009,31(3):425-432.
    [159] ANDREIKIV O E,LESIV R M,LEVYTS’KA N M. Crack growth in structural materialsunder the combined action of fatigue and creep (review)[J]. Materials Science,2009,45(1):1-17.
    [160] ZHANG S,SAKANE M. Multiaxial creep-fatigue life prediction for cruciform specimen[J].International Journal of Fatigue,2007,29(12):2191-2199.
    [161] PAWAR P M,GANGULI R. Fuzzy-logic-based health monitoring and residual-life predictionfor composite helicopter rotor[J]. Journal of Aircraft,2007,44(3):981-995.
    [162] KIM Y H,SONG J H,PARK J H. An expert system for fatigue life prediction under variableloading[J]. Expert Systems with Applications,2009,3:4996-5008.
    [163]奚立峰,黄润青,李兴林,等.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143.
    [164]高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望[J].机械强度,1995,17(3):61-82.
    [165] WANG X H,RONG M Z,QIU J,et al. Research on mechanical fault prediction algorithm forcircuit breaker based on sliding time window and ANN[J]. IEICE Transactions on Electronics,2008,E91c(8):1299-1305.
    [166] Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed andpower generation in wind farms [C]. IEEE Power Industry Computer Applications Conference,2001.
    [167]徐小力,王红军.大型旋转机械运行状态趋势预测[M].北京:科学出版社,2011
    [168] Suykens J.A.K, Vandewalle J. Least squares support vector machines classifiers [J]. NeuralNetwork Letters,1999,19(3):293-300.
    [169] J.A.K. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle. Weighted least squares supportvector machines: robustness and sparse approximation [J]. Neurocomputing,2002,48:85–105.
    [170]王秋瑾,张新房.基于WLS-SVM的变速风力机有效风速估计[J],系统仿真学报,2005,17(7):1590-1594.
    [171]曾杰,张华.基于最小二乘支持向量机的风速预测模型[J].电网技术,2009,18(33):144-147.
    [172] Hertz, H. On the contact of rigid elastic solids and on hardness, in Miscellaneous Papers,MacMillan, London,163-183,1896.
    [173]唐云冰.航空发动机高速滚动轴承力学特性研究[C].南京:南京航空航天大学,2005,11.
    [174]崔立航空发动机高速滚动轴承及转子系统的动态性能研究[C].哈尔滨:哈尔滨工业大学,2008,9.
    [175]冈本纯三(日).球轴承的设计计算[M].北京:机械工业出版社,2003.
    [176]张策.机械动力学(第二版)[M].北京:高等教育出版社,2008,1.
    [177] Lassaad Walha, Tahar Fakhfakh, Mohamed Haddar. Nonlinear dynamics of a two-stage gearsystem with mesh stiffness fluctuation,bearing flexibility and backlash, Mechanism andMachine Theory,2009,44:1058–1069.
    [178] A. Kahraman, H. N. Ozguven, D. R. Houser, et al. Dynamic analysis of geared rotors by finiteelements[J]. ASME Journal of Mechanical Design,1992,114(3):507-514.
    [179]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [180]孙智民.功率分流齿轮传动系统非线性动力学研究[D].西安:西北工业大学博士学位论文,2002,6.
    [181] MUHANDO E B, SENJYU T, KINJO H, etc. Augmented LQG controller for enhancement ofonline dynamic performance for WTG system [J]. Renewable Energy,2008,33(8):1942-1952.
    [182] ASTM E1049-85(1997). Standard Practices for cycle counting in fatigue analysis, In: AnnualBook of ASTM standard, Vol.03.01, Philadelphia,1999.207-1-718.
    [183]刘惟信.机械可靠性设计[M].北京:清华大学出版社,1996,8.
    [184]王新刚.机械零部件时变可靠性稳健优化设计若干问题的研究[D].东北大学博士学位论文,2009,11.
    [185]高鹏,谢里阳.考虑强度退化的零件及系统可靠性分析[J].机械工程学报,2010,46(24):62-166.
    [186]谢启芳,赵鸿铁.动态可靠度计算中的荷载研究[J].西安建筑科技大学学报,2006,38(2):210-213.
    [187]王德俊,何雪浤.现代机械强度理论及应用[M].科学出版社,2003,12.
    [188]黄娟.基于损伤理论的高速铁路隧道结构振动响应分析及疲劳寿命研究[D].中南大学博士学位论文,2010,4.
    [189]吴跃成.驱动桥疲劳可靠性分析与试验方法研究[D].浙江大学博士学位论文,2008,7.
    [190]孙磊,汤心刚,张兴辉,等.基于随机滤波模型的齿轮箱剩余寿命预测研究.2011,35(10):56-60.
    [191]冈本纯三著,黄志强译.球轴承的设计计算.北京:机械工业出版社,2003,3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700