高强预应力钢筋粘结性能试验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用强度高、延性好、高质量的预应力钢筋作为配筋的预应力混凝土结构已成为大跨度、重荷载、结构性能优良的现代建筑发展的必然趋势。预应力混凝土用光圆钢棒、异形钢棒及螺旋肋钢丝就是近年来开发的高强预应力钢筋新品种。随着预应力钢筋强度的提高及钢筋外形的变化,加之抗震设计必须考虑的粘结退化,使得钢筋与混凝土之间的粘结锚固问题愈显突出。本文通过试验研究、理论分析和数值模拟,着重研究了光圆钢棒、异形钢棒和螺旋肋钢丝的粘结锚固性能,完成了以下工作:
     1.通过6种不同外形钢筋的拉拔试件在单调加载下的拔出试验,研究了各种钢筋不同的粘结锚固破坏全过程,分析比较了各种不同外形钢筋与混凝土粘结性能的差异,并讨论了影响粘结锚固性能的主要因素。根据试验结果,给出了新型螺旋状高强预应力钢筋的粘结强度计算公式,公式计算结果与试验结果吻合良好。
     2.对4种高强预应力钢筋在锚固长度较长的情况下进行了拔出试验研究,比较了各种不同外形预应力钢筋与混凝土的粘结性能,分析了锚固长度较长情况下各种因素对粘结锚固性能的影响,并在试验研究的基础上进行可靠度分析,给出了可供工程设计参考的螺旋肋钢丝和异形钢棒的锚固长度建议值,该值与《混凝土结构设计规范》的锚固长度设计值相比减少5d~20d。
     3.针对异形钢棒和螺旋肋钢丝所特有的螺旋状外形,对两者在拔出过程中均产生的明显的转动现象进行分析,进而得出螺旋状预应力钢筋与混凝土之间的粘结作用机理。
     4.通过光圆钢棒、异形钢棒和螺旋肋钢丝拉拔试件在重复荷载作用下的拔出试验,比较了3种不同外形高强预应力钢筋的粘结破坏特性的差异,并给出了3种高强预应力钢筋在等幅重复荷载作用下的特征荷载值与应力水平上限的关系式。
     5.基于试验所确定的钢筋与混凝土基本力学性能指标,采用弹性接触问题有限元混合法,引入无厚度接触面计算模型,按空间轴对称方法模拟了钢筋与混凝土的粘结破坏全过程,数值计算结果与试验结果拟合较好。同时,利用该数学模型得到了钢筋与混凝土界面间的粘结应力分布情况。
Prestressed concrete structures with the high-strength, good-ductility and high-quality prestressed reinforcement as reinforcing bars become an inevitable trend of development of modem buildings with long-span, heavy-load and fine-structure performance. In recent years, round steel bar, deformed steel bar and helical rib steel wire for prestressed concrete are new kinds of high strength prestressed reinforcement. With the improvement of prestressed reinforcements strength and variation of surface configuration of rebar, and necessarily considering bond decay in earthquake-resistant design, problems of bond anchorage between reinforcement and concrete are getting increasingly stringent. In this paper, the bond anchorage behaviours of round steel bar, deformed steel bar and helical rib steel wire are investigated by experimental research, theoretical analysis and numerical simulation. The major contributions are summarized as follows:1. The pullout specimens of 6 different surface configurations of reinforcements are tested under monotonic loading. The whole processes of bond failure with various reinforcements are studied. The differences of bond behaviour between various surface configurations of reinforcements and concrete are analyzed. The main influences on bond anchorage performance are discussed as well. Based on the experimental results, the equation to analyze bond strength for new types of helical high-strength prestressed reinforcement is derived. The analytical results agree well with the test results.2. The pullout tests on 4 kinds of high-strength prestressed reinforcements are studied under a long anchorage length condition. The bond behaviours between various surface configurations of reinforcements and concrete are compared. The different influences on bond anchorage performance are analyzed. Based on the experimental studies, the suggested anchorage lengths of helical rib steel wire and deformed steel bar are given by reliability analysis, which can provide references for engineering design and so that the anchorage lengths could be reduced from 5d to 20d than those of Code for design of concrete structures.3. Due to defonned steel bar and helical rib steel wire with the unique helical surface configuration, the obvious rotational phenomena appear during the pullout processes. The bond mechanisms between the helical prestressed reinforcements and concrete can be explained by analyzing the rotational phenomena.
    4. The pullout specimens of round steel bar, deformed steel bar and helical rib steel wire are tested under repeated loadings. The differences of bond failure between 3 various surface configurations of prestressed reinforcements and concrete are compared. The relationships between characteristic loads and maximum values of stress levels are obtained under constant amplitude repeated loading.5. According to the space axisymmetric method, the whole process of bond failure between reinforcement and concrete is simulated. The basic mechanical properties of reinforcement and concrete are determined by the tests. The simulation uses the FEM mixed method for elastic contact problems, and introduces the no-thickness contact computation model. The numerical calculation results agree well with the experimental results. Meanwhile, the distribution situations of bond stresses along the interface between reinforcement and concrete are obtained by using the mathematic model.
引文
[1] 赵国藩主编.高等钢筋混凝土结构学.北京:中国电力出版社,1999.
    [2] LINT Y, BURNS N H. Design of Prestressed Concrete Structures. New York: John Wiley & Sons, Inc, 1981.
    [3] 林同炎,Bums N H.路湛沁等译.预应力混凝土结构设计.北京:中国铁道出版社,1983.
    [4] PARK R, PAULY T. Reinforced Concrete Structure. New York: John Wiley & Sons, Inc, 1982.
    [5] 叶列平.混凝土结构(上册).北京:清华大学出版社,2002.
    [6] 赵国藩主编.高等钢筋混凝土结构学.北京:机械工业出版社,2005.
    [7] 王传志,滕智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985.
    [8] 徐有邻.混凝土结构用钢筋的合理选择.建筑结构,2000,30(7):52-54.
    [9] 吴佳雄,李通坤.冷加工钢筋应用中的若干问题.建筑技术,2000,31(2):113-115.
    [10] 滕智明,罗福午,施岚清.钢筋混凝土基本构件.北京:清华大学出版社,1987.
    [11] 杨宗放,方先和.现代预应力混凝土施工.北京:中国建筑工业出版社,1993.
    [12] 王清湘,牟晓光,司炳君,许兴华.三种预应力钢筋粘结性能试验研究.大连理工大学学报,2004,44(6):848-853.
    [13] 《建筑用钢筋标准与规范汇编》编写组.建筑用钢筋标准与规范汇编.北京:中国标准出版社,2004.
    [14] 徐有邻.现行混凝土结构用钢筋的主要参数.混凝土,2000,127(5):32-33.
    [15] 徐有邻.我国混凝土结构用钢筋的现状及发展.土木工程学报,1999,28(5):3-9.
    [16] 徐有邻.采用高强材料提高结构可靠度的建议.建筑科学,1999,15(5):56-58.
    [17] 徐有邻.钢筋产品换代设计面临选择.混凝土,2000,127(5):7-9.
    [18] 徐有邻,谢志峰.混凝土结构用钢筋优化的建议.工业建筑,1999,29(10):15-21.
    [19] 俞建荣.预应力钢棒.金属制品,1994,20(5):52.
    [20] 宋建军,阮起楠.适用于生产的PHC管桩的预应力钢棒.金属制品,1995,2l(5):14-16.
    [21] 谢志峰,张秀云,冯志刚.YⅡ-T型预应力混凝土轨枕用螺旋肋钢丝研制.混凝土与水泥制品,2003,89(2):28-30.
    [22] 陈惠玲.新型刻痕预应力螺旋肋钢丝的开发应用.建筑科学,1997,13(3):22-25.
    [23] 王理满,蔡仁祉,赵健,陈敖宜,周德玲.高强螺旋肋钢丝预应力混凝土叠合楼板的结构性能研究.混凝土,2001,1 39(5):54-56.
    [24] 中华人民共和国国家标准.预应力混凝土用钢丝GB/T 5223—2002.北京:中国标准出版社,2002.
    [25] 中华人民共和国国家标准.混凝土结构设计规范GB 50010—2002.北京:中国建筑工业出版社,2002.
    [26] 徐有邻.各类钢筋粘结锚固性能的分析比较.福州大学学报,1996,24(增刊):69-75.
    [27] 谢仕柜.预应力混凝土用钢棒—我国预应力钢材中的新品种.金属制品,1997(2):6-7.
    [28] 高向玲.高性能混凝土与钢筋粘结性能的试验研究及数值模拟:(博士学位论文).上海:同济大学,2003.
    [29] 徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究:(博士学位论文).北京:清华大学,1990.
    [30] 赵羽习.钢筋混凝土粘结性能和耐久性的研究:(博士学位论文).杭州:浙江大学,2001.
    [31] 中华人民共和国国家标准.混凝土结构试验方法标准GB50152-92.北京:中国建筑工业出版社,1992.
    [32] Kemp E L, et al. Effect of Rust and Scale on the Bond Characteristics of Deformed Reinforcing Bars. ACI Journal, Proceedings, 1968, 65(9): 743-756.
    [33] Kemp E L, Wilhelm W J. Investigation of the parameters influencing bond cracking. ACI Journal, Proceedings, 1979, 76(1): 47-71.
    [34] Edwards A D, Yannopouls P J. Local bond-stress to slip relationships for hot rolled deformed bars and mild steel pains bars. ACI Journal, Proceedings, 1979, 76(3): 405-420.
    [35] Untrauer R E, Henry R L. Influence of Normal Pressure on Bond Strength. ACI Journal, Proceedings, 1965, 62(5): 577-585.
    [36] Ferguson P M, Thompson J N. Development Length of High Strength Reinforcing Bars in Bond. ACI Journal, Proceedings, 1962, 59(7): 887-922.
    [37] Ferguson P M, Thompson J N. Development Length for Large High Strength Reinforcing Bars. ACI Journal, Proceedings, 1965, 62(1): 71-94.
    [38] Clark A P. Comparative Bond Efficiency Deformed Concrete Reinforcing Bars. ACI Journal, 1946, 18(4): 381-400.
    [39] Clark A P. Bond of Concrete Reinforcing Bars. ACI Journal, 1949, 21(3): 161-184.
    [40] Mathey R G, Watstein D. Investigation of Bond in Beam and Pull-out Specimens with High-yield Strength Deformed Bars. ACI Journal, Proceedings, 1961, 57(9): 1071-1090.
    [41] Ferguest P M, et al. Pullout Tests on High Strength Reinforcing Bars. ACI Journal, Proceedings, 1965, 62(8): 933-949.
    [42] 粘结锚固专题研究组.钢筋砼粘结锚固的研究及设计建议.建筑结构,1986,16(4):2-12.
    [43] 徐有邻,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究.建筑结构学报,1994,15(3):26-37.
    [44] Sorotz S, Holzenbein H. Influence of rib dimensions of reinforcing bars on bond and bend ability. ACI Journal, Proceedings, 1979, 76(1): 111-125.
    [45] Hamad B S. Bond strength improvement of reinforcing bars with specially designed rib geometries. ACI Structural Journal, 1995, 92(1): 3-13.
    [46] Esfahani M R, Rangan B V. Local bond strength of reinforcing bars in normal strength and high-strength concrete (HSC). ACI Structural Journal, 1998, 95(2): 96-106.
    [47] 陈建平,徐勋倩,包华.钢筋混凝土粘结滑移特性的研究现状.南通工学院学报,2004,3(4):51-56.
    [48] Orangun C O, et al. A reevaluation of test data on development length and splices. ACI Journal, Proceedings, 1977, 74(3): 114-122.
    [49] Darwin D, et al. Development length criteria: bars not confined by transverse reinforcement. ACI Structural Journal, 1992, 89(6): 709-720.
    [50] Darwin D, et al. Development length criteria for conventional and high relative rib area reinforcing bars. ACI Structural Journal, 1996, 93(3): 347-359.
    [51] 徐有邻,刘立新,管品武.螺旋肋钢丝粘结锚固性能的试验研究.混凝土与水泥制品,1998,102(4):24-29.
    [52] Yerlici V A, Ozturan T. Factors affecting anchorage bond strength in high-performance concrete. ACI Structural Journal, 2000, 97(3): 499-507.
    [53] Nilson A H. Nonlinear Analysis of Reinforced Concrete by the Finite Element Method. ACI Journal, Proceedings, 1968, 65(9): 757-766.
    [54] Mirza S M, Houde J. Study of bond stress-slip relationships in reinforced concrete. ACI Journal, Proceedings, 1979, 76(1): 19-46.
    [55] 狄生林.钢筋混凝土握裹应力-滑移关系的试验研究.南京:东南大学土木工程系,1981.
    [56] 金芷生,朱万福,庞同和.钢筋与混凝土粘结性能试验研究.南京工学院学报,1985,15(2):73-85.
    [57] Jiang D H, et al. Study of the transfer of tensile forces by bond. ACI Journal, Proceedings, 1984, 81(3): 251-259.
    [58] 宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究.大连工学院学报,1987,26(2):93-100.
    [59] Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams. ACI Journal, Proceedings, 1967, 64(3): 152-163.
    [60] Lutz L A. Analysis of stresses in concrete near a reinforcing bar due to bond and transverse cracking. ACI Journal, 1970, 67(10): 778-787.
    [61] 宋启根.用有限元法探讨钢筋混凝土粘结试件.南京工学院学报,1981,11(4):100-115.
    [62] 宋玉普,赵国藩.钢筋混凝土结构分析中的有限单元法.大连:大连理工大学出版社,1994.
    [63] 赵国藩.混凝土及其增强材料的发展与应用.建筑材料学报,2000,3(1):1-6.
    [64] Azizinamin A, et al. Bond performance of reinforcing bars embedded in high-strength concrete. ACI Structural Journal, 1993, 90(5): 554-561.
    [65] Nammur G, Naaman A E. A bond stress model for fiber reinforced concrete based on bond stress-slip relationship. ACI Materials Journal, 1989, 86(1): 45-57.
    [66] Haraji M H. Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete. ACI Structural Journal, 1994, 91(5): 511-520.
    [67] Hota S, Naaman A E. Bond stress-slip response of reinforcing bars embedded in FRC matrices under monotonic and cyclic loading. ACI Structural Journal, 1997, 94(5): 525-537.
    [68] 杨萌,黄承逵.钢纤维与高强砂浆基体粘结性能试验研究.建筑材料学报,2004,7(4):384-389.
    [69] 高丹盈,谢丽,朱海棠.钢纤维高强混凝土与钢筋的粘结性能试验研究.建筑科学,2004,20(3):56-60.
    [70] Rostasy F S, Hognstad E. Pilot bond tests of large reinforcing bars. ACI Journal, Proceedings, 1960, 57(5): 576-579.
    [71] Morita S, Kaku T. Splitting bond failures of large deformed reinforcing bars. ACI Journal, Proceedings, 1979, 76(1): 93-101.
    [72] 徐有邻,姜立,宇秉训等.冷轧扭钢筋受力性能的试验研究.建筑科学,1996,12(1):3-9.
    [73] 徐有邻,刘立新,管品武等.冷轧扭钢筋粘结锚固性能的试验研究.建筑技术,1998,29(8):538-540.
    [74] 张钧林.再论冷轧扭钢筋的锚固性能.混凝土与水泥制品,1998,102(4):30-35.
    [75] 吴佳雄,李通坤.关于冷轧扭钢筋材料性能的讨论.混凝土与水泥制品,2000,112(2):21-23.
    [76] 薛伟辰,康清梁.纤维塑料筋粘结锚固性能的试验研究.工业建筑,1999,29(12):5-7.
    [77] 王林科,陶峰,王庆霖,杨兰生.锈后钢筋混凝土粘结锚固的试验研究.工业建筑,1996,26(4):14-16.
    [78] 袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究.工业建筑,1999,29(11):47-50.
    [79] Cleary D B, Ramirez J A. Bond strength of epoxy-coated reinforcement. ACI Material Journal, 1991, 88(2): 146-149.
    [80] Choi O C, et al. Bond of epoxy-coated reinforcement: bar parameters. ACI Material Journal, 1991, 88(2): 207-217.
    [81] Hamad B S, Jirsa J Q. Strength of epoxy-coated reinforcing bar splices confined with transverse reinforcement. ACI Structural Journal, 1993, 90(1): 77-88.
    [82] Hesster C J, et al. Bond of epoxy-coated reinforcement: splices. ACI Structural Journal, 1993, 90(1): 89-102.
    [83] Ghaffari H H, et al. Bond of epoxy-coated reinforced: cover, casting position, slump, and consolidation. ACI Stmctural Journal, 1994, 91(1): 59-68.
    [84] Caims J, Abdullah R. Fundamental test on the effect of an epoxy coating on bond strength. ACI Material Journal, 1994, 91(4): 331-338.
    [85] Cairns J, Abdullah R B. Influence of rib geometry on strength of epoxy-coated reinforcement. ACI Structural Journal, 1995, 92(1): 23-27.
    [86] 徐有邻,刘立新,曾德贵,管品武.环氧涂层钢筋粘结锚固性能的试验研究.建筑结构,1998,28(6):16-18.
    [87] 许清风,蒋永生.影响环氧涂层钢筋粘结锚固性能的因素分析.工业建筑,1999,29(6):45-48.
    [88] 薛伟辰,索丽生,白明进.环氧涂层钢筋粘结强度的试验研究.工业建筑,1999,29(7):44-47.
    [89] 中华人民共和国黑色冶金行业标准.预应力混凝土用钢棒YB/T 111—1997.北京:中国标准出版社,1997.
    [90] 中华人民共和国国家标准.预应力混凝土用钢绞线GB/T 5224—2003.北京:中国标准出版社,2003.
    [91] 中华人民共和国国家标准.钢筋混凝土用热轧带肋钢筋GB 1499—1998.北京:中国标准出版社,1998.
    [92] 徐有邻,周氐.混凝土结构设计规范理解与应用.北京:中国建筑工业出版社,2002.
    [93] 中华人民共和国国家标准.金属材料室温拉伸试验方法GB/T 228-2002.北京:中国标准出版社,2002.
    [94] 中华人民共和国国家标准.普通混凝土力学性能试验方法标准GB/T50081-2002.北京:中国建筑工业出版社,2002.
    [95] 徐有邻,宇秉训,姜红.三股钢绞线基本性能的试验研究.工业建筑,1998,28(9):31-36.
    [96] 邵卓民,沈文都,徐有邻.钢筋混凝土的锚固可靠度及锚固设计.建筑结构学报,1987,8(4):36-49.
    [97] 中国建筑科学研究院.钢筋混凝土结构设计与构造——85年设计规范背景资料汇编.北京:北京三环印刷厂,1985.
    [98] 中华人民共和国国家标准.建筑结构可靠度设计统一标准GB50068-2001.北京:中国建筑工业出版社,2001.
    [99] 胡卫国.高强度预应力螺旋肋钢丝的生产.金属制品,2000,26(3):26-27.
    [100] 张秀云,冯志刚,张宜文.螺旋肋钢丝无扭拉拔连续生产线.金属制品,2005,31(1):43-44.
    [101] 于全文.螺旋肋钢丝“缩径”现象分析.金属制品,2000,26(1):22-24.
    [102] 那顺桑,李贺杰,刘战英等.高强度预应力钢筋的生产技术.河北冶金,1999,112(4):35-37.
    [103] 徐有邻,谢铁桥.螺旋肋钢丝预应力传递性能的试验研究.混凝土与水泥制品,1998,99(1):32-35.
    [104] 曹红军.螺旋肋钢丝的生产及发展趋势.金属制品,2000,26(4):16-18.
    [105] Balazs G L. Fatigue of bond. ACI Material Journal, 1991, 88(6): 620-629.
    [106] 付恒菁,徐有邻.低周荷载下钢筋砼粘结性能的退化.建筑结构,1987,17(2):14-17.
    [107] 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [108] 朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998.
    [109] 陈万吉.用有限元混合法分析弹性接触问题.大连工学院学报,1979,18(2):16-28.
    [110] 许小强,赵洪伦.过盈配合应力的接触非线性有限元分析.机械设计与研究,2000,16(1):33-35.
    [111] 赵国藩,彭少民,黄承逵.钢纤维混凝土结构.北京:中国建筑工业出版社,1999.
    [112] 过镇海.混凝土的强度和本构关系——原理与应用.北京:中国建筑工业出版社,2004.
    [113] 中华人民共和国国家标准.普通混凝土配合比设计规程JGJ55-2000.北京:中国建筑工业出版社,2001.
    [114] 姚谦峰,陈平.土木工程结构试验.北京:中国建筑工业出版社,2001.
    [115] 陈志源,李启令.土木工程材料.武汉:武汉工业大学出版社,2000.
    [116] 易日.使用ANSYS 6.1进行结构力学分析.北京:北京大学出版社,2002.
    [117] 刘明.配筋砌块砌体中钢筋粘结性能与可靠性研究:(博士学位论文).大连:大连理工大学,2003.
    [118] 武亚军.基坑工程中土与支护结构相互作用及边坡稳定性的数值分析:(博士学位论文).大连:大连理工大学,2003.
    [119] 徐有邻,邵卓民,沈文都.钢筋与混凝土的粘结锚固强度.建筑科学,1988,4(4):8-14.
    [120] 赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究.建筑结构学报,2002,23(1):32-37.
    [121] 高向玲,李杰.钢筋混凝土粘结锚固的研究进展.结构工程师,2001,57(2):29-33.
    [122] 管品武,孟会英,李丽.钢筋与混凝土间粘结锚固性能及粘结作用机理.郑州工业大学学报,2001,22(3):65-68.
    [123] 徐有邻.钢筋混凝土粘结滑移本构关系的简化模型.工程力学,1997,14(增刊):34-38.
    [124] 冶金部建筑研究总院钢筋组.新外形建筑钢筋—热轧月牙纹钢筋及其使用性能.冶金建筑,1982,12(1):1-10.
    [125] 谷秀珠.月牙纹钢筋的粘结性能.冶金建筑,1982,12(1):12-14.
    [126] 王清湘,牟晓光,司炳君,许兴华.高强预应力钢筋表面形状对粘结性能的影响.工业建筑,2004,34(370):575-579.
    [127] 杜成斌,任青文.用于接触面模拟的三维非线性接触单元.东南大学学报,2001,31(4):92-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700