大断面水下盾构隧道管片衬砌结构的力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一大批大型跨江海水下交通通道工程相继开工建设,其中大断面水下盾构隧道不断涌现。然而,我国大断面水下盾构隧道的建设经验不多,结构设计方法尚不成熟,没有专门的设计规范,主要参考国外标准和设计方法。同时,我国幅员辽阔、不同地区地质条件差异较大,特别在水下复杂环境下既有盾构隧道建设经验并不能完全适用。鉴于此,本文针对大断面水下盾构隧道管片衬砌结构的力学行为开展研究,具有重要工程价值。
     论文在国家高技术发展计划(863计划)课题:“大型跨江海隧道结构力学特征及整体化设计方法研究”等国家重大研究课题资助下,采用理论分析、相似模型试验、结构原型试验与足尺试验、数值模拟分析等多种方法,对大断面水下盾构法隧道管片衬砌结构的力学性能进行了全面的、系统的研究,研究成果直接应用于我国首座水下高速铁路隧道——广深港高速铁路狮子洋隧道、南京长江隧道等重大水下盾构隧道工程之中。论文主要工作和研究成果如下:
     1、采用接头抗弯足尺试验和考虑接缝面界面接触效应及混凝土开裂、压溃与螺栓破坏的数值计算分析等手段,探明了大断面水下盾构隧道管片接头的抗弯性能、破坏特征以及开裂破坏的力学性能。建立了大型水下盾构隧道管片接头的接缝面抗弯力学模型,该模型能够对接缝面混凝土开裂、接头破坏等工况进行计算,弥补了以往的管片接头力学模型中不能考虑接缝大变形或破坏的不足,并提出了不同力学状态下狮子洋隧道管片接头的抗弯刚度。
     2、采用“盾构隧道-地层复合体模拟试验系统”与水压加载装置相结合,针对大断面水下盾构隧道承受高水压和穿越砂质土层、粘性土层、硬质岩层等多种不同性质地层的特点,开展了考虑了结构-地层-水联成作用的相似模型试验,探明了不同水、土压荷载条件、不同拼装方式、不同地层条件下管片衬砌结构的受力特征。
     3、采用“多功能盾构隧道结构体试验系统”对以狮子洋隧道为代表的大断面水下盾构隧道管片衬砌结构进行了原型试验,探明了正常使用阶段与开裂后管片衬砌结构的内力、形变分布与变化规律,探讨了管片拼装效应的产生机理,探明了管片衬砌结构环向内力、表面应力的分布特征。
     4、采用原型结构破坏试验手段,探明了管片衬砌结构最大直径变化率与最大纵缝张开量、裂缝的开展与结构刚度的变化关系,明确了不同拼装方式下管片衬砌结构的破坏特征。同时,探明了结构破坏过程中的变形特征,并从结构刚度的角度探讨了大断面水下盾构隧道破坏过程中裂缝开展、接缝张开等对结构形变的影响。
     5、对既有盾构隧道管片衬砌结构分析模型进行了比较,针对大断面水下盾构隧道特点提出了使用建议。通过原型试验探明了不同荷载条件、不同结构型式、不同拼装方式等条件下,结构刚度变化与管片衬砌结构的变形特性的关系,对采用匀质圆环模型开展大断面盾构隧道结构分析时的重要参数(横向刚度有效率系数、弯矩增大系数等)提出了取值建议。建立了考虑裂缝扩展的管片衬砌结构实体-接触模型,探讨了开裂破坏过程中管片衬砌结构的裂缝分布与扩展、形变发展以及应力变化特征。
In recent years, a large number of cross-sea or cross-river traffic channels have been started construction in China, and most of them emerging in form of underwater shield tunnels with large cross-section. However, with regard to large cross-section shield tunnel, the structure design experience is not yet complete or consummate. There is not specific design code as reference to the design of segment structures, so the domestic designer have to consult the foreign code or design methods. Meanwhile, China has a vast territory, and the geological conditions are quite different from different regions. Especially for the complex underwater environment, the existing construction experience and design theories for shield tunnel could not be applied appropriately. In view of this, the mechanical characteristics of segmental lining structure for underwater shield tunnel with large cross-section is studied in this paper, and the results will have important practical significance.
     Supported by National High-Tech Research and Development Program of China (863Program):'Research on mechanical characteristics and integral design method of large underwater tunnel structures', and many other major national research projects, the theoretical analysis, model tests, prototype tests, full-scale tests, numerical simulation and many other methods are carried out in this study. The mechanical properties of segmental structure for large underwater shield tunnel are studied comprehensively and systematically. And the research achievements are directly applied to the design and construction of several underwater shield tunnels in China, including the first high-speed railway underwater tunnel-Guangzhou Shiziyang Tunnel and Nanjing Changjiang Tunnel. The main works and research achievements include:
     (1) By means of full-scale tests and3D numerical analysis, which considered the joint surface interaction, properties of concrete cracking, crushing and bolt fracture, the bending behavior, failure characteristics and mechanical properties were clarified and acquired. Meanwhile, the mechanical model of segmental joint for large underwater shield tunnel was established. The model consdering the phenomenon such as cracking, crushing of concrete and yield, fracture of bolt, the models made up the defect that the previous mechanical models of segment joint could not analyze the large deformation or damage cases. The bending stiffness of segment joints of Shiziyang Tunnel was clarified under different mechanical state.
     (2) Using'shield tunnel-ground complex simulation facility'and'water pressure device', Large-scale similar model tests, which considered the interaction of tunnel structure, ground and water, were carried out against the characteristics, such as high water pressure, crossing through stratas with different mechanical properties. The behavior of segmental lining structure was ascertained under different load condition, different assembling methods and different stratas.
     (3) Using the "Multi-function Shield Tunnel Structure Test System" device, the prototype tests were carried out agaist large-cross section underwater shield tunnel. The distribution and changes of internal forces and deformation under normal use stage, cracking damaged stage was clarified. Meanwhile, the effect of assembling method on inner force was discussed by theoretical analysis. And the distribution of circumferential internal forces and suface stress under different load conditions and different assembly methods was clarified respectively.
     (4) The relationships between maximum rate of diameter change, maximum longitudinal seam opening, expansion of cracks and structure stiffness was acquired by destructive prototype tests. The failure characteristics of segmental lining structure under different assembling methods were acquired respectively. Meanwhile, the deformation features during the damage process was explored, and the effect of maximum longitudinal seam opening and cracking on structure deforming was discussed in the perspective of structural stiffness.
     (5) Compared with the most widely-used analytical models, advises and recommendations were given according to the feature of underwater shield tunnel with large cross-section. The relationship between deformation properties and structure stiffness under different load conditions, different assembling methods and different stucrure types was acquired by prototype tests. Furthermore, suggestions on the effective bending rigidity ratios and moment increasing rates, which were key parameters of uniform rigidity ring model, were given when using the model to conduct large cross-section shield tunnel analysis. Meanwhile, solid-contact model considered crack propagation was established to discuss the distribution and stretching of cracks, the structural deformation and the stress after cracking.
引文
[1]钱穆.中国文化史导论[M].北京:商务印书馆,1994.
    [2]钱穆.国史大纲[M].北京:商务印书馆,1994.
    [3]项海帆.21世纪世界桥梁工程的展望[J].土木工程学报,2000,33(3):1-6.
    [4]钱七虎.由桥隧并举跨江越海所引发的思考[J].岩土工程界,2007,6(7):3-5.
    [5]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [6]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2004,1(1):7-9.
    [7]何川,张建刚,苏宗贤.大断面水下盾构隧道结构力学特性[M].北京:科学出版社,2010.
    [8]郭陕云.关于我国海底隧道建设若干工程技术问题的思考[J].隧道建设,2007,27(3):1-5.
    [9]陈韶章.沉管隧道设计与施工[M].北京:科学出版社,2004.
    [10]钱七虎.从河床冲淤分析沉管法修建长江水下隧道问题[A].钱七虎院士论文选集[C],2007.
    [11]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [13]川岛一彦.地下构造物の耐震设计[M].日本:鹿岛出版会,1994.
    [14]王梦恕.水下交通隧道发展现状与技术难题—兼论“台湾海峡海底铁路隧道建设方案”[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [15]张建刚,何川,杨征.大型水下盾构隧道管片衬砌结构配筋问题研究[J].铁道学报,2009,31(5):72-78.
    [16]何川,佘健.高速公路隧道维修与加固[M].北京:人民交通出版社,2006.
    [17]袁勇,刘涛,柳献.运营越江隧道服役现状调查与检测评估[J].东南大学学报(自然科学版),2006,36(增刊Ⅱ):83-89.
    [18]陆永芳.盾构隧道管片衬砌裂纹病害整治技术[J].山西建筑,2008,34(17):325-326.
    [19]关宝树.隧道维修管理要点集[M].北京:人民交通出版社,2004.
    [20]王梦恕,等著.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010.
    [21]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [23]王振信.盾构法现状与展望[J].隧道译丛,1991:16-22.
    [24]孙钧,侯学渊.地下结构(上)[M].北京:科学出版社,1991.
    [25]孙钧,侯学渊.地下结构(下)[M].北京:科学出版社,1991.
    [26]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [27]Hewett, B.M. Shield and Compressed Air Tunnelling [M]. Me Graw-Hill Book Company, Inc. N.Y.,1992.
    [28]李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社,2003.
    [29]Bull, A. Stress in the Linings of Shield-Driven Tunnels Trans[J]. ASCE, Nov,1994.
    [31]高渠清.论地下结构物计算理论的演变及研究方向(刘启山)[A].高渠清隧道及地下工程论文集[C].北京:中国铁道出版社,1996.
    [32]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993.
    [33]O'Rourke, T. D主编.隧道衬砌设计指南[M].侯学渊,等译.北京:中国铁道出版社,1987.
    [34]Schmidt, B. Tunnel Lining Design-Do the Theories Work?[J]. Proceedings of Austraial-New Zealand Geomechanics Conference, Perth, Australian, May,1984.
    [35]Engelbreth, K. Tunnel Stress Analysis [J]. Geotechnique, No.3,1961.
    [36]Morgan, H. D. A Contribution to the Analysis of Stress in an Circular Tunnel[J]. Geotechnique,1961, Vol.11, No.1.
    [37]Muir Wood, A. M. The circular tunnel in elastic ground[J]. Geotechnique,1975,25(1): 115-127.
    [38]Peck, R. B. State of the Art of Soft Ground Tunnelling[C]. Proceedings of Rapid Excavation and Tunnelling Conference, Chicago,1972, Vol.1, pp.259-286.
    [39]Curtis, D.J. Discussing on The Circular Tunnel in Elastic Ground[J]. Geotechnique, Vol. 26, No.1,1976.
    [40]Rankine, R. E., Ghaboussi, J., Hendron, A. J. Analysis of ground-liner interaction for tunnels[R]. Report No. UMTA-IL-06-0043-78-3, Department of Civil Engineering, University of Illinois at Urbana-Champaign,1978.
    [41]Einstein, H. H., Schwartz, C. W. Simplified analysis of tunnel support[J]. Journal of Geotechnical Engineering Division,1979,105(GT4):499-518.
    [42]Yuen, C. M. Rock-structure time interaction[D]. Ph. D thesis, Department of Civil and Environmental Engineering, The University of Western Ontario, London, Ont,1979.
    [43]侯学渊.地下圆形结构弹塑性理论[J].同济大学学报,1982,(4):50-61.
    [44]侯学渊.隧道设计模型、理论与试验[J].岩土工程学报,1984,6(3):35-43.
    [45]Ogawa, T. Elasto-plastic, thermo-mechanical and three-dimensional problems in tunneling[D]. Ph. D thesis, Department of Civil and Environmental Engineering, The University of Western Ontario, London, Ont,1979.
    [46]El Naggar, H., Hinchberger, S. D., El Naggar, M.H. An analytical solution for jointed tunnel linings in elastic soil or rock[J]. Canadian Geotechnical Journal,2008,45: 1572-1593.
    [47]El Naggar, H., Hinchberger, S. D., Lo, K. Y. A closed-form solution for composite tunnel linings in a homogeneous infinite isotropic elastic medium[J]. Canadian Geotechnical Journal,2008,45:266-287.
    [48]Reyes, S.F., Deere, D. U. Elastic-plastic Analysis of Underground Openings by the Finite Element Method [A]. Proc.1st Cong. Int. Soc. Rock Mech[C]. Lisbon:1966, 477-483.
    [49]Zienkiewicz, O. C., Valliappan, S., King, I. P. Stress Analysis of Rock as A'No-tension' Materials[J]. Geotechnique,1968, Vol.18, No.1,56-66.
    [50]Zienkiewicz, O. C., Humpheson, C., Lewis, R. W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25, No.4,56-66.
    [51]Kulhawy, F. H. Stress and Displacements around Opening in Homogeneous Rocks[J]. Int. J. Rock Mech. Min. Soc.,1975, Vol.12, No.3,43-51.
    [52]Wittke, W. Static Analysis for Underground Opening in Jointed Rock[J]. Numerical Methods in Geotechnical Engineering[M]. McGraw-Hill Book Company,1977.
    [53]Bettess, P. Infinite elements[J]. Int. J. Num. Meth. Engng,1977,11:53-64.
    [54]Marques, J. M. M. C., Owen, D. R. J. Infinite elements in quasi-static materially nonlinear problems[J]. Computers and Structures,1984,18(4):739-751.
    [55]Banerjee, P. K., Butterfield, R. Boundary Element Methods in Geomechanics[M]. John Wiley & Sons,1977.
    [56]Cundall, P. A. A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems[C]. Proc. Int. Sym. on Rock Fracture, Nancy, France,1971, Vol.1, Paper No. Ⅱ-8.
    [57]Goodman, R. Taylor, R. L., Brekke, T. L. A Model for the Mechanics of Jointed Rock[J]. J. Soil Mech. (ASCE),1968,94, SM3.
    [58]石根华.数值流形方法与非连续变形分析[M].裴觉民,译.北京:清华大学出版社,1997.
    [59]International Tunneling Association (ITA). Views on structural design models for tunnelling:synopsis of answers to questionnaire, may 1981.
    [60]I. T. A. Working Group on general approaches to the design of tunnels. Guidelines for the design of tunnels[J]. Tunnelling and Underground Space Technology,1988,3, 237-249.
    [62]Working Group No.2, International Tunnelling Association. Guidelines for the design of shield tunnel lining[J]. Tunnelling and Underground Space Technology,2000,15(3): 303-331.
    [63]北京城建设计研究总院主编.中华人民共和国国家标准GB50157-2003,地铁设计规范[S].北京:中国计划出版社,2003.
    [65]Fukuchi, G.The Present and Future of Mechanized Tunnel Works in Soft Ground[J]. Tunnelling and Underground Space Technology,1991,6(2):175-183.
    [66]Lee K M, Ge X W. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure[J]. Journal of Canadian Geotechnical Engineering,2001,38: 461-483.
    [67]钟小春,朱伟,季亚平,徐洋.盾构衬砌管片环弯曲等效刚度的一种确定方法[J].地质与勘探,2003,39(增刊):185-189.
    [68]黄宏伟,徐凌,严佳梁,等.盾构隧道横向刚度有效率的研究[J].岩土工程学报,2006,28(1):11-18.
    [69]张建刚.大断面水下盾构隧道的相似模型试验及结构内力分析[D].成都:西南交通大学博士学位论文,2008.
    [70]Koyama, Y. Present status and technology of shield tunnelling method in Japan[J]. Tunnelling and Underground Space Technology,2003, (18):145-159.
    [71]Uchida, K. Design and engineering of large bore slurry shield tunnel lining system for Trans-Tokyo Bay Highway [J]. Civil Engineering in Japan,1992,30:54-67.
    [75]Duddeck, H. Structural Design for Tunnels[C]. Tunneling'82, Institution of Mining and Metallury, London, U.K,1992.
    [79]朱合华,陶履彬.盾构隧道衬砌结构受力分析的梁-弹簧系统模型[J].岩土力学.1998,19(2):26-32.
    [80]K. M. Lee, X. Y. Hou, X. W. Ge, et al. An analytical solution for a jointed shield-driven tunnel lining[J]. Int. J. Numer. Anal. Meth. Geomech.,2001,25:365-390.
    [81]朱合华,杨林德,陈清军,等.盾构隧道管片接头衬砌系统的两种受力设计模型[J].工程力学,1996,3(增刊):395-399.
    [82]朱合华,杨金松,郑国平,等.盾构隧道衬砌CAD软件的设计及应用[J].岩土力学,2002,23(5):632-636.
    [83]朱合华,崔茂玉,杨金松.盾构衬砌管片的设计模型与荷载分布的研究[J].岩土工程学报,2000,22(2)-190-194.
    [84]丁文其,杨林德,朱合华.盾构隧道施工中材料性态的模拟[J].同济大学学报,1999,27(4):468-473.
    [85]W. Q. Ding, Z. Q. Yue, L. G. Tham, et al. Analysis of shield tunnel[J]. Int. J. Numer. Anal. Meth. Geomech.,2004,28:57-91.
    [86]黄昌富.盾构隧道通用装配式管片衬砌结构计算分析[J].岩土工程学报,2003,25(3):322-325.
    [87]唐志成,何川,林刚.地铁盾构隧道管片结构力学行为模型试验研究[J].岩土工程学报,2005,27(1):85-89.
    [88]袁金荣,周裕倩,刘学增,等.双圆盾构隧道衬砌结构设计及参数研究[J].岩土工程学报,2005,27(6):638-641.
    [89]李围,何川.盾构隧道通用管片结构力学行为与控制拼装方式研究[J].铁道学报,2007,29(2):77-82.
    [90]何川,曾东洋.砂性地层中地铁盾构隧道管片结构受力特征研究[J].岩土力学,2007,28(5):909-914.
    [91]李围,何川.超大断面越江盾构隧道结构设计与力学分析[J].中国公路学报,2007,20(3):76-80.
    [92]何川,封坤,杨雄.南京长江隧道超大断面管片衬砌结构体的相似模型试验研究[J].岩石力学与工程学报,2007,26(11):2260-2269.
    [93]侯公羽,杨悦,刘波.盾构管片设计改进惯用法模型及其内力解析解[J].岩土力学,2008,29(1):161-166.
    [94]侯公羽,杨悦,刘波.盾构管片接头模型的改进及管片内力的数值计算[J].岩石力学与工程学报,2007,26(增2):4284-4291.
    [95]Koizumi, A. On the Design Method of the Shield Tunnel Lining[J]. Memoirs of the School of Science and Engineering, Waseda University, NO.56,1992:125-177.
    [96]胡志平,罗丽娟,蔡志勇.盾构隧道管片衬砌的平板壳-弹性铰-地基系统模型[J].岩土力学,2005,26(9):1403-1408.
    [97]朱伟,黄正荣,梁精华.盾构衬砌管片的壳-弹簧设计模型研究[J].岩土工程学报,2006,28(8):940-947.
    [98]Klappers, C., Grubl, F., Ostermeier, B. Structural Analyses of Segmental Lining-Coupled Beam and Spring Analyses Versus 3D-FEM Calculations with Shell Elements[C]. World tunnel congress & 32nd ITA general assembly,2006.
    [99]苏宗贤,何川.荷载-结构模式的壳-弹簧-接触模型[J].西南交通大学学报,2007,42(3):288-292.
    [100]苏宗贤,何川.盾构隧道管片衬砌内力分析的壳-弹簧-接触模型及其应用[J].工程力学,2007,24(10):131-136.
    [101]张建刚,何川,杨征.武汉长江隧道管片衬砌结构受幅宽影响的力学分布特征研究[J].岩石力学与工程学报,2007,26(增2):3763-3769.
    [102]张建刚,何川,杨征.大断面宽幅盾构管片三维内力分布分析[J].岩土力学,2009, 30(7):2058-2062.
    [103]赵大洲,景来红.盾构隧道管片衬砌的平板壳-接缝元-地基系统模型研究[J].工程力学,2011,28,(6):110-117.
    [104]Duddeck, H. Application of numerical analyses for tunneling[J]. Int. J. Num. Analys. Meth. Geomech,1991,25(4):223-239.
    [105]Blom, C. B. M., van der Horst, E. J., Jovanovic, P. S. Three-dimensional structural analyses of the shield-driven'Green Heart'Tunnel of the High-Speed Line South[J]. Tunnelling and Underground Space Technology,1999,14(2):217-224.
    [106]Galli, G, Grimaldi, A., Leonardi, A. Three-dimensional modeling of tunnel excavation and lining[J]. Computers and Geotechnics,2004,31(1):171-183.
    [107]鞠杨,徐广泉,毛灵涛,等.盾构隧道衬砌结构应力与变形的三维数值模拟与模型试验研究[J].工程力学,2005,22,(3):157-165.
    [108]鞠杨,徐广泉,谢和平.钢筋混凝土盾构衬砌结构的三维数值分析[J].计算力学学报,2005,22(4):437-442.
    [109]张海波,殷宗泽,朱俊高,等.盾构法隧道衬砌施工阶段受力特性的三维有限元模拟[J].岩土力学,2005,26(6):990-994.
    [110]H.H. Mo, J.S. Chen. Study on inner force and dislocation of segments caused by shield machine attitude[J]. Tunnelling and Underground Space Technology,2008,23:281-291.
    [111]Chen Jun-sheng, Mo Hai-hong. Mechanical behavior of segment rebar of shield tunnel in construction stage[J]. Journal of Zhejiang University-Science A,2008,9(7):888-899.
    [112]张厚美,过迟,吕国梁.盾构压力隧洞双层衬砌的力学模型研究[J].水力学报,2001,4:28-33.
    [113]何英杰,张述琴,吕国梁.穿黄隧道内外衬联合受力结构模型试验研究[J].长江科学院院报,2009,19(增刊):64-67.
    [114]张厚美.装配整体式双层衬砌接头荷载试验与结构计算理论——南水北调中线穿黄隧洞结构计算模型研究[D].上海:同济大学博士学位论文,2000.
    [115]杨钊,潘晓明,余俊.盾构输水隧洞复合衬砌计算模型[J].中南大学学报(自然科学版),2010,41(5):1945-1952.
    [116]周顺华,王炳龙,潘若东,等.盾构工作井围护结构在施工全过程的内力测试分析[J].岩土工程学报,2002,24(3):301-303.
    [117]黄宏伟,刘通剑,谢雄耀.盾构隧道壁后注浆效果的雷达探测研究[J].岩土力学,2003,24(增刊):353-356.
    [118]Xie Xiongyao; Liu Yujian; Huang Hongwei. Evaluation of grout behind the lining of shield tunnels using ground-penetrating radar in the Shanghai Metro Line, China[J]. Journal of geophysics and engineeing,2007,4(3):253-261.
    [119]Fengshou Zhang, Xiongyao Xie, Hongwei Huang. Application of ground penetrating radar in grouting evaluation for shield tunnel construction[J]. Tunnelling and Underground Space Technology,2010,25:99-107.
    [120]陈伟,彭振斌,唐孟雄.盾构管片工作性能试验研究[J].岩石力学与工程学报,2004,23(6):959-963.
    [121]周文波,郑宜枫,滕丽.双圆盾构隧道施工过程中管片力学性状的原位测试研究[J].力学季刊,2005,26(3):459-463.
    [122]邓宗伟,冷伍明,陈建平.盾构隧道壁后注浆作用机理的计算研究[J].塑性工程学报,2005,12(6):114-117.
    [123]闫治国,朱合华,廖少明,等.地铁隧道钢纤维混凝土管片力学性能研究[J].岩石力学与工程学报,2006,25(增1):2888-2893.
    [124]李围,何川,谢红强.高水压岩质盾构隧道二次注浆压力的控制[J].中国铁道科学,2006,27(1):32-37.
    [125]谢红强,何川,李围.江底盾构隧道施工期外水压分布规律的现场试验研究[J].岩土力学,2006,27(10):1851-1855.
    [126]李玲玲,王立忠.新建海堤下盾构隧道施工技术措施及监控[J].岩土工程学报,2007,29(7):995-1003.
    [127]D.G. Aggelis, T. Shiotani, K. Kasai. Evaluation of grouting in tunnel lining using impact-echo[J]. Tunnelling and Underground Space Technology,2008,23:629-637.
    [128]唐孟雄,陈如桂,陈伟.广州地铁盾构隧道施工中管片受力监测与分析[J].土木工程学报,2009,42(3):118-124.
    [129]李东海,刘军,萧岩,等.盾构隧道斜交下穿地铁车站的影响与监测研究[J].岩石.力学与工程学报,2009,28(增1):3186-3192.
    [130]杨广武,李兴高,吴晓军,等.盾构隧道施工过程中管片内力的研究[J].中国铁道科学,2009,30(3):57-62.
    [131]周济民,何川,方勇,等.黄土地层盾构隧道受力监测与荷载作用模式的反演分析[J].岩土力学,2011,32(1):165-171.
    [132]李明宇,刘国彬,胡蒙达,等.运营地铁盾构隧道结构振动响应实测分析[J].铁道学报,2011,33(6):88-93.
    [133]李围,何川,张志强.大型地下结构下修建盾构隧道模型试验[J].西南交通大学学报,2005,40(4):478-483.
    [134]李围,何川.盾构隧道近接下穿地下大型结构施工影响研究[J].岩土工程学报,2006,28(10):1277-1282.
    [135]何川,封坤,晏启祥,等.一种盾构隧道结构模型的水压模拟方法[P].中国:ZL200810045614.6,2008.
    [136]何川,张建刚,封坤,等.一种盾构隧道结构模型综合试验装置[P].中国:ZL200820223364.6,2008.
    [137]何川,张建刚,杨征.层状复合地层条件下管片衬砌结构力学特征模型试验研究[J].岩土工程学报,2008,30(10):1537-1543.
    [138]刘维宁,路美丽,张新金.盾构法和浅埋暗挖法结合建造地铁车站的模型试验[J].岩石力学与工程学报,2009,28(8):1629-1638.
    [139]汪洋,何川,曾东洋,等.盾构隧道正交下穿施工对既有隧道影响的模型试验与数值模拟[J].铁道学报,2010,32(2):79-85.
    [141]李京爽,王哲.地铁盾构管片弯曲变形特性试验研究[J].北方交通大学学报,2004,28(1):60-64.
    [142]周海鹰,李立新,陈廷国.地铁隧道衬砌管片承载力试验及计算方法[J].山东大学学报(工学版),2010,40(4):84-87.
    [143]周海鹰,李立新,陈廷国.地铁管片抗裂度及裂缝宽度试验和计算方法[J].山东大学学报(工学版),2010,40(3):124-127.
    [144]刘赫凯,万一宁.钢纤维自密实混凝土管片力学性能的试验研究[J].建筑材料学报,2011,14(1):10-21.
    [145]李斐,陈怀伟,王毅,等.地铁盾构隧道管片结构性试验标准探讨[J].都市快轨交通,2011,24(3):65-69.
    [148]Kashima, Y., Kondo, N., Inoue, M. Development and Application of the DPLEX Shield Method:Results of Experiments Using Shield and Segment Models and Application of the Method in Tunnel Construction[J]. Tunnelling and Underground Space Technology, 1996, Vol.11, No.1, pp.45-50.
    [149]王如路,宋博,王祺等.双圆盾构隧道衬砌错缝拼装整环试验及结构分析[J].地下工程与隧道,2001,(1):12-15.
    [150]Nakamura, H., Kubota T., Furukawa, M., et al.,2003. Unified construction of running track tunnel and crossover tunnel for subway by rectangular shape double track cross-section shield machine. Tunneling and Underground Space Technology 18, 253-262.
    [151]郭智杰,鲁亮,刘祖华.双圆盾构法隧道衬砌1:1结构试验加载方法研究[J].结构工程师,2004,(3):64-71.
    [152]王彪,刘祖华,鲁亮.上海崇明越江隧道衬砌整环试验加载方法研究[J].施工技术,2006,35(增刊):52-54.
    [154]陆同寿,崔铁军.圆形隧道接头刚度模型试验与研究[J].隧道及地下工程,1987,(4):21-23.
    [155]Iftimie, T. Design considerations and testings in shield-driven tunnels[A]. Proc. of the ITA International Congress "Towards New Worlds in Tunnelling", Acapulco, Mexico, 16-20 May,1992,321-326. Rotterdam:Balkema.
    [156]Iftimie, T. Prefabribated lining, conceptional analysis and comparative studies for optimal solution[J]. Proc. of the ITA International Congress "Tunnelling and Ground Conditions", Cairo, Egypt, April 1994,339-346. Rotterdam:Balkema.
    [157]黄钟晖.盾构法隧道管片衬砌纵缝接头受力模型的研究[J].地下空间,2003,23(3):296-301.
    [158]曾东洋.盾构隧道衬砌结构力学行为及施工对环境的影响研究[D].成都:西南交通大学博士学位论文,2005.
    [159]孙文昊,焦齐柱,薛光桥.盾构隧道管片无衬垫接头抗弯刚度研究[J].地下空间与工程学报,2008,4(5):973-978.
    [160]孙文昊,焦齐柱,兰宇.盾构管片接头抗弯刚度影响因素研究[J].铁道工程学报,2008,(1):66-71.
    [161]陈三江.盾构法隧道衬砌接头受力机理分析[D].上海:同济大学硕士学位论文, 1986.
    [162]蒋洪胜,侯学渊,刘建航.盾构法隧道管片接头受力模式识别系统的研究[J].山东大学学报(工学版),2002,32(4):354-363.
    [163]蒋洪胜,侯学渊.盾构法隧道管片接头转动刚度的理论研究[J].岩石力学与工程学报,2004,23(9):1574-1577.
    [164]吴兰婷.盾构隧道管片接头力学行为的有限元分析[D].成都:西南交通大学硕士学位论文,2005.
    [165]张厚美,张正林,王建华.盾构隧道装配式管片接头三维有限元分析[J].上海交通大学学报,2003,37(4):566-569.
    [166]曾东洋,何川.地铁盾构隧道管片接头抗弯刚度的数值计算[J].西南交通大学学报,2004,39(6):744-748.
    [167]曾东洋,何川.地铁盾构隧道管片接头刚度影响因素研究[J].铁道学报,2005,24(7):90-95.
    [168]何川,曾东洋.大断面越江盾构隧道管片接头选型研究[J].现代隧道技术,2005,42(6):14-19.
    [169]贾永刚,王明年.装配式衬砌接头的接触力学模型研究[J].都市快轨交通,2004,17(1):38-41.
    [170]廖少明,闫治国,宋博,等.钢纤维管片接头局部应力的数值模拟试验[J].岩土工程学报,2006,28(5):653-659.
    [171]朱伟,钟小春,秦建设.盾构衬砌管片接头力学分析及双直线刚度模型研究[J].岩土力学,2006,27(12):2154-2158.
    [172]严佳梁.盾构隧道管片接头性态研究[D].上海:同济大学硕士学位论文,2006.
    [173]莫海鸿,陈俊生,梁松,等.钢纤维掺入对混凝土管片局部力学性能的改善[J].华南理工大学学报(自然科学版),2007,35(7):116-121.
    [174]彭志忠.南京长江隧道管片接缝力学行为研究[D].成都:西南交通大学硕士学位论文,2008.
    [175]彭志忠,何川,苏宗贤,等.盾构隧道管片接缝结构可靠度分析[J].现代隧道技术,2008,(增刊):172-177.
    [176]陈俊生,莫海鸿.盾构隧道管片接头抗弯刚度的三维数值计算[J].铁道学报,2009,31(4):87-91.
    [177]张厚美,傅德明,过迟.盾构隧道管片接头荷载试验研究[J].现代隧道技术,2002,(6):28-33.
    [178]张厚美,叶均良,过迟.盾构隧道管片接头抗弯刚度的经验公式[J].现代隧道技术,2002,(2):12-16.
    [179]何英杰,袁江.影响盾构隧道衬砌接头刚度的因素[J].长江科学院院报,2001,18(1):20-26.
    [180]何英杰,周晓雁.盾构隧道衬砌连接螺栓变形的影响因素分析[J].长江科学院院报,2002,19(增):57-60.
    [181]王哲,李京爽.地铁管片环向接头弯曲刚度试验研究[J].工业建筑,2005,35(1):86-88.
    [182]雷华明,陈俊生.盾构隧道施工阶段管片接头刚度试验研究[J].广东土木与建筑2007,(12):42-45.
    [183]苏宗贤.超大断面水下盾构隧道原型结构试验及结构分析模型研究[D].成都:西南交通大学博士学位论文,2008.
    [184]兰学平,鲁亮,刘利惠.超大隧道衬砌管片接头力学性能试验研究[J].结构工程师,2009,25(5):110-114.
    [185]于宁,白廷辉,朱合华.盾构隧道预应力管片接头的模型试验研究[J].地下空间与工程学报,2009,5(3):439-444.
    [186]周海鹰,陈廷国,李立新.地铁区间盾构隧道衬砌接头的荷载试验[J].工业建筑,2010,40(4):79-83.
    [187]滕丽,吕建中.通用管片接头荷载试验研究[J].上海大学学报(自然科学版),2010,16(2):216-220.
    [188]陈正杰,杨志豪,李冬梅.上海长江隧道管片纵缝力学性能的试验研究[J].地下工程与隧道,2010(4):17-19.
    [189]马永红.赵家2#隧道衬砌裂损原因及整治措施[J].铁道建筑,2001,(4):36-38.
    [190]林懂明.铁路隧道病害的综合检测与治理[J].中国铁道科学,2003,24(1):99-103.
    [191]赖金星,谢永利,赵严峰.公路隧道衬砌裂损病害检测与治理对策[J].沈阳建筑大学学报(自然科学版),2007,23(1):37-40.
    [192]宋瑞刚,张顶立,伍冬,等.隧道衬砌结构裂损机理及定量评估[J].北京交通大学学报,2010,34(4):22-26.
    [193]竺维彬,鞠世健.盾构隧道管片开裂的原因及相应对策[J].现代隧道技术,2003,40(1):21-25.
    [194]陈俊生,莫海鸿,梁仲元.盾构隧道施工阶段管片局部开裂原因初探[J].岩石力学与工程学报,2006,25(5):906-910.
    [195]张建刚,何川,肖明清.大型管片衬砌结构受千斤顶推力作用的裂缝分析[J].铁道建筑,2008,(4):28-31.
    [196]闫治国.隧道衬砌结构火灾高温力学行为及耐火方法研究[D].上海:同济大学博士学位论文,2007.
    [197]闫治国,朱合华.隧道衬砌结构火灾安全及高温力学行为研究[J].地下空间与工程学报,2010,6:695-700.
    [198]江见鲸,陆新征,叶列平编著.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [199]李乔,李力,龙若迅,等编.混凝土结构设计原理[M].成都:西南交通大学出版社,2008.
    [200]Ted Belytschko, Wing Kam Liu, Brian Moran庄茁,等(译).连续体和结构的非线性有限元[M].北京:清华大学出版社,2002.
    [201]夏才初,李永盛编著.地下工程测试理论与监测技术[M].上海:同济大学出版社,1999.
    [202]翁汉民.地下工程监测与试验[M].成都:西南交通大学出版社,1989.
    [203]Dahlo, T. S., Nilsen, B. Stability and rock cover of hard rock subsea tunnels[J]. Tunneling and Underground Space Technology,1994,9(2):151-158.
    [204]王勇,孔令伟,郭爱国.浅层气地层对地铁隧道稳定性影响模型试验研究[J].岩土力学,2010,31(11):3423-3429.
    [205]蔚立元,李术才,郭小红,等.分岔隧道过渡段稳定性研究[J].中国公路学报,2011,24(1):89-95.
    [206]叶飞,丁文其,王国波,等.列车移动荷载对下穿公路隧道稳定性影响研究[J].岩土力学,2008,29(2):549-552.
    [207]王明年,潘晓马,张成满,等.邻近隧道爆破振动响应研究[J].岩土力学,2004,25(3):412-414.
    [208]李治国,张玉军.衬砌开裂隧道的稳定性分析及治理技术[J].现代隧道技术,2004,41(1):26-31.
    [209]杨小礼,王作伟,陈杰.既有隧道扩建工程及衬砌稳定性研究[J].交通科学与工程,2010,26(1):49-58.
    [210]于洪丹,陈卫忠,郭小红,等.潮汐对跨海峡隧道衬砌稳定性影响研究[J].岩石力学与工程学报,2009,28(增1):2905-2914.
    [211]朱永全.隧道稳定性位移判别准则[J].中国铁道科学,2009,28(增1):2905-2914.
    [212]尹旅超,朱振宏,李玉珍,等编译.日本盾构隧道新技术[M].武汉:华中理工大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700