频谱合束高功率光纤激光器技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器具有稳定性高、可靠性高、成本低、抖动噪声低、能量转换效率高、激射阈值低、输出波长多、易调节易实现及体积小的优点。单个光纤激光器可获得千瓦级的功率输出,受光纤的内在特性如非线性效应、热沉积等和半导体激光器抽运功率制约,更高功率的激光输出变得非常困难。通常采用把多个小功率光纤激光器高效地组合在一起,来得到更高功率的输出。
     频谱合束技术既不需要相干合束中所采用的复杂的相位控制、振幅控制和偏振态控制,又可以得到接近衍射极限的输出光束质量,因此是实现高功率光纤激光系统的重要技术。其在对输出光束光谱宽度不敏感的高功率激光器应用领域有着非常可观的应用前景。
     本研究提出了一种新型的基于阵列光纤光栅的频谱合束技术,并在此技术上进行了高功率激光组束的设计。设计的阵列光纤光栅代替了传统的体光栅、棱镜等光学元件,解决了现有频谱合束技术中存在的系统难以扩展的问题,具有体积小,结构简单,易集成等优点。由于采用了光纤波导进行光波约束,新型的光纤阵列光纤频谱合束技能提供光束质量更为优良的激光输出。
     借助等效折射率方法、高斯近似模拟以及多光束干涉理论,本文对所提出的阵列光纤光栅进行了数学建模和仿真分析。文中分别选取了已报道的一种窄线宽掺镱光纤激光器和采用MOPA结构的窄线宽、高功率光纤激光器作为阵列光纤光栅的输入激光器,对8个通道输入下的输出光斑特性进行了仿真分析。仿真结果表明采用阵列光纤光栅频谱合束结构,可以获得70%以上的衍射效率,进一步增加输入通道数可以获得更高功率的高质量输出光束。
Fiber lasers have the advantages of high stability, high reliability, low cost, low jitter noise, high energy conversion efficiency, low threshold, diverse output wavelength, easy to adjust, implement and small volume. Single fiber laser can reach kilowatt level output. Higher power output is limited by nonlinear effect inside the fiber, heat deposition and pump power.
     Spectral beam combining technology combines a number of lasers without phase control, amplitude control, and polarization control while maintaining good beam quality, Thus this technology is widely adopted to reach high power in laser weapons and material manufactures.
     We have proposed a novel spectral beam combining method based on arrayed fiber grating in this thesis. In our design, planar waveguide is substituted by single mode fibers due to their higher thermo stability and better mode confining ability. There are none volume optical elements involved, which makes the system easy to adjust, moderate stability and much more scalability than traditional spectral beam combining technology. By using single mode fiber to guide the optic wave, our system can provide single mode output.
     By Gaussian approximation and effective index method, we have analyzed the performance of our proposed spectral beam combining system. We choose line-width fiber lasers and MOPA lasers separately as input channels, The simulation results indicate that our proposed beam combining system provides both good beam quality and high diffraction efficiency.
引文
[1]王双义,林殿阳,王超等.光纤组束研究的新进展.激光技术, 2005, 29(6): 657~661
    [2]李立波,楼祺洪.光纤激光器的谱叠加技术.中国光学期刊网, 2006, 43(10): 37~40
    [3] T. Y. Fan. Laser Beam Combining for High-Power, High-Radiance Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567~577
    [4]赵帅,范万德,盛秋琴.光纤激光器相干组束技术研究.激光与红外, 2006, 36(10): 921~924
    [5]楼祺洪,何兵,周军.光纤激光器及其相干组束.红外与激光工程, 2007, 36(2): 155~159
    [6] V. A. Kozlov, J. Hernandez-Cordero, T. F. Morse. All-fiber coherent beam combining of fiber lasers. Optics Letters, 1999, 24(24): 1814~1816
    [7] J. Boullet, D. Sabourdy, A. Desfarges-Berthelemot, et al. Coherent combining in an Yb- doped double core fiber laser. Optics Letters, 2005, 30(15): 1962~1964
    [8]张森.光纤马赫曾德尔干涉仪系统的理论与应用分析.光电技术应用, 2007, 22(6): 15~19
    [9]吴卓亮,赵尚弘,占生宝等.光纤激光频谱组束的仿真研究.激光与红外, 2007, 37(11): 1144~1148
    [10]刘国华,刘德明.光纤激光器频谱组束的理论研究.强激光与粒子束, 2007, 19(5): 723~727
    [11]胥杰,赵尚弘,方绍强等.高功率非相干光纤激光组束方法研究.光学技术, 2007, 33(5): 720~722
    [12] D. Vijayakumar, O. B. Jensen, R. Ostendorf, et al. Spectral beam combining of a 980 nm tapered diode laser bar. Optics Express, 2010, 18(2): 893~898
    [13] A. Sevian, O. Andrusyak, I. Ciapurin, et al. Efficient power scaling of laser radiation by spectral beam combining. Optics Letters, 2008, 33(4): 384~386
    [14] S. J. Augst, A. K. Goyal, R. L. Aggarwal, et al. Wavelength beam combining of ytterbium fiber lasers. Optics Letters, 2003, 28(5): 331~333
    [15] E. J. Bochove. Theory of spectral beam combining of fiber lasers. Quantum Electronics, 2002, 38(5): 432~455
    [16] V. Daneu, A. Sanchez, T. Y. Fan, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity. Optics Letters, 2000, 25(405): 242~243
    [17] C. C. Cook, T. Y. Fan. Spectral Beam Combining of Yb-doped Fiber Lasers in an External Cavity. OSA Advanced Solid-State Lasers, 1999, 26(1): 163~166
    [18] I. Ciapurin, V. Smirnov, G. Venus, et al. High-power laser beam control by PTR Bragg gratings. Lasers and Electro-Optics, 2004, 1(3): 16~21
    [19] O. Andrusyak, V. Smirnov, G. Venus, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 1~10
    [20]刘晓山,付国兰,刘清.渐变折射率波导中的等效折射率分析.江西科学, 2006, 24(5): 353~355
    [21]王巍,兰中文,王豪才.介质光波导的数值计算及近似方法.应用光学, 2003, 24(3): 1~5
    [22] T. M. Benson, R. J. Bozeat, P. C. Kendall. Rigorous effective index method for semiconductor rib waveguides. IEEE Proceedings, 1992, 139(1): 67~70
    [23] K. S. Chiang. Analysis of the Effective-Index Method for the Vector Modes of Rectangular-Core Dielectric Waveguides. IEEE Transactions on Microwave Theory and Techniques, 1996, 144(5): 692~700
    [24] K. S. Chiang. Effective-Index Method for the Analysis of Optical Waveguide Couplers and Arrays: An Asymptotic Theory. Lightwave Technology, 1991, 9(1): 62~72
    [25]延凤平,张良忠,单英等.基于平方律和阶跃型纤芯折射率分布下光纤模场增径的数值分析.光学技术, 2000, 26(1): 66~67
    [26]戴道锌,周勤存,何赛灵等.阵列波导光栅的简便模拟方法及应用.光子学报, 2002, 31(8): 980~984
    [27]廖惠民.阵列波导光栅的设计与分析: [博士学位论文].台湾:国立中山大学, 2003
    [28]戴道锌.阵列波导光栅的理论建模与优化设计及其实验研究: [博士学位论文].杭州:浙江大学, 2005
    [29]郁道银,谈恒英.工程光学.北京:机械工业出版社, 2006. 290~291
    [30]马景龙,马维义,王孝君等. MOPA系统建立中的三个技术问题.强激光与粒子束, 1999, 11(5): 551~554
    [31]汪园香,姜培培,杨丁中等.基于MOPA结构的高功率线偏振脉冲Yb光纤激光器.红外与激光工程, 2009, 38(3): 456~459
    [32] J. N. Maran, Y. Jeong, S. Yoo, et al. Progress in high-power single frequency master oscillator power amplifier. Proc. of SPIE, 2008, 7099: 1~5
    [33] G. L. Morelli, J. Honig. Compact 2-Joule master oscillator, power amplifier (MOPA) laser system. Proc. of SPIE, 2000, 3929: 46~53
    [34]林东风,陈胜平,侯静等. MOPA结构的超短脉冲光纤光源.光电子技术, 2008, 28(4): 277~282
    [35] T. H. Loftus, A. M. Thomas, P. R. Hoffman, et al. Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications. IEEE Selected Topics in Quantum Electronics, 2007, 13(3): 487~497
    [36] P. Dupriez, A. Piper, A. Malinowski, et al. High Average Power, High Repetition Rate, Picosecond Pulsed Fiber Master Oscillator Power Amplifier Source Seeded by a Gain-Switched Laser Diode at 1060 nm. IEEE Photonics Technology Letters, 2006, 18(9): 1013~1015
    [37] S. T. Hendow, S. A. Shakir, J. M. Sousa. MOPA fiber laser with controlled pulse width and peak power for optimizing micromachining applications. Proc. of SPIE, 2010, 7584: 1~6
    [38] S. P. Chen, H. W. Chen, J. Hou, et al. 100W all fiber picosecond MOPA laser. Optics Express, 2009, 17(26): 24008~24012
    [39] B. Morasse, S. Chatigny, E. Gagnon, et al. Enhanced Pulseshaping Capabilities and Reduction of Non-Linear Effects in All-fiber MOPA Pulsed System. Proc. of SPIE, 2009, 7195: 1~12
    [40]高雪松,高春清,胡姝玲等.双包层掺Yb3+光纤激光器的关键技术.强激光与粒子束, 2005, 17(S0): 129~132
    [41]张书敏,吕福云,谢春霞等.掺Yb双包层光纤激光器的时域特性和光谱特性研究.光子学报, 2005, 34(2): 187~190
    [42] V. Reichel, S. Unger, V. Hagemann, et al. 8-W highly efficient Yb-doped fiber laser. Proc. SPIE, 2000, 3889: 160~169
    [43]黄榜才,苏红新,宁鼎等.窄线宽高效率的全光纤Yb3+激光器.光电子激光, 2002, 23(2): 111~113
    [44]丁么明,张国平.阵列波导光栅的色散特性研究.华中师范大学学报(自然科学版), 2000, 34(3): 285~287
    [45]章建荣,刘海荣,刘德明等.阵列光纤光栅频谱合束技术研究.光通信研究, 2010, 4(158): 34~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700