基于平面及双层耦合结构的高性能微波无源滤波器设计及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于各种平面/双层耦合结构,提出并研制了多种满足不同需求的新型高性能、小型化滤波器。本论文的研究成果在无线通信系统中的滤波器设计中,具有重要的应用价值。
     第一章首先对现有的用于设计滤波器的各种方法以及结构进行了回顾。目前,越来越多的滤波器采用了具有耦合性高、结构紧凑、布局多样化等特点的多层耦合结构。然而,基于多层耦合结构研制的滤波器,仍然有不少问题亟待解决。
     第二章系统分析了各种对称/非对称传输线耦合结构,并推导了其相应的等效网络拓扑模型。同时,归纳列举了一部分在多层耦合结构中常用的子结构单元及其等效电路模型。最后,运用传输线耦合结构理论和双层微带线/共面波导(CPW:Coplanar Waveguide)耦合结构,举例说明了传输线耦合理论在基于多层耦合结构的滤波器设计中的重要指导意义。
     第三章提出了基于CPW结构设计的具有多谐振点、可控阻带带宽的裂模CPW谐振器,以及具有超宽带匹配特性的双层微带线/CPW耦合结构,设计了具有可控阻带的超宽带(UWB:Ultra-Wideband)带通滤波器。同时,基于λ/4折叠形槽线、λ/4嵌入式CPW谐振器、以及λ/4折叠形缺陷微带线等结构单元及其窄阻带特性,研制了具有可控带内双、四极窄带干扰信号抑制特性的UWB带通滤波器。
     第四章研究了新型双通带滤波器的设计方法。首先提出了具有阶跃负载支线的六角阶跃谐振器(SIR:Stepped Impedance Resonator)。这种谐振器相对于传统SIR谐振器,具有独立的双模工作频率调谐机理以及多样化的匹配架构。基于该谐振器,分别设计了两种窄带、宽带双通带带通滤波器。然后,提出了具有多谐振模式的新型嵌入式螺旋微带线结构,基于该结构设计了具有低插损、小尺寸、满足无线局域网络(WLAN:Wireless Local Area Networks)双通带系统应用的双通带带通滤波器。再次,基于双层微带线/槽线耦合结构的能量传输特性分析了该结构的零点产生机制,提出了具有高选择性、7零点特性的可调双通带带通滤波器。
     第五章研究了对称/非对称复合耦合结构的工作特性,并基于对称/非对称复合耦合λ/4短路微带谐振器,研制了具有宽阻带特性的滤波器。同时,研究了双层微带线/缺陷地(DGS:Defected Ground Structure)/CPW复合耦合结构的特性。基于这种新型双层耦合结构,设计出了具有小尺寸,高陡峭度,超宽阻带特性的高性能滤波器。然后,提出了具有超宽阻带特性的双层微带线/DGS耦合结构单元,并结合各种交指耦合架构,研制了具有12倍以上工作中心频率抑制的超宽阻带(抑制度大于30 dB)、较小电路尺寸的二阶、四阶带通滤波器。再次,提出了具有可调谐谐振频率、双零点特性的双层微带线/交指DGS耦合结构单元,并结合具有短路支线的交指耦合架构的窄带耦合特性和缺陷微带线结构的低辐射、高电容耦合特性,研制了具有高达420 dB/GHz以上通带选择性、3.75倍工作中心频率的宽阻带带通滤波器。最后,提出了基于新型双层微带线/互补SRR耦合谐振器,研制了一种具有高通带选择性、较宽阻带的宽带滤波器。
     第六章总结了本论文的主要工作。同时,对无线通信系统中基于多层耦合结构的高性能、小型化滤波器的潜在研究和应用进行了展望。
In this dissertation, various filters design with high performance and compact size to meet different pratical application limits is proposed, based on the planar- and dual-layer- coupled schemes. These research results with high application merits are attractive for the practical filter design in the modern wireless communication systems.
     In Chapter I, various methods and structures for the filter design is introduced. At present, the multi-layer-coupled schemes with the merits of high coupling effect, compact size, and various architectures are highly developed in the field of filter design. However, the filter using the multi-layer-coupled scheme remains a great challenge.
     In Chapter II, the characteristics and equivalent topology network models of the various symmetric- and asymmetric-coupled transmission lines are introduced and investigated. Meanwhile, some sub-structures with equivalent circuit models in the multi-layer-coupled scheme are concluded and introduced. Finally, an example with important guiding significance of the filter design is employed, using the coupled transmission lines theory and hybrid microstrip/CPW structure.
     In Chaper III, the coplanar waveguide detached-mode resonator (CPW DMR) with multiple resonances and controlled stopband bandwidth and hybrid microstrip/CPW structure are employed to propose the ultra-wideband (UWB) bandpass filter. Besides, based on the quarter wavelength (λ/4) meander slot-line,λ/4 embedded CPW resonator, andλ/4 meander defected microstrip structure (MDMS) with the narrow stopband characteristics, the UWB bandpass filter with ultra narrow dual- and quad-notches can be employed.
     In Chapter IV, the methods of the novel dual-band bandpass filter are investigated. First, the stepped-impedance resonator (SIR) with the loaded stepped- impedance stub (SIS) is introduced. These resonators have the merits of independent adjusted dual- resonances and various coupled scheme, comparing to the conventional SIR. Based on this SIR with SIS, two dual-band bandpass filters with the narrow bandwidth responses and wide bandwidth responses are employed, respectively. Then, the microstrip embedded spiral-resonator (ESR) with multi-resonances is introduced. Based on the nove resonator, dual-band bandpass filters with low insertion loss, compact sizes are implemented to meet the wireless local area networks (WLAN) dual-band applicantion. Finally, based on the power transmission characteristics of the dual-layer-coupled microstrip/slot scheme, the multiple transmission zeros mechanism of the structure is investigated. And then, a dual-band bandpass filter with seven transmission zeros, high passband selectivity, and high stopband rejection level is employed.
     In Chapter V, the operated characteristics of the symmetric- and asymmetric- coupled structure are investigated, and a bandpass filter with a wide stopband is employed based on the symmetric- and asymmetric-coupledλ/4 shorted resonators. Besides, the characteristic of the hybrid microstrip/DGS/CPW structure is investigated. Based on this novel scheme, the narrowband bandpass filter with compact size, high selectivity, and wide stopband is proposed to meet the bluetooth system limits. Then, a novel hybrid microstrip T-stub/DGS cell is employed. Based on the novel cells and various interdigital-coupled scheme, the second- and fourth-order filters have the merits of very wide stopband more than 12f0 with a strong rejection greater than 30 dB and relatively compact sizes. In addition, a hybrid microstrip/interdigital DGS cells with adjusted resonance and dual-transmission zeros is employed. Based on the novel cells, the narrowband coupled effect of the interdigital coupled scheme with short-stubs and the defected microstrip structre (DMS) with low radiation and high capacitance- coupling, a filter has the merits of an excellent passband selectivity more than 420 dB/GHz and the wide stopband up to 3.75 times of the operated center freuquecy is proposed. Finally, the hybrid microstrip/complementary split ring resonator (CSRR) based resonator is employed to design the wideband bandpass filter with high selectivity and relatively wide stopband.
     In Chapter VI, the research on the filter design of this dissertation is concluded. Besides, the potential research and applications of the filter based on the multi-layer coupled schemes for the future wireless communication system are predicted.
引文
[1] I. Wolff. Coplanar Microwave Integrated Circuits. Berlin: Schaltungsdienst Lange GmbH, 2005
    [2] T. H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge: Cambridge University Press, 2004
    [3] U. L. Rohde, D. P. Newkirk. RF/Microwave Circuit Design for Wireless Application. New York: Wiley, 2001
    [4] D. M. Pozar. Microwave Engineering. New York: Wiley, 2005
    [5] S. B. Cohn. Parallel-coupled transmission-line resonator filters. IRE Tran. Microwave Theory Tech., 1958, 6(4): 223-231
    [6] G. I. Zysman, A. K. Johnson. Coupled transmission line networks in an inhomogeneous dielectric medium. IEEE Trans. Microw. Theory Tech., 1969, 17(10): 753-759
    [7] V. K. Tripathi. Equivalent circuits and characteristics of inhomogeneous nonsymmetrical coupled-line two-port circuits. IEEE Trans. Microw. Theory Tech., 1977, 25(2): 140-142
    [8] G. L. Matthaei, E. G. Cristal. Multiplexer channel-separating units using interdigital and parallel-coupled filters. IEEE Trans. Microw. Theory Tech., 1965, 13(3): 328-334
    [9] E. G. Cristal, S. Frankel. Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters. IEEE Trans. Microw. Theory Tech., 1972, 20(11): 719-728
    [10] R. Briechie. Microstrip comb line filters. 1975 Microw. Conf.: 436-440
    [11] J. F. Mara, J. B. Schappacher. Broadband microstrip parallel-coupled filters using multi-line sections. Microw. J., 1979, 22(4): 97-99
    [12] J. S. Wong. Microstrip tapped-line filter design. IEEE Trans. Microw. Theory Tech., 1979, 27(1): 328-339
    [13] C. Y. Ho, J. H. Werdman. Improved design of parallel coupled line filters with tapped input/output. Microw. J., 1983, 26(18): 679-682
    [14] I. J. Bahl. Capacitively compensated high-performance parallel coupled microstrip filters. 1989 IEEE MTT-S. Int. Microw. Symp. Dig.: 679-682
    [15] M. Makimoto, S. Yamashita. Bandpass filters using parallel coupled strip-line stepped impedance resonaotors. IEEE Trans. Microw. Theory Tech., 1980, 28(12): 1413-1417
    [16] M. Sagawa, M. Makimoto, S. Yamashita. Geometrical structures and fundamentalcharacteristics of microwave stepped-impedance resonators. IEEE Trans. Microw. Theory Tech., 1997, 45(7): 1078-1085
    [17] J. T. Kuo, E. Shih. Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth. IEEE Trans. Microw. Theory Tech., 2003, 51(5): 1554–1559
    [18] C. F. Chen, T. Y. Huang, R. B. Wu. Design of microstrip bandpass filters with multiorder spurious-mode suppression. IEEE Trans. Microw. Theory Tech., 2005, 53(12): 3788-3793
    [19] Y. Wang, B. Z. Wang, J. Wang. The design of coupled resonator bandpass filter with wide stop-band. IEEE Microw. Wireless Compon. Lett., 2008, 18(4): 251–253
    [20] Y. C. Chiou, J. T. Kuo, E. Cheng. Broadband quasi-Chebyshev bandpass filters with multimode stepped-impedance resonators (SIRs). IEEE Trans. Microw. Theory Tech., 2006, 54(8): 3352–3358
    [21] R. Mao, X. Tang. Miniaturized hexagonal stepped-impedance resonators and their applications to filters. IEEE Trans. Microw. Theory Tech., 2008, 56(2): 440–448
    [22] J. T. Kuo, H. S. Cheng. Compact dual band transversal bandpass filter with multiple transmission zeros and controllable bandwidths. IEEE Microw. Wireless Compon. Lett., 2004, 14(10): 472-474
    [23] J. T. Kuo, T. H. Yeh, C. C. Yah. Design of microstrip bandpass filters with a dual-passband response. IEEE Trans. Microw. Theory Tech., 2005, 53(4): 1331-1337
    [24] S. Sun, L. Zhu. Compact dual-band microstrip bandpass filter without external feeds. IEEE Microw. Wireless Compon. Lett., 2005, 15(10): 644-646
    [25] C. F. Chen, T. Y. Huang, R. B. Wu. Design of dual- and triple-passband filters using alternately cascaded multiband resonators. IEEE Trans. Microw. Theory Tech., 2006, 54(9): 3550-3558
    [26] Q. X. Chu, F. C. Chen. A compact dual-band bandpass filter using meandering stepped impedance resonators. IEEE Microw. Wireless Compon. Lett., 2008, 18(5): 322-324
    [27] J. T. Kuo, H. P. Lin. Dual-band bandpass filter with improved performance in extended upper rejection band. IEEE Trans. Microw. Theory Tech., 2009, 57(4): 824-829
    [28] M. Zhou, X. Tang, F. Xiao. Design of quasi-elliptic function filters with a dual-passband response. IEEE Microw. Wireless Compon. Lett., 2009, 19(6): 347-349
    [29] B. J. Chen, T. M. Shen, R. B. Wu. Design of tri-band filters with improved band allocation. IEEE Trans. Microw. Theory Tech., 2009, 57(7): 1790–1797
    [30] J. Shi, Q. Xue. Novel balanced dual-band bandpass filter using coupled stepped-impedance resonators. IEEE Microw. Wireless Compon. Lett., 2010, 20(1): 19–21
    [31] J. Shi, Q. Xue. Dual-band and wide-stopband single-band balanced bandpass filters with high selectivity and common-mode suppression. IEEE Trans. Microw. Theory Tech., 2010, 58(8): 2204–2212
    [32] J. T. Kuo, W. H. Hsu, W. T. Huang. Parallel coupled microstrip filters with suppression of harmonic response. IEEE Microw. Wireless Compon. Lett., 2002, 12(10): 383-385
    [33] M. Jiang, M. H. Wu, J. T. Kuo. Parallel-coupled microstrip filters with over-coupled stages for multispurious suppression. 2005 IEEE MTT-S. Int. Microw. Symp. Dig.: 687-690
    [34] S. Sun, L. Zhu. Guided-wave characteristics of periodically nonuniform coupled microstrip lines—Even and odd modes. IEEE Trans. Microw. Theory Tech., 2005, 53(4): 1221-1227
    [35] S. Sun, L. Zhu. Periodically noniuniform coupled microstrip-line filters with harmonic suppression using transmission zero reallocation. IEEE Trans. Microw. Theory Tech., 2005, 53(5): 1817-1822
    [36] I. Wolff. Microstrip bandpass filter using degenerate modes of a microstrip ring resonator. Electro. Lett., 1972, 8(12): 302-303
    [37] I. Wolff, W. Menzel. The microstrip double-ring resonator. IEEE Trans. Microw. Theory Tech., 1975, 23(5): 441-444
    [38] I. Wolff, V. K. Tripathi. The microstrip open-ring resonator. IEEE Trans. Microw. Theory Tech., 1984, 32(1): 102-107
    [39] V. K. Tripathi, I. Wolff. Perturbation for open analysis and design equations and closed-ring microstrip resonators. IEEE Trans. Microw. Theory Tech., 1984, 32(4): 405-410
    [40] F. C. de Ronde, S. Shammas. MIC bandfilters using open-ring resonators. in proc. 4th European Microwave conf.: 531-535
    [41] M. Makimoto, M. Sagawa. Varactor tuned bandpass filters using microstrip-line ring resonators. 1986 IEEE MTT-S. Int. Microw. Symp. Dig.: 411-414
    [42] K. Chang, T. S. Martin, F. Wang, J. L. Klein. On the study of microstrip ring and varactor-tuned ring circuits. IEEE Trans. Microw. Theory Tech., 1987, 35(12): 1288-1295
    [43] T. S. Martin, F. Wang, K. Chang. Theoretical and experimental investigation of novel varactor-tuned switchable microstrip ring resonator circuits. IEEE Trans. Microw. Theory Tech., 1988, 36(12): 1733-1739
    [44] S. Kumar. Electronically tunable ring resonator microstrip and suspended-substrate filters. Electro. Lett., 1991, 27(6): 521-523
    [45] J. Marti, A. Griol. Harmonic suppressed microstrip multistage coupled ring bandpass filters.Electro. Lett., 1998, 34(22): 2140-2142
    [46] L. Zhu, K. Wu. A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits. IEEE Trans. Microw. Theory Tech., 1999, 47(10): 1938-1948
    [47] L. H. Hsieh, K. Chang. Slow-wave bandpass filters using ring or stepped-impedance hairpin resonators. IEEE Trans. Microw. Theory Tech., 2002, 50(7): 1795-1800
    [48] A. Gorur, A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator. IEEE Microw. Wireless Compon. Lett., 2002, 12(10): 386-388
    [49] L. H. Hsieh, K. Chang. Dual-mode quasi-elliptic-function bandpass filters using ring resonators with enhanced-coupling tuning stubs. IEEE Trans. Microw. Theory Tech., 2002, 50(5): 1340-1345
    [50] Q. S. Wu, Q. Xue, C. H. Chan. Bandpass filter using microstrip ring resonators. Electro. Lett., 2003, 39(1): 62-64
    [51] J. C. Liu, P. C. Lu, C. H. Shie, C. S. Cheng, L. Yao. Dual-mode double-ring resonators for microstrip band-pass-filter applications. IEE Microw. Antennas Propag., 2004, 151(5): 430-434
    [52] I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, R. Marques. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies. Electro. Lett., 2004, 40(21): 1347-1348
    [53] J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. D. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, R. Marques. Microwave filters with improved stopband vased on sub-wavelength resonators. IEEE Trans. Microw. Theory Tech., 2005, 53(6): 1997-2006
    [54] J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, Md. C. Velazquez-Ahumada, J. Martel. Miniaturized microstrip and CPW filters using coupled metamaterial resonators. IEEE Trans. Microw. Theory Tech., 2006, 54(6): 2628-2635
    [55] S. Sun, L. Zhu. Wideband microstrip ring resonator bandpass filters under multiple resonances. IEEE Trans. Microw. Theory Tech., 2007, 55(10): 2176-2182
    [56] J. Martel, J. Bonache, R. Marques, F. Martin, F. Medina. Design of wide-band semi-lumped bandpass filters using open split ring resonators. IEEE Microw. Wireless Compon. Lett., 2007, 17(1): 28-30
    [57] L. Zhu, B. C. Tan, S. J. Quek. Miniaturized dual-mode bandpass filter using inductively loaded cross-slotted patch resonator. IEEE Microw. Wireless Compon. Lett., 2005, 15(1): 22-24
    [58] J.-S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001
    [59] J. S. Hong, M. J. Lancaster. On the development of superconducting microstrip filtres. IEEE Trans. Microw. Theory Tech., 1999, 47(9): 1656-1663
    [60] C. P. Wen. Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Trans. Microw. Theory Tech., 1969, 17(12): 1087-1090
    [61] M. Houdart. Coplanar lines: application to broadband microwave integrated circuits. in Proc. 6th European Microwave Conf.: 49-53
    [62] M. Houdart. Coplanar lines: application to lumped and semi-lumped microwave integrated circuits. in Proc. 7th European Microwave Conf.: 450-454
    [63] S. S. Bedair, I. Wolff. Fast and accurate analytic formulas for calculating the parameters of a general broadside-coupled coplanar waveguide for MMIC applications. IEEE Trans. Microw. Theory Tech., 1989, 37(5): 843-850
    [64] R. N. Simons. Coplanar waveguide circuits, components, and systems. New York: Wiley, 2001
    [65] N. I. Dib, L. P. B. Katehi, G. E. Ponchak, R. N. Simons. Theoretical and experimental characterization of coplanar waveguide discontinuities for filter applications. IEEE Trans. Microw. Theory Tech., 1991, 39(5): 873-882
    [66] Y. H. Shu, J. A. Navarro, K. Chang. Electronically switchable and tunable coplanar waveguide-slotline band-pass filters. IEEE Trans. Microw. Theory Tech., 1991, 39(3): 548-554
    [67] R. N. Simons, S. R. Taub. Coplanar waveguide radial line double stub and application to filter circuits. Electro. Lett, 1993, 29(17): 1584-1586
    [68] F. Mernyei, I. Aoki, H. Matsuura. New cross-T junction for CPW stub-filters on MMICs. IEEE Microw. Guided. Wave. Letters., 1995, 5(5): 139-141
    [69] F. L. Lin, C. W. Chiu, R. B. Wu. Coplanar waveguide bandpass filter-a ribbon-of-brick-wall design. IEEE Trans. Microw. Theory Tech., 1995, 43(7): 1589-1596
    [70] W. Menzel, W. Schwab, G. Strauss. Investigation of coupling structures for coplanar bandpass filters. 1995, IEEE MTT-S. Int. Microw. Symp. Dig.: 1407-1410
    [71] F. Mernyei, I. Aoki, H. Matsuura. MMIC bandpass filter using parallel-coupled CPW lines. Electro. Lett., 1994, 30(22): 1862-1863
    [72] D. G. Swanson. Jr, R. J. Forse. An HTS end-coupled CPW bandpass filter at 35 GHz. 1994, IEEE MTT-S. Int. Microw. Symp. Dig.: 199-202
    [73] S. V. Robertson, L. P. B. Katehi, G. M. Rebeiz. Micromachined W-Band Filters. IEEE Trans.Microw. Theory Tech., 1996, 44(4): 598-606
    [74] K. Yoshida, K. Sashiyama, S. Nishioka, H. Shimakage, Z. Wang. Design and performance of miniaturized superconducting coplanar waveguide filters. IEEE Trans. Applied Supercon, 1999, 9(2): 3905-3908
    [75] H. Kanaya, J. Fujiyama, R. Oba, K. Yoshida. Design method of miniaturized HTS coplanar waveguide bandpass filters using cross coupling. IEEE Trans. Applied Supercon, 2003, 13(2): 265-268
    [76] H. Kanaya, K. Kawakami, F. Koga, Y. Kanda, K. Yoshida. Design and performance of miniaturized quarter-wavelength resonator bandpass filters with attenuation poles. IEEE Trans. Applied Supercon, 2005, 15(2): 1016-1019
    [77] D. Chen, C. H. Cheng. Coplanar waveguide bandpass filter using quarter-wavelength resonators. Electro. Lett., 2007, 43(9): 526-527
    [78] C. H. Wu, C. H. Wang, Y. S. Lin. C. H. Chen. Parallel-coupled coplanar-waveguide bandpass filter with multiple transmission zeros. IEEE Microw. Wireless Compon. Lett., 2007, 17(2): 118-120
    [79] T. M. Weller, K. J. Herrick, L. P. B Katehi. Quasi-static design technique for mm-wave micromachined filters with lumped elements and series stubs. IEEE Trans. Microw. Theory Tech., 1997, 45(6): 931-938
    [80] G. E. Ponchak, L. P. B Katehi. Open- and short-circuit terminated series stubs in finite-width coplanar waveguide on silicon. IEEE Trans. Microw. Theory Tech., 1997, 45(6): 970-976
    [81] K. Hettak, N. Dib, A. F. Sheta, S. Toutain. A class of novel uniplanar series resonators and their implementation in original applications. IEEE Trans. Microw. Theory Tech., 1998, 46(9): 1270-1276
    [82] K. Hettak, N. Dib, A. Omar, G. Y. Delisle, M. Stubbs. A useful new class of miniature CPW shunt stubs and its impact on millimeter-wave integrated circuits. IEEE Trans. Microw. Theory Tech., 1999, 47(12): 2340-2349
    [83] S. Uysal. Coplanar waveguide edge-coupled bandpass filters with finite ground planes. Electro. Lett, 1997, 33(5): 375-376
    [84] J. S. Park, J. Kim, D. Ahn, J. B. Lim, T. Itoh. A design of novel asymmetrically coupled CPW bandpass filter using TEM analysis. 1998, IEEE MTT-S. Int. Microw. Symp. Dig.: 1189-1192
    [85] T. M. Weller. Edge-coupled coplanar waveguide bandpass filter design. IEEE Trans. Microw. Theory Tech., 2000, 48(12): 2453-2458
    [86] A. N. Deleniv, M. S. Gashinova, I. B. Vendik, A. Eriksson. Design of an interdigital hairpin bandpass filter utilizing a model of coupled slots. IEEE Trans. Microw. Theory Tech., 2002, 50(9): 2153-2158
    [87] F. Aryanfar, K. Sarabandi. Compact millimeter-wave filters using distributed capacitively loaded CPW resonators. IEEE Trans. Microw. Theory Tech., 2006, 54(3): 1161-1165
    [88] L. Li, K. Wu. S. Delprat, J. Ho, M. Chaker. Slow-wave line coupler with interdigital capacitor loading. IEEE Trans. Microw. Theory Tech., 2007, 55(11): 2427-2433
    [89] C. L. Yang, S. Y. Shu, Y. C. Chiang. Analysis and design of a chip filter with low insertion loss and two adjustable transmission zeros using 0.18-um CMOS technology. IEEE Trans. Microw. Theory Tech., 2010, 58(1): 176-184
    [90] L. Zhu, H. Shi. W. Menzel. Coupling behaviors of quarter-wavelength impedance transformers for wideband CPW bandpass filters. IEEE Microw. Wireless Compon. Lett., 2005, 15(1): 13-15
    [91] B. A. Kopp, A. S. Francomacaro. Miniaturized stripline circuitry utilizing low temperature cofired ceramic (LTCC) technology. 1992, IEEE MTT-S. Int. Microw. Symp. Dig.: 1513-1516
    [92] Y. Baba, H. Ochi. S. Segawa. High reliability internal capacitor of LTCC. IEEE Trans. Compon. Pack. Manufact. Tech., 1995, 18(1): 170-173
    [93] R. C. Sutterlin, G. O. Dayton, J. V. Biggers. Thick-film resistor/dielectric interactions in a low temperature co-fired ceramic package. IEEE Trans. Compon. Pack. Manufact. Tech., 1995, 18(2): 346-352
    [94] M. Lahti, V. Lantto, S. Leppavuori. Planar inductors on an LTCC substrate realized by the gravure-offset-printing technique. IEEE Trans. Compon. Pack. Tech., 2000, 23(4): 606-610
    [95] G. E. Ponchak, C. Donghoon, J. G. Yook, L. P. B. Katehi. The use of metal filled via holes for improving isolation in LTCC RF and wireless multichip packages. IEEE Trans. Advan. Pack., 2000, 23(1): 88-89
    [96] A. Sutono, A. V. H. Pham, J. Laskar, W. R. Smith. RF/microwave characterization of multilayer ceramic-based MCM technology. IEEE Trans. Advan. Pack., 1999, 22(3): 326-331
    [97] J. Kassner, W. Menzel. A drop-on band-pass filter for millimeter-wave multichip modules on LTCC. IEEE Microw. Guided. Wave. Letters., 1999, 9(11): 456-457
    [98] K. L. Wu, R. Zhang, M. Ehlert. D. G. Fang. An explicit knowledge-embedded space mapping technique and its application to optimization of LTCC RF passive circuits. IEEE Trans. Compon. Pack. Tech., 2003, 26(2): 399-406
    [99] J. Mizoe, S. Amano, T. Kuwabara, T. Kaneko, K. Wada, A. Kato, K. Sato, M. Fujise. Miniature60 GHz transmitter/receiver modules on AlN multi-layer high temperature co-fired ceramic. 1999, IEEE MTT-S. Int. Microw. Symp. Dig.: 475-478
    [100] C. A. Tavernier, F. Valentin. M. Mazouz, R. Vigo, W. Muffato, P. Maeder, M. Havasi. High performance multilayered high temperature cofired ceramic for wide band packaging. 2003, IEEE MTT-S. Int. Microw. Symp. Dig.: 2277-2280
    [101] M. M. Tentzeris, J. Laskar, J. Papapolymerou, S. Pinel, V. Palazzari, R. Li, G. Dejean. N. Papageorgiou, D. Thompson, R. Bairavasubarmnian, S. Sarkar, J. H. Lee. 3-D-integrated RF and millimeter-wave functions and modules using liquid crystal polymer (LCP) system-on- package technology. IEEE Trans. Advan. Pack., 2004, 27(2): 332-340
    [102] S. Dalmia, V. Sundaram, G. White, H. Swaminathan. Liquid crystalline polymer (LCP) based lumped-element bandpass filters for multiple wireless applications. 2004, IEEE MTT-S. Int. Microw. Symp. Dig.: 1991-1994
    [103] S. Pinel, R. Bairavasubramanian, J. Laskar, J. Papapolymerou. Compact planar and vialess composite low-pass filters using folded stepped-impedance resonator on liquid-Crystal- polymer substrate. IEEE Trans. Microw. Theory Tech., 2005, 53(5): 1707-1712
    [104] W. Yun, V. Sundarm, M. Swaminathan. High-Q Embedded Passives on Large Panel Multilayer Liquid Crystalline Polymer-Based Substrate. IEEE Trans. Advan. Pack., 2007, 30(3): 580-591
    [105] P. C. Hsu, C. Nguyen New multilayer planar transmission lines for microwave and millimeter-wave integrated circuits. IEEE Trans. Microw. Theory Tech., 1995, 43(8): 1809- 1813
    [106] M. F. Davis, A. Sutono, S. W. Yoon, S. Mandal, N. Bushyager, C. H. Lee, K. Lim, S. Pinel, M. Maeng, A. Obatoyinbo, S. Chakraborty, J. Laskar, E. M. Tentzeris, T. Nonaka, and R. R. Tummala. Integrated RF architectures in fully-organic SOP technology. IEEE Trans. Adv. Packag., 2002, 25(2): 136-142
    [107] L. Zhu, W. Menzel. Broad-band microstrip-to-CPW transition via frequency-dependent electromagnetic coupling. IEEE Trans. Microw. Theory Tech., 2004, 52(5): 1517-1522
    [108] K. Li, D. Kurit, T. Matsui. An ultra-wideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure. 2005, IEEE MTT-S. Int. Microw. Symp. Dig.: 675-678
    [109] H. Wang, L. Zhu, W. Menzel. Ultra-wideband bandpass filter with hybrid microstrip/CPW structure. IEEE Microw. Wireless Compon. Lett., 2005, 15(12): 844-846
    [110] H. Wang, L. Zhu. Ultra-wideband bandpass filter using back-to-back microstrip-to-CPWtransition structure. Electro. Lett., 2005, 41(24): 1337-1338
    [111] T. N. Kuo, S. C. Lin, C. H. Chen. Compact ultra-wideband bandpass filters using composite microstrip-coplanar-waveguide structure. IEEE Trans. Microw. Theory Tech., 2006, 54(10): 3772-3778
    [112] N. Thomson, J. S. Hong. Compact ultra-wideband microstrip/coplanar waveguide bandpass filter. IEEE Microw. Wireless Compon. Lett., 2007, 17(3): 184-186
    [113] J. W. Baik, T. H. Lee, Y. S. Kim. UWB bandpass filter using microstrip-to-CPW transition with broadband balun. IEEE Microw. Wireless Compon. Lett., 2007, 17(12): 846-848
    [114] T. N. Kuo, C. H. Wang, C. H. Chen. A compact ultra-wideband bandpass filter based on split-mode resonator. IEEE Microw. Wireless Compon. Lett., 2007, 17(12): 852-854
    [115] X. Luo, J.-G. Ma, K. Ma, and K. S. Yeo. An ultra-wideband bandpass filter using hybrid structure of microstrip and CPW. Microw. Opt. Technol. Lett., 2009, 51(10): 2470- 2473
    [116] P. H. Deng, C. H. Wang, C. H. Chen. Novel broadside-coupled bandpass filters using both microstrip and coplanar-waveguide resonators. IEEE Trans. Microw. Theory Tech., 2006, 54(10): 3746-3750
    [117] S. C. Lin, T. N. Kuo, Y. S. Lin, C. H. Chen. Novel coplanar-waveguide bandpass filters using loaded air-bridge enhanced capacitors and broadside-coupled transition structures for wideband spurious suppression. IEEE Trans. Microw. Theory Tech., 2006, 54(8): 3359-3369
    [118] S. C. Lin, C. H. Wang, C. H. Chen. Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros. IEEE Trans. Microw. Theory Tech., 2007, 55(1): 137-146
    [119] C. H. Wang, P. H. Deng, C. H. Chen. Coplanar-waveguide-fed microstrip bandpass filters with capacitively broadside-coupled structures for multiple spurious suppression. IEEE Trans. Microw. Theory Tech., 2006, 54(10): 3746-3750
    [120] T. N. Kuo, S. C. Lin, C. H. Wang, C. H. Chen. Compact bandpass filters based on dual-plane microstrip/coplanar-waveguide structure with quarter-wavelength resonators. IEEE Microw. Wireless Compon. Lett., 2007, 17(3): 178-180
    [121] X. D. Huang, C. H. Cheng. A novel coplanar-waveguide bandpass filter using a dual-mode square-ring resonator. IEEE Microw. Wireless Compon. Lett., 2006, 16(1): 13-15
    [122] Y. C. Chiou, J. T. Kuo, J. S. Wu. Miniaturized dual-mode ring resonator bandpass filter with microstrip-to-CPW broadside-coupled structure. IEEE Microw. Wireless Compon. Lett., 2008, 18(2): 97-99
    [123] E. E. Djoumessi, K. Wu. Multilayer dual-mode dual-bandpass filter. IEEE Microw. Wireless Compon. Lett., 2009, 19(1): 21-23
    [124] X. Y. Zhang, Q. Xue. Novel dual-mode dual-band bandpass filters using coplanar-waveguide- fed ring resonators. IEEE Trans. Microw. Theory Tech., 2007, 55(10): 2183-2190
    [125] X. Y. Zhang, J. X. Chen, Q. Xue. A quasi-elliptic function dual-band bandpass filter stacking spiral-shaped CPW defected ground structure and back-side coupled strip lines. IEEE Microw. Wireless Compon. Lett., 2007, 17(6): 430-432
    [126] B. Schuppert. Microstrip/slotline transitions: modeling and experimental investigation. IEEE Trans. Microw. Theory Tech., 1988, 36(8): 1272-1282
    [127] R. N. Simons, N. I. Dib, L. P. B. Katehi. Modeling of coplanar stripline discontinuities. IEEE Trans. Microw. Theory Tech., 1996, 44(5): 711-716
    [128] G. Duchamp, L. Casadebaig, S. Gauffre, J. Pistre. An alternative method for end-effect characterization in shorted slotlines. IEEE Trans. Microw. Theory Tech., 1998, 46(11): 1793-1795
    [129] C.-W. Chiu. Equivalent circuit parameters of coplanar stripline discontinuities. IEE Microw. Antennas Propag., 2002, 149(1): 11–16
    [130] J. P. Kim, W. S. Park. Network analysis and synthesis of multislot back-to-back microstrip directional couplers. IEEE Trans. Microw. Theory Tech., 2000, 48(11): 1935-1942
    [131] J. P. Kim, W. S. Park. Network analysis of inclined microstrip-slotline transitions. IEE Microw. Antennas Propag., 2000, 147(5): 412–416
    [132] J. P. Kim, W. S. Park. Novel configurations of planar multilayer magic-T using microstrip-slotline transitions. IEEE Trans. Microw. Theory Tech., 2002, 50(7): 1683-1689
    [133] J. S. Yun, G. Y. Kim, J. S. Park, D. Ahn, K. Y. Kang, J. B. Lim. A design of the novel coupled line bandpass filter using defected ground structure. 2000, IEEE MTT-S. Int. Microw. Symp. Dig.: 327–330
    [134] D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, T. Itoh. A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Trans. Microw. Theory Tech., 2001, 49(1): 86–93.
    [135] J. S. Park, J. S. Yun, D. Ahn. A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance. IEEE Trans. Microw. Theory Tech., 2002, 50(9): 2037-2043
    [136] C. S. Kim, D. H. Kim, I. S. Song, K. M. K. H. Leong, T. Itoh, D. Ahn. A design of a ringbandpass filters with wide rejection band using DGS and spur-line coupling structures. 2005, IEEE MTT-S. Int. Microw. Symp. Dig.: 2183-2186
    [137] J. S. Park, J. P. Kim, S. Nam. Design of a novel harmonic-suppressed microstrip low-pass filter. IEEE Microw. Wireless Compon. Lett., 2007, 17(6): 424–426
    [138] J. S. Lim, C. S. Kim, Y. T. Lee, D. Ahn, S. Nam. A spiral-shaped defected ground structure for coplanar waveguide. IEEE Microw. Wireless Compon. Lett., 2002, 12(9): 330–332
    [139] A. Rahman, A. K. Verma, A. Boutejdar, A. S. Omar. Compact stub type microstrip bandpass filter using defected ground plane. IEEE Microw. Wireless Compon. Lett., 2004, 14(4): 136-138
    [140] A. A. Rahman, A. K. Verma, A. Boutejdar, A. S. Omar. Control of bandstop response of Hi-Lo microstrip low-pass filter using slot in ground plane. IEEE Trans. Microw. Theory Tech., 2004, 52(3): 1008–1013
    [141] A. Balalem, A. R. Ali, J. Machac, A. S. Omar. Quasi-elliptic microstrip low-pass filters using an interdigital DGS slot. IEEE Microw. Wireless Compon. Lett., 2007, 17(8): 586–588
    [142] A. Boutejdar, A. Elsherbini, A. S. Omar. Method for widening the reject-band in low-pass/band-pass filters by employing coupled C-shaped defected ground structure. IET Microw. Antennas Propag., 2008, 2(8): 759-765
    [143] A. Boutejdar, A. Batmanov, M.H. Awida, E.P. Burte, A. Omar. Design of a new bandpass filter with sharp transition band using multilayer-technique and U-defected ground structure. IET Microw. Antennas Propag., 2010, 4(9): 1415–1420
    [144] K. S. Yang, S. Pinel, I. K. Kim, J. Laskar. Low-loss integrated-waveguide passive circuits using liquid-crystal polymer system-on-package (SOP) technology for millimeter-wave applications. IEEE Trans. Microw. Theory Tech., 2006, 54(12): 4572-4579
    [145] R. Bairavasubramanian, J. Papapolymerou. Fully canonical pseudo-elliptic bandpass filters on multilayer liquid crystal polymer technology. IEEE Microw. Wireless Compon. Lett., 2007, 17(3): 190-192
    [146] S. Courrèges, B. Lacroix, A. Amadjikpe, S. Phillips, Z. Zhao, K. Choi, A. Hunt, J. Papapolymerou. Back-to-back tunable ferroelectric resonator filters on flexible organic substrates. IEEE Trans. Ultra. Ferro. Freq. Cont., 2010, 57(6): 1267-1275
    [147] S. Courrèges, C. A. Donado Morcillo, S. Bhattacharya, J. Papapolymerou. Reduced-size multilayer X-band filters with stacked resonators on a flexible organic substrate. IET Microw. Antennas Propag., 2010, 4(2): 277–285
    [148] Z. C. Hao, J. S. Hong. Ultra-wideband bandpass filter using multilayer liquid-crystal-polymer technology. IEEE Trans. Microw. Theory Tech., 2008, 56(9): 2095-2100
    [149] Z. C. Hao, J. S. Hong. Ultra wideband bandpass filter using embedded stepped impedance resonators on multilayer liquid crystal polymer substrate. IEEE Microw. Wireless Compon. Lett., 2008, 18(9): 581-583
    [150] Z. C. Hao, J. S. Hong, J. P. Parry, D. P. Hand. Ultra-wideband bandpass filter with multiple notch bands using nonuniform periodical slotted ground structure. IEEE Trans. Microw. Theory Tech., 2009, 57(12): 3080-3088
    [151] Z. C. Hao, J. S. Hong. Compact UWB filter with double notch-bands using multilayer LCP technology. IEEE Microw. Wireless Compon. Lett., 2009, 19(8): 500-502
    [152] Z. C. Hao, J. S. Hong. UWB bandpass filter using cascaded miniature high-pass and low-pass filters with multilayer liquid crystal polymer technology. IEEE Trans. Microw. Theory Tech., 2010, 58(4): 941-948
    [153] A. Abbosh. Planar bandpass filters for ultra-wideband applications. IEEE Trans. Microw. Theory Tech., 2007, 55(10): 2262-2269
    [154] A. Abbosh. Multilayer bandstop filter for ultra wideband systems. IET Microw. Antennas Propag., 2009, 3(1): 130–136
    [155] W. Y. Leung, K. K. M. Cheng, K. L. Wu. Multilayer LTCC bandpass filter design with enhanced stopband characteristics. IEEE Microw. Wireless Compon. Lett., 2002, 12(7): 240-242
    [156] L. K. Yeung, K. L. Wu. A compact second-order LTCC bandpass filter with two finite transmission zeros. IEEE Trans. Microw. Theory Tech., 2003, 51(2): 337-341
    [157] L. K. Yeung, K. L. Wu. An LTCC balanced-to-unbalanced extracted-pole bandpass filter with complex load. IEEE Trans. Microw. Theory Tech., 2006, 54(4): 1512-1518
    [158] C. W. Tang, S. F. You, I. C. Liu. Design of a dual-band bandpass filter with low-temperature co-fired ceramic technology. IEEE Trans. Microw. Theory Tech., 2006, 54(8): 3327-3332
    [159] C. W. Tang, S. F. You. Using the technology of low temperature co-fired ceramic to design the dual-band bandpass filter. IEEE Microw. Wireless Compon. Lett., 2006, 16(7): 407-409
    [160] L. K. Yeung, K. L. Wu, Y. E. Wang. Low-temperature cofired ceramic LC filters for RF applications. IEEE Microw. Magazine., 2008, 9(5): 118-128
    [161] C. W. Tang, C. W. Shen, P. J. Hsieh. Design of low-temperature co-fired ceramic bandpass filters with modified coupled inductors. IEEE Trans. Microw. Theory Tech., 2009, 57(1):172-179
    [162] C. W. Tang, H. C. Hsu. Multi-passband bandpass filters with low-temperature co-fired ceramic technology. IET Microw. Antennas Propag., 2009, 3(4): 547-556
    [163] C. W. Tang, H. C. Hsu. Development of multilayered bandpass filters with multiple transmission zeros using open-stub/short-stub/serial semilumped resonators. IEEE Trans. Microw. Theory Tech., 2010, 58(3): 624-634
    [164] G. M. Yang, R. Jin, J. Geng, X. Huang, G. Xiao. Ultra-wideband bandpass filter with hybrid quasi-lumped elements and defected ground structure. IET Microw. Antennas Propag., 2007, 1(3): 733–736
    [165] R. Li, L. Zhu. Ultra-wideband microstrip-slotline bandpass filter with enhanced rejection skirts and widened upper stopband. Electro. Lett., 2007, 43(24): 1368-1369
    [166] P. Mondal, M. K. Mandal, A. Chakrabarty. Compact ultra-wideband bandpass filter with improved upper stopband. IEEE Microw. Wireless Compon. Lett., 2007, 17(9): 643–645
    [167] Y. Liu, C. H. Liang, Y. J. Wang. Ultra-wideband bandpass filter using hybrid quasi-lumped elements and defected ground structure. Electro. Lett, 2009, 45(17): 1337-1338
    [168] C.-P. Chen, Z. Ma, T. Anada. Synthesis of ultra-wideband bandpass filter employing parallel-coupled stepped-impedance resonators. IET Microw. Antennas Propag., 2008, 2(8): 766–772
    [169] Z. Ma, W. He, C.-P. Chen, Y. Kobayashi, T. Anada, A novel compact ultra-wideband bandpass filter using microstrip stub-loaded dual-mode resonator doublets. 2008, IEEE MTT-S. Int. Microw. Symp. Dig.:435-438
    [170] L. Han, K. Wu, X. Zhang. Development of packaged ultra-wideband bandpass filters. IEEE Trans. Microw. Theory Tech., 2010, 58(1): 220-228
    [171] M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, F. Martin. Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design. IEEE Trans. Microw. Theory Tech., 2007, 55(6): 1296-1304
    [172] X. Luo, H. Qian, J.-G. Ma, E.-P. Li. Wideband bandpass filter with excellent selectivity using new CSRR-based resonator. Electron. Lett., 2010, 46(20): 1390-1391
    [173] C.-L. Hsu, F.-C. Hsu, J.-T. Kuo. Microstrip bandpass filter forultra-wideband (UWB) wireless communications. 2005, IEEE MTT-S. Int. Microw. Symp. Dig.:679-682
    [174] R. Comez-Garcia, J. I. Alonso. Systematic method for the exact synthesis of ultra-widebandfiltering responses using high-pass and lowpass sections. IEEE Trans. Microw. Theory Tech., 2006, 54(10): 3751-3764
    [175] C. W. Tang, M. G. Chen. A microstrip ultra-wideband bandpass filter with cascaded broadband bandpass and bandstop filters. IEEE Trans. Microw. Theory Tech., 2007, 55(11): 2412-2418
    [176] T. H. Duong, I. S. Kim. New elliptic function type UWB BPF based on capacitively coupled openλ/4 T-resonator. IEEE Trans. Microw. Theory Tech., 2009, 57(12): 3089-3098
    [177] K. Song, Q. Xue. Inductance-loaded Y-shaped resonators and their applications to filters. IEEE Trans. Microw. Theory Tech., 2010, 58(4): 978-984
    [178] L. Li, Z. F. Li. Side-coupled shorted microstrip line for compact quasi-elliptic wideband bandpass filter design. IEEE Microw. Wireless Compon. Lett., 2010, 20(6): 322-324
    [179] V. K. Tripathi. Asymmetric coupled transmission lines in an inhomogeneous medium. IEEE Trans. Microw. Theory Tech., 1975, 23(9): 734-739
    [180] X. Luo, H. Qian, J.-G. Ma, K. Ma, K. S. Yeo. Compact dual-band bandpass filters using novel embedded spiral resonator (ESR). IEEE Microw. Wireless Compon. Lett., 2010, 20(8): 435-437
    [181] J.-T. Kuo, E. Shih. Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses. IEEE Microw. Wireless Compon. Lett., 2003, 13(10): 440-442
    [182] X. Luo, H. Qian, J.-G. Ma, K. S. Yeo. A compact wide stopband microstrip bandpass filter using quarter-wavelength shorted coupled-lines. 2010, in Proc. Asia-Pacific Microw. Conf.: 1142-1145
    [183] K. Li, D. Kurita, T. Matsui. UWB bandpass filters with multi notched bands. 2006, in Proc. 36th European Microwave Conf.: 591-594
    [184] W. Menzel, P. Feil. Ultra-wideband (UWB) filters with wlan notch. in Proc. 36th European Microwave Conf.: 595-598
    [185] S. W. Wong, L. Zhu. Implementation of compact UWB bandpass filter with a notch-band. IEEE Microw. Wireless Compon. Lett., 2008, 18(1): 10-12
    [186] G. M. Yang, R. Jin, C. Vittoria, V. G. Harris, N. X. Sun. Small ultra wideband (UWB) bandpass filter with notched band. IEEE Microw. Wireless Compon. Lett., 2008, 18(3): 176-178
    [187] H. Shaman, J. S. Hong. Ultra-wideband (UWB) bandpass filter with embedded band notch structures. IEEE Microw. Wireless Compon. Lett., 2007, 17(13): 193-195
    [188] M.-H. Weng, C.-T. Liauh, H.-W. Wu, S. R. Vargas. An ultra-wideband bandpass filter with anembedded open-circuited stub structure to improve in-band performance. IEEE Microw. Wireless Compon. Lett., 2009, 19(3): 146-148
    [189] A. Ali, Z. Hu. Metamaterial resonator based wave propagation notch for ultra-wideband filter applications. IEEE Antennas Wireless Propagation, 2010, 7: 210-212
    [190] W.-J. Lin, J.-Y. Li, L.-S. Chen, D.-B. Lin, M.-P. Houng. Investigation in open circuited metal lines embedded in defected ground structure and its applications to UWB filters. IEEE Microw. Wireless Compon. Lett., 2010, 20(3): 148-150
    [191] X. Luo, J.-G. Ma, K. Ma, K. S. Yeo. Compact UWB bandpass filter with ultra narrow notched band. IEEE Microw. Wireless Compon. Lett., 2010, 20(3): 145-147
    [192] X. Luo, H. Qian, J.-G. Ma, K. Ma, K. S. Yeo. A compact UWB bandpass filter with ultra narrow notched band and competitive attenuation slope. 2010, IEEE MTT-S. Int. Microw. Symp. Dig.: 221-224
    [193] B. C. Wadell. Transmission Line Design Handbook. Norwood, MA: Artech House, 1991.
    [194] X. Y. Zhang, J.-X. Chen, Q. Xue, S.-M. Li. Dual-band bandpass filters using stub-loaded resonators. IEEE Microw. Wireless Compon. Lett., 2007, 17(8): 583-585
    [195] J. S. Hong, H. Shaman, Y.-H. Chun. Dual-mode microstrip open-loop resonators and filters. IEEE Trans. Microw. Theory Tech., 2007, 55(8): 1764-1770
    [196] R. Mao, X. Tang, L. Wang, G. Du. Miniaturized hexgonal stepped-impedance resonators and the their applications to filters. IEEE Trans. Microw. Theory Tech., 2008, 56(2): 440-448
    [197] X. Luo, J.-G. Ma, E.-P. Li. Dual-band bandpass filter using stepped-impedance-stub loaded hexagonal SIR. Microw. Opt. Technol. Lett., 2011, accepted for publication.
    [198] S. Amari. Direct synthsis of folded symmetric resonator filters with source-loading coupling. IEEE Microw. Wireless Compon. Lett., 2001, 11(6): 264-266
    [199] C.-M. Tsai, S.-Y. Lee, C.-C. Tsai. Performance of a planar filter using a 0o-feed structure. IEEE Trans. Microw. Theory Tech., 2002, 50(10): 2362–2367
    [200] C.-Y. Chen, C.-Y. Hsu, H.-R. Chuang. Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators. IEEE Microw. Wireless Compon. Lett., 2006, 16(12): 669-671
    [201] X. Luo, J.-G. Ma, K. S. Yeo. Dual-band bandpass filter using embedded spiral resonator and broadside-coupled meander slot-line. Electro. Lett., 2010, 46(16): 1135-1137
    [202] S.-Y. Lee, C.-M. Tsai. New cross-coupled filter design using improved hairpin resonators. IEEE Trans. Microw. Theory Tech., 2000, 48 (12): 2482-2490
    [203] J.-S. Hong, M. J. Lanchester. Cross-coupled microstrip hairpin-resonator filters. IEEE Trans. Microw. Theory Tech., 1998, 46(1): 118–122
    [204] S.Wakamatsu, F. Tilley, G. Hubers. To reinforce immunities around GHz frequencies by EMI-noise suppression filters. 1996, in Proc. IEEE Int. Symp. Electromagn. Compat.: 511-514
    [205] X. Ye, D. M. Hockanson, M. Li, Y. Ren, W. Cui, J. L. Drewniak, R. E. DuBroff. EMI mitigation with multilayer power bus stacks and via stitching of reference planes. IEEE Trans. Electromagn. Compat., 2001, 43(4): 538-548
    [206] I. Novak. Reduction simultaneous switching noise and EMI on ground/power planes by dissipative edge termination. IEEE Trans. Adv. Packag., 1999, 22(3): 274-283
    [207] B. Mohajer-Iravani, S. Shahparnia, O. M. Ramahi. Coupling reduction in enclosures and cavities using electromagnetic band gap structures. IEEE Trans. Electromagn. Compat., 2006, 48(2): 292-303
    [208] T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M.J. Garde, M. Sorolla, M. Guglielmi. New microstrip‘wiggly-line’filters with spurious passband suppression. IEEE Trans. Microwave Theory and Tech., 2001, 49(9): 1593-1598
    [209] K. M. Shum, T. T. Mo, Q. Xue, C. H. Chan. A compact bandpass filter with two tuning transmission zeros using a CMRC resonator. IEEE Trans. Microwave Theory and Tech., 2005, 53(3): 895-900
    [210] B. Mohajer-Iravani, M. A. EL Sabbagh. Potential of interresonator tapped-in coupling in the design of compact miniaturized electromagnetic interference (EMI) filters. IEEE Trans. Electromagn. Compat., 2010, 52(1): 64–74
    [211] X. Luo, J.-G. Ma. Compact slot-line bandpass filter using backside microstrip open-stubs and air-bridge structure for spurious Suppression. 2009, in Proc. Asia- Pacific Microw. Conf.: 882-885
    [212] S. Y. Huang, Y. H. Lee. Tapered dual-plane compact electromagnetic bandgap microstrip filter structures. IEEE Trans. Microwave Theory and Tech., 2005, 53(9): 2656-2664
    [213] S. Y. Huang, Y. H. Lee. Susceptibility of an electromagnetic bandgap filter. IEEE Trans. Electromagn. Compat., 2010, 52(3): 599-603
    [214] J.-W. No, H.-Y. Hwang. A design of cascaded CPW low-pass filter with broad stopband. IEEE Microw. Wireless Compon. Lett., 2007, 17(6): 427-429
    [215] A. A.-Rahman, A. R. Ali, S. Amari, A. S. Omar. Compact bandpass filters using defected ground structure (DGS) coupled resonators. 2005, IEEE MTT-S. Int. Microw. Symp. Dig.:1479-1482
    [216] R. Azadegan, K. Sarabandi. Miniature high-Q double-spiral slot-line resonator filters. IEEE Trans. Microwave Theory and Tech., 2004, 52(5): 1548-1557
    [217] F.-R. Yang, K.-P. Ma, Y. Qian, T. Itoh. A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits. IEEE Trans. Microwave Theory and Tech., 1999, 47(8): 1509-1514
    [218] C.-K. Wu, H.-S. Wu, C.-K. C. Tzuang. Electric–magnetic–electric slow-wave microstrip line and bandpass filter of compressed size. IEEE Trans. Microwave Theory and Tech., 2002, 50(8): 1996-2004
    [219] A. Boutejdar, A. Batmanov, A. Omar, and E. Burte. A miniature 3.1 GHz microstrip bandpass filter with a suppression of spurious harmonic using multilayer technique and defected ground structure open loop-ring. Ultra-Wideband, Short-Pulse Electromagnetics. 2010, 9(5): 185-191
    [220] Q. Xue, K.-K. Shum, C.-H. Chan. Novel 1-D microstrip PBG cells. IEEE Microw. Guid. Wave Lett., 2000, 10(10): 403-405
    [221] P. Dixon. Cavity-resonance dampening. IEEE Microw. Mag., 2005, 6(2): 74-84
    [222] J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, M. Sorolla. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microwave Theory and Tech., 2005, 53(4): 1451-1461

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700