炸药微观结构对性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以硝酸铵(AN)和TATB两种不同性质、不同应用领域的炸药原材料为研究对象,较全面表征了原料及相应炸药配方的微观结构和性能,得到了炸药微观结构对性能的影响关系。重点研究了硝酸铵及铵油炸药(ANFO)的微观结构及对热分解温度、雷管起爆感度等性能的影响,同时研究了TATB粉体和TATB基复合含能体系的微观结构及对热感度等性能的影响。
     从N_2吸附等温线形状判断,几种硝酸铵样品均属于大孔材料;硝酸铵及铵油炸药样品的微观结构因样品状态不同而有所不同:工业未膨化样品的密度大,孔隙度低,粒子表面光滑,颗粒表面突起、孔隙和裂纹相对较少;膨化后样品平均孔径未发生明显改变,但密度降低、孔隙度提高、孔隙数量显著增加,晶形严重歧化,粒子表面存在大量棱角、突起、毛孔和裂纹等缺陷,不同膨化样品的孔隙状态和表面特征又与制备条件密切相关;粉碎、过筛过程使样品颗粒尺寸更接近、形貌更规则且部分孔隙遭到破坏,因此孔隙数量减少、孔隙度降低、比表面积有所减小。
     论文引入分形理论研究硝酸铵体系分形情况及颗粒粗糙程度,选择并修正了适于对硝酸铵颗粒粗糙度进行相对定量比较的分维公式,由压汞曲线和N_2吸附曲线得到的分维值顺序均与SEM得到的粒子表面粗糙度顺序相吻合;分维值表明未过筛硝酸铵样品间的颗粒粗糙度差异较大,而40目样品间的颗粒粗糙度差异相对较小。
     研究发现硝酸铵及铵油炸药的热感度和雷管起爆感度主要取决于样品中的孔隙数量,孔隙越多,则外界热作用或冲击波作用下形成的热点数量越多,炸药越易发生反应和起爆。铵油炸药状态和装药条件对爆轰性能影响明显,在一定范围内,铵油炸药爆轰能力随着水分含量减少、粒度降低、装药高度增加、装药密度提高、装药直径增大而提高。雷管起爆和爆轰实验发现,在其它条件相同情况下,铵油炸药爆轰能力大小与硝酸铵样品颗粒粗糙程度(分维)顺序一致,而与样品孔隙度或比表面积顺序不一致,表明铵油炸药颗粒粗糙程度是决定炸药爆轰能力的主要因素。有机玻璃法测试结果也表明,与普通铵油炸药相比,膨化铵油炸药爆轰更完全、爆速和爆压更高,粒度减小也有利于提高铵油炸药的爆压。在实验基础上阐述了铵油炸药起爆及爆轰反应机理,即其起爆和爆轰发展过程存在着两个不同的反应阶段一热点形成和点火阶段、爆轰发展阶段。
     几种无机添加剂改性铵油炸药的微观结构没有发生明显改变,但其雷管起爆感度和爆轰能力得到了提高;几种有机表面活性剂改性铵油炸药的微观结构存在显著差异,其起爆感度和爆轰能力也存在较大不同,爆轰能力大小与颗粒粗糙程度顺序一致。
     对不同状态硝酸铵的相转变行为研究发现,粒度减小有助于抑制硝酸铵Ⅳ-Ⅲ、Ⅲ-Ⅱ的相转变;硝酸铵相转变行为似乎与样品颗粒表面特征之间存在着一定联系:CsNO_3等无机物对AN微观结构影响不大,相应AN的相转变行为无显著改变;钾盐使AN颗粒表面变光滑、规则,钾盐可有效抑制Ⅳ-Ⅲ的相转变行为;所研究的氧化物、Cu(NO_3)_2、MgSO_4等无机物使AN颗粒表面变粗糙、颗粒表面裂纹及碎小颗粒等缺陷增多,它们可有效抑制Ⅲ-Ⅱ的相转变行为。但此规律还需得到更多实验证实或修正。
     TATB微观结构与样品制备方法密切相关:直接合成样品的绝大部分粒子粒径在10μm以上,比表面积低,粒子呈类球形、大小不均匀,表面粗糙;几种细化方法得到的超细样品平均粒径均处于亚微米级,98%以上粒子粒径小于200nm,气流粉碎样品及重结晶样品的比表面积较接近,而机械研磨样品比表面积较低;气流粉碎样品粒子呈类球形,表面较光滑;重结晶样品粒子形状不规则,低倍数下呈片状或球状,粒子形状差异大,高倍数下呈条形,重结晶样品再经气流粉碎后粒子变得较均匀、规则;SEM法得到的各样品粒子粗糙度顺序与分维顺序一致。采用两种方法研究了TATB的孔隙结构,N_2吸附法测试表明:合成样品孔隙极少,重结晶样品存在较多孔隙,气流粉碎样品和重结晶再气流粉碎样品含有少量孔隙;同步辐射X射线小角散射实验(SAXS)测量结果表明:制备方法对TATB微观结构影响明显,由分维数据可得到各样品颗粒表面粗糙度顺序。
     TATB热分解温度、5秒爆发点温度和短脉冲起爆感度均与TATB微观结构密切相关,主要取决于样品中孔隙数量,即孔隙越多,其热分解温度和热爆炸温度越低,炸药越易被短脉冲作用所起爆。TATB短脉冲起爆感度和爆轰完全程度也与装药密度成反比、与孔隙度成正比;在孔隙度相近情况下,爆轰能力主要由分维决定。
     溶剂快速驱除法和高能撞击法得到的TATB基复合粒子各组分在微纳尺度上复合良好,粒子大小均匀、形貌接近;机械混合体系中的各组分粒子形态明显,粒子间接触面积有限,且有部分敏感炸药粒子裸露在外面。TATB基复合粒子的热稳定性和机械撞击感度受复合粒子微观结构的显著影响:BT体系出现BTF的熔化峰,HT体系未出现HMX的熔化峰,且HT体系的TATB分解放热峰温度较BT体系降低10℃以上,复合体系的机械撞击感度也显著降低。
In order to better understand the effects of explosive microstructures on properties, two kinds of explosive materials, inorganic compound ammonium nitrate(AN) and organic compound 1,3,5-triamino-2,4,6-trinitrobenzene(TATB) which have different natures and application fields, and their explosive formulations have been discussed. The microstructures(porosity,pore structure,surface character,etc.) and properties(suck as thermal decompose temperature, detonator ignition sensitivity,etc.) of different state AN and ANFO have been mainly researched. Synchronously, the microstructures and properties of TATB powder and TATB based composite also have been studied.
     Judged by N_2 adsorbtion isotherm, AN samples should belong to coarse pore materials. The microstructures of different states AN and ANFO are much different, for example, the density of industry unexpanded sample is high and porosity is low relatively, particles' surface is smooth, the number of protuberance,hole and crack is also less than expanded samples. After expanded, the average pore diameter has no remarkable change, but pore volume increase and density falls markedly, the aberrance of crystal shape is severe, there are many defects of protuberances, pointedness, pores and cracks appear on the particles surface, so the particles surface shows a accidented structure characteristics. The pore structure and particles surface charaters of expanded samples are ralated with their prepared conditions. The process of smashing and sieving make particles size and shape much close, some pores are destroyed, so the pore number decreases, porosity reduces and specific surface area falls.
     Fractal dimension is used to compare the coarse degree of AN particles relatively quantificationally in our research and the fractal dimension calculate formula suited for treating AN's mercury intrusion adsorption curve is selected and modified. The order of fractal dimension value obtained respectively from mercury intrusion adsorption curve and N_2 adsorbtion isotherm is accordant and consistent with the order of particles coarse degree which obtained by SEM. Fractal dimension values indicate that the coarse degree of unsieving AN samples is much different while 40 mesh AN samples have a little difference.
     The thermal sensitivity and detonator ignition sensitivity of AN and ANFO mainly depend on the number of pores, the more the number of pores is, the more the hot spots formed under outside thermal action and shock wave have, so explosives happen reaction and ignition more easily. The experimental results also show that ANFO states and charge conditions have an evident effect on formulations' detonation properties, in a certain range, the explosive detonation capability increases along with the water content reduces, particles size decreases, charge height enhances, charge density increases and charge diameter augments. When other conditions are restricted, the order of ANFO detonation capability is accorded with the order of AN particles coarse degree (i.e. fractal dimension) while isn't accorded with the order of specific surface area or porosity, so ANFO particles coarse degree is the remarkable factor of determining explosive detonation capability. The experimental results of polymethyl methacrylate method also indicate expanded ANFO has much higher detonation velocity and detonation pressure than common ANFO sample, the detonation pressure increase with the reduce of explosives particles size,too. Based on these results of ignition and detonation capability, the ignition and detonation reaction mechanism of ANFO are expounded, i.e., there are two different reaction phases during ANFO's ignition and detonation developing process, one is the phase of hot spots forming and ignition, the other is the phase of detonation growing.
     When some selective inorganic additives are added into ANFO formulations, although the explosive's micro structures have no evident change, the ignition and detonation capability increase. However, the selective organic surfactant can change ANFO sample microstructures, so the ignition sensitivity and detonation capability change, the order of detonation capability is agree with the order of particles coarse degree.
     The phase transition behavior of different state AN are also studied, the results show that the reduce of particles size is helpful to restrain the phase transition of III-II, and there seems have some relations between the AN phase transition behavior and particles surface characters, that is: when modified AN particle surface microstructure has little change, the phase transition behavior doesn't has remarkable change; potassic salts can smooth the AN particles surface, so the modified AN samples have little phase transition of IV-III; Oxide,Cu(NO_3)_2, (NH_4)_2SO_4,MgSO_4 and other mineral coarsen the AN particles surface, so the phase transition behavior of III-II can be restrained. But this rule should be further approved or modified by more systemic experiments.
     TATB samples microstructures are correlated nearly with the preparation methods. Most directly synthesizing sample's particles size is beyond 10μm, specific surface area is low, particles shape is similar to sphericity and particles size is asymmetry, particles surface is coarse. While the samples' average size which prepared by several fined methods is within submicron grade, above 98% particles size is smaller than 200nm, the specific surface area of air-flow smashing sample is close to that of recrystalling samples, while the specific surface area of mechanical milling samples is quite low. The particles shape of air-flow smashing samples is also similar to sphericity and particles surface is smooth.For recrystalling samples, the particles shape is erose, profile is similar to slice or spherical and shape's difference is great under low multiple SEM, while under high multiple SEM,the particles shape is similar to strip. When the recrystalling samples are smashed by air-flow, the particles shape becomes symmetrical and regular. The order of particles coarse degree obtained by SEM is accorded with the order of fractal dimision gained by small anglex ray scattering method(SAXS).TATB pore structures are investigated by two methods, one is N_2 absorption method, the other is synchrotron radiation SAXS technique.The measuring results of N_2 method show that synthesizing samples have little pores but recrystalling samples have many pores, air-flow smashing samples and recrystalling-airflow smashing samples have a few pores. The SAXS testing results also show that preparation methods have an obvious effect on TATB microstructures and the samples particles surface coarse degree can be compared by fractal dimension value.
     The thermal decompose temperature,5seconds explosion point temperature and short pulse ignition sensitivity are correlated with TATB microstructures, especially rest on the pore number.The short pulse ignition sensitivity and detonation complete degree are inverse with charge density and direct with porosity, when the porosity is adjacent, the detonation capability mainly determined by fractal dimension.
     The ingredients of TATB based composite prepared by solvent quick removing method and high energy impacting method can be composited at micro-nano scale, composite particles size is symmetrical and shape is similar.While the ingredients particles shape of machanical mixtures is distinct, the particles contact area is limited and some sensitive explosive particles are bared and expose to external action, so its impact sensitivity is higher than that of composite.
引文
1 C.Tarver,S.Chidester and A.Nichols.Critical conditions for impact-and shock-induced hot spots in solid explosives.J.phys.Chem.1996,CA100:5794.
    2 A.Chakravarty,M.J.Gifferd,M.W.Greenaway,etc.Factors affecting shock sensitivity of energetic materials.Shock compression of condensed Matter.2001:1007-1010.
    3 曾贵玉,黄辉,郁卫飞.含能材料粒度对性能的影响.GF报告:GF-A0093537G,2006.
    4 C.White,J.Barret,J.Mintmire,etc.Effects of nanoscale voids on the sensitivity of model energetic materials.Decomposition,combustion and detonation chemistry of energetic materials,Pittsburgh,1996.
    5 P.D.Peterson,J.T.Mang,S.F.Son,etc.Microstructural characterization of energetic materials.Proceedings of the 29~(th)International Pyrotechnics Seminar,Westminster,2002.
    6 王秀萍著.仪器分析技术.北京:化学工业出版社,2003.
    7 复旦大学著.高分子实验技术.复旦大学出版社,1984.
    8 Geibler Egon Eisenreich Norbert Adam Hubner Christof.New aspects for determination of aging behaviour of energetic materials.32~(th)International Annual Conference of ICT,Karlsruhe,2001.
    9 Thermal and chemical stability and adhesion strength of Pt nanopartical arrays on silica studied by transmission electro microscopy and atomic force.Journal of Physical and Chemistry,2000,B104:7286-7292.
    10 B.L.Weeks.Energetic materials and atomic force microscopy:structure and kinetics.12~(th)International Detonation Symposium,Lawrence,2002.
    11 曾贵玉,李长智.小角散射(SAS)技术在含能材料结构表征中的应用.含能材料,2005,13(2):128-131.
    12 P.D.Peterson,J.T.Mang,S.F.Son,etc.Microstructural characterization of energetic materials.Proceedings of the 29~(th)International Pyrotechnics Seminar,Westminster,2002.
    13 J.T.Mang,C.B.Skidmore,P.M.Howe,etc.Structural characterization of energetic materials by small angle scattering.DE00758962/XAB,LA-UR-99-3194,1999.
    14 R.Hjelm,W.Wampler,P.Seeger,etc.The microstructure and morphology of carbon black:a study using small-angle neutron scattering and contrast variation.J.Mater.Res.1994,9:3210-3222.
    15 Xiang Y.,Zhang J.,Liu C.Verification for particle size distribution of ultrafine powders by the SAXS method.Mater.Charact.2000,44(4/5):435-439.
    16 R.P.Hjelm,J.T.Mang,C.B.Skidmore,etc.Parameterization of structures in energetic materials.http://www.lansce.lanl.gov/research/cond-matter/mang.htm.
    17 J.T.Mang,C.B.Skidmore,R.P.Hjelm,etc.Characterization of high-explosive systems by small-angle neutron scattering.http://www.lansce.lanl.gov/research/pdf//mang.htm.
    18 J.T.Mang,C.B.Skidmore and Ray.Green Small-angel X-ray scattering study of intergranular porosity in a pressed powder of TATB.LA-UR-00-5343,2000.
    19 陈波,董海山,重宝中等.同步辐射SAXS技术在TATB含能材料微孔结构研究中的初步应用.原子与分子物理学报.2003,20(2):191-196.
    20 夏庆中,陈波,曾贵玉.三氨基三硝基苯材料微孔结构的小角x射线散射实验研究.物理学报,2005,54(7):3273-3277.
    21 J.T.Mang,C.B.Skidmore,P.M.Howe,etc.Structural characterization of energetic materials by small angel scattering.AIP Conf.Proc.2000.
    22 J.T.Mang,C.B.Skidmore,B.Cary,etc.Quantitative morphological characterization of high explosive crystal grains by light diffraction and microscopy.31~(th)International Annual Conference of ICT,Karlsruhe,2000.
    23 R.C.Hedden,B.J.Bauer,Hae-jeong Lee,etc.Determination of closed pore content in nanoporous films by SANS contrast match.Polymeric Materials Science and Engeering.2002.
    24 秦麟卿,吴伯麟,魏铭鉴等.X射线小角散射测定氧化铝粉末中微孔尺寸的分布.仪器仪表学报.2001,22(3期增刊):358-359.
    25 朱卫华,印友法,蒋林华等.硅粉水泥石中微孔孔径分布及其对强度的影响.建筑材料学报.2004,7(1):7-18.
    26 程传煊著.表面物理化学.北京:科学技术文献出版社,1998.
    27 徐如人,庞文琴著.分子筛与多孔材料.北京:科学出版社,2004.
    28 唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究.沈阳建筑工程学院学报(自然科学版),2001,17(4):272-275.
    29 Quantachrome instruments.High speed gas sorption analyzer NOVA manual,2002.
    30 E.P.Barrett,L.G.Joyner and P.P.Halenda.The determination of pore volume and area distributions in porous substances:Ⅰ.Computations from nitrogen isotherms.J.Amer.Chem.Soc.1951,73:373-380.
    31 G.Horvath and K.Kawazoe.Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon.J.Chem.Eng.(Japan).1983,16(5):470-475.
    32 Richard Bouma,Antoine van der Heijden.Evaluation of crystal defects by the shock sensitivity of energetic crystals suspended in a density-matched liquid.32~(th)International Annual Conference of ICT,Karlsruhe,2001.
    33 A.E.D.M.van der Heijden,W.Duvalois.Characterization of the internal quality of HMX crystals.27~(th)International Annual Conference of ICT,Karlsruhe,1996.
    34 A.E.D.M.van der Heijden,W.Duvalois.Micro-inclusions in HMX crystals.30~(th)International Annual Conference of ICT,Karlsruhe,1999.
    35 A.E.D.M.van der Heijden,R.H.B.Bouma,R.J.van Esveld.Shock sensitivity of HMX based compositions.31~(th)International Annual Conference of ICT,Karlsruhe,2000.
    36 R.H.B.Bouma,W.Duvalois,A.E.D.M.van der Heijden.Characterization of a commercial grade CL-20:morphology crystal shape,sensitivity and shock initiation testing by flyer impact.31~(th)International Annual Conference of ICT,Karlsruhe,2000.
    37 M.Hermann.Lattice imperfection of HMX measured with X-ray diffraction.31 st International Annual Conference of ICT,2000.
    38 曾贵玉,郁卫飞,聂福德,徐容,吕春绪.超细炸药粉体性能及其应用研究进展.含能材料,2005,13(5):349-353.
    39 张小宁,徐更光,徐军培等.超细HMX和RDX撞击感度的研究.火炸药学报,1999,1:33-36.
    40 刘桂涛,曲虹霞.超细RDX爆轰感度与撞击感度、摩擦感度的研究.南京理工大学学报,2002,4:410-413.
    41 曾贵玉,李海波,曹虎等.纳米RDX的撞击感度与分析.含能材料,2004,12(zl):102-104.
    42 Balzer J E.,Field J,Egifford M J,etc.High-speed photographic study of the drop-weight impact response of ultrafine and conventional PETN and RDX.Combustion and Flame,2000,130:298-302.
    43 刘玉存,王建华,安崇伟,于雁武.RDX粒度对机械感度的影响.火炸药学报,2004,27(2):7-9.
    44 王金英,柴涛,张景林,等.PBX传爆药撞击感度影响因素的研究.华北工学院学报,2004,25(4):289-292.
    45 张景林,吕春玲,王晶禹,等.亚微米炸药的感度选择性.爆炸与冲击,2004,24(1):59-62.
    46 张淑玲,刘天生,肖秀友.RDX粒度对某塑性炸药包覆和机械感度性能的影响.华北工学院学报,2002,23(4):296-298.
    47 D.Daniel,Shlomo Mandelbaum,Evgeny Dreerman,etc.The influence of size and shape of the explosive particles on a cure-cast explosive properties.31~(th)International Annual Conference of ICT,Karlsruhe,2000.
    48 Benziger.Method of making fine-grained triaminotrinitrobenzene.USP 4481371,1984.
    49 D.W.Firsich,R.Thorpe and L.A.Cox.TATB purification and particle size modification:an evaluation of processing options.MLM-3629.
    50 P.A.Urtiew,J.W.Forbes,F.Garcia,etc.Shock Initiation of UF-TATB at 250 degrees C.UCRL-JC-141805,2001.
    51 S.G.Cochran.Modeling Particle Size and Initial Temperature Effect on Shock Initiation of TATB-Based Explosives.Amsterdam,Netherlands:Elsevier Science Publishers,1984.
    52 只永发,邓志国,聂福德.炸药颗粒度对冲击片起爆感度的影响.炸药,2002,10(3):139-141.
    53 谭汝媚,谭迎新,吴永伟.细化粉体炸药飞片起爆特性的实验研究.四川兵工学报,2005,2:6-7.
    54 柴涛,张景林.HMX粒度、粒度级配对混合传爆药性能影响的研究.中国安全科学学报,2000,10(3):71-74.
    55 裴莉莉,刘文怡,袁凤英.关于JD-X传爆药冲击波感度的研究.北工学院学报,1996,17(4):357-361.
    56 刘玉存,王作山,吕春玲,王建华.黑索今粒度及粒度级配对高分子粘结炸药冲击波感度的影响.兵工学报,2005.26(1):126-128.
    57 U.Teipel and U.Forter-Barth.Design of particulate energetic materials.5~(th)seminar of trends in research of energetic materials,Pardulice,2005.
    58 涂永珍,王朝珍,徐浩星.硝胺推进剂燃烧性能的实验研究.炸药,1996,4(1):18-22.
    59 刘桂涛,吕春绪,曲虹霞.超细RDX爆速和作功能力的研究与测试.爆破器材,2003,32(3):1-3.
    60 胡栋,孙珠妹.RDX粉末粒度对快速反应特性的影响.炸药,1998,1:1-7.
    61 王肇中,汪旭光,康廷璋,张晓智,李子强.粉状乳化炸药粒度对其爆轰性能的影响.工程爆破.2005.3.
    62 S.Roland.Characterization of Electro-explode Alumimum(Alex).29~(th)International Annual Conference of ICT,Karlsruhe,1998.
    63 M.M,Mench.Propellant burning rate enhancements and thermal behavior of Ultra-fine powder (Alex).29~(th)International Annual Conference of ICT,Karlsruhe,1998.
    64 黄辉,黄勇,李尚斌.含纳米级铝粉的复合炸药研究.火炸药学报,2002,2:1-3.
    65 周俊祥,徐更光,王廷增.铝化炸药水下爆炸冲击波特性分析.爆破,2005,22(1):41-43.
    66 杨斌林,陈荣义,曹晓宏.RDX炸药粒度对其爆轰性能的影响.火工品.2004,3:50-53.
    67 Lefrancois Alexandre,Le Callic Christian.Expertise of nanometric Aluminium powder on the detonation efficiency of explosives.32 International Annual Conference of ICT,Karlsruhe,2001.
    68 M.M.Mench.Propellant burning rate enhencement and thremal behavior of ultra-fine Aluminium powders.29~(th)International Annual Conference of ICT,Karlsruhe,1998.
    69 Brousseau Patrick,C.Anderson.Nanometric aluminum in explosives.Propellants,Explosives,Pyrotechnics,2002,27(5):300-306.
    70 苗勤书,徐更光,王廷增.铝粉粒度和形状对含铝炸药性能的影响.火炸药学报,2002,2:4-5.
    71 A.E.Gash,R.L.Simpo,J.H.Satcher.Sol-gel chemistry-synthesis,safety and characterization of nanocomposite energetic materials.29th International Pyrotechnics Seminar,2002.
    72 A.E.Gash,R.L.Simpson,T.M.Tillotson,etc.Making Nanostructured Pyrotechnics in a Beaker.UCRL-JC-137593,2000.
    73 Frank Alan,Chau Henry,Lee Ron,etc.Reaction Zones in Ultrafine TATB.Propellants,Explosives,Pyrotechnics,2003,28(5):259-264.
    74 L.G.Hill,W.L.Seitz,C.A Forest,etc.High explosive comer turning performance and the LANL Mushroom test.LA-UR-97-2509,1997.
    75 J.E.Kennedy.Detonation spreading in fine TATBs.24~(th)international pyrotechnics seminar,Monterey,Calif.July 27-31,1998.
    76 Raymond Thorpe,R.Feairheller William.Development of processes for reliable detonator grade very free secondary explosives powers.MLM-3503(OP).
    77 P.K.Tang.A study of diverging detonation in high-explosive system.LA-UR-87-322,1987.
    78 陆春荣,刘玉存.RDX的粒度对临界截面积的影响.华北工学院学报,2004,25(5):368-370.
    79 于江,杨振英,安瑱.油墨炸药的粒度对其传爆性能的影响.含能材料,2005,13(3):155-157.
    80 王晓丽,焦清介.微/纳米含能薄膜材料的制备及应用研究.含能材料,2006,14(2):139-141.
    81 赵孝彬,侯林法,张小平.硝酸铵的改性.含能材料,1999,7(2):67-70.
    82 C.Oommen,S.R.Jain.Amonium nitrate:a promising rocket propellant oxidizer.Journal of Hazardous Materials,1999,253-281.
    83 张杰,杨荣杰,刘云飞等.聚乙烯醇缩丁醛包覆硝酸铵的性能研究.火炸药学报,2001,1:41-43.
    84 张杰,杨荣杰,刘云飞等.硝酸铵喷雾干燥表面改性.推进技术,2002,23(6):521-524.
    85 张杰,邹彦文.相稳定硝酸铵及其混合物的热分解.含能材料,2005,4.
    86 亓希国,汪旭光,夏柏如.利用DSC曲线表征添加剂对防爆硝酸铵品变的影响.爆破器材,2005,34(2):1-3.
    87 王光龙,许秀成。硝酸铵热稳定性的研究.郑州大学学报(工学版),2003,24(1):47-50.
    88 Blomquist,R.Harold.Process for preparing free-flowing particulate phase stabilized ammonium nitrate.US6902637,2005.
    89 P.N.Simoes,L.M.Pedroso,A.A.Portugal,etc.Study of the decomposition of phase stabilized ammonium nitrate(PSAN)by simultaneous thermal analysis:determination of kinetic parameters.Thermochimica Acta,1998,319:55-65.
    90 叶志文,刘祖亮,吕春绪.表面活性剂改善膨化硝铵晶变的研究.爆破器材,1998,27(4):8-11.
    91 吕春绪,陆明,陈天云,叶志文.膨化硝酸铵自敏化理论的微气泡研究.兵工学报,2001,22(4):485-488.
    92 陈天云.硝酸铵的自敏化及应用研究.南京:南京理工大学,2000.
    93 周新利.膨化硝酸铵自敏化理论及其炸药的物理性能和改性研究.南京:南京理工大学,2003.
    94 陆明,吕春绪,刘祖亮.硝酸铵膨化过程中的结晶参数研究.含能材料,1999,7(2):79-82.
    95 LU Chunxu,Liu Zuliang,Chen Tianyun and Lu Ming.Self-sensitization Theory of Expanded Ammonium Nitrate.34th 31~(th)International Annual Conference of ICT,Karlsruhe,2004.
    96 LU Chunxu.Self-sensitivity Theory Design of Expanded Ammonium Nitrate Explosive.Proceedings of ICETs,2000.
    97 陆明,吕春绪,刘祖亮.硝酸铵的膨化机理研究.兵工学报,2002,23(1):30-34.
    98 W.H.M Veltmans,A.E.D.M van der Heijden,J.M.Bellerly.The effect of different crystallization techniques on morphology and stability of HNF.31~(th)International Annual Conference of ICT,Karlsruhe,2000.
    99 Lee,K.-Y.;Kennedy,J.E.;Stine,J.R.Synthesis and initiation spot-size testing of sonochemically aminated TATB.29~(th)International Annual Conference of ICT,Karlsruhe,1998.
    100 Foltz,M.F.;Maienschein,J.L.;Green,L.G.Particle size control of 1,3,5-triamino-2,4,6-trinitrobenzene by recrystallization from DMSO.J.Mater.Sci.,1996,31(7):1741-50.
    101 曾贵玉,聂福德,王建华等.高速气流碰撞法制备超细TATB粒子的研究.火工品,2003,1:1-3.
    102 Zeng Guiyu,Yu Weifei,Huang Hui,Lu Chunxu.Preparation of TATB based Nanocomposite Energetic Materials.Proceedings of the 10th Seminar New Trends in Research of Energetic Materials,Pardubice,2007.
    103 Zeng Guiyu,Nie Fude,Huang Hui,Zhao Lin,Lu Chunxu.Preparation of TATB-BTF Nanocomposite Energetic Materials using solvent Vaporizing method.Proceedings of the 2007 International Autumn Seminar on Propellants,Explosives and Pyrotechnics,Xi'an,2007.
    104 Zeng Guiyu,Nie Fude,Huang Hui,Zhao Lin,Lu Chunxu.Preparation of TATB based nanocomposite particles by high energy impacting method.6th China International Conference on Nanoscience and Technology,Chengdu,2007.
    1 吕春绪等著.膨化铵油炸药.北京:兵器工业出版社,2001.
    2 吕春绪,陆明,陈天云,叶志文.膨化硝酸铵自敏化理论的微气泡研究.兵工学报,2001,22(4):485-488.
    3 陈天云.硝酸铵的自敏化及应用研究.南京:南京理工大学,2000.
    4 周新利.膨化硝酸铵自敏化理论及其炸药的物理性能和改性研究.南京:南京理工大学,2003.
    5 陆明,吕春绪,刘祖亮.硝酸铵的膨化机理研究.兵工学报,2002,23(1):30-34.
    6 LU Chunxu,Liu Zuliang,Chen Tianyun and Lu Ming.Self-sensitization Theory of Expanded Ammonium Nitrate.34th ICT,2004.
    7 LU Chunxu.Self-sensitivity Theory Design of Expanded Ammonium Nitrate Explosive.Proceedings of ICETs 2000.
    8 胡炳成,刘祖亮,吕春绪,陈天云.影响膨化硝酸铵性能的因素.爆破器材,2000,29(2):16.
    9 周新利,刘祖亮,吕春绪.膨化铵油炸药冲击波感度的试验研究.爆破器材,2004,33(5):4-8.
    10 程传煊编著.表面物理化学.北京:科学技术文献出版社,1998.
    11 炸药试验方法.GJB772A-97.国防科学技术工业委员会批准,1997.
    12 刘培生.多孔材料比表面积和孔隙形貌的测定方法.稀有金属材料与工程,2006,35(S2):25-29.
    13 严继民,张启元,高敬琮著.吸附与凝聚-固体的表面与孔(第二版).北京:科学出版社,1986.
    14 傅献彩,沈文霞,姚天扬编著.物理化学(下册).北京:高等教育出版社,1990.
    15 Quantachrome instruments.High speed gas sorption analyzer NOVA manual,2002.
    16 顾锡人,朱瑶,李外朗等著.表面化学.北京:科学出版社,1999.
    17 徐如人,庞文琴著.分子筛与多孔材料.北京:科学出版社,2004.
    18 唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究.沈阳建筑工程学院学报(自然科学版),2001,17(4):272-275.
    19 葛仕福,施明恒.被干燥多孔物料中孔隙大小及分布的探讨.应用科学学报,2005,23(1):94-98.
    20 陈三强,刘永忠,程光旭,黄吕斌.用压汞法计算冻干物料的表面分形维数.食品科学,2004,25(7):25-28.
    21 盛永刚,徐耀,李志宏等.气体吸附法测定二氧化硅干凝胶的分形维数.物理学报,2005,54(1):221-227.
    22 曾贵玉,李长智.小角散射(SAS)技术在含能材料结构表征中的应用.含能材料,2005,13(2):128-131.
    23 P.D.Peterson,J.T.Mang,S.F.Son,etc.Microstructural characterization of energetic materials.Proceedings of the 29~(th)International Pyrotechnics Seminar,Westminster,2002.
    24 J.T.Mang,C.B.Skidmore,P.M.Howe,etc.Structural characterization of energetic materials by small angle scattering.DE00758962/XAB,LA-UR-99-3194,1999.
    25 董学仁,岳云龙,王少青等.纳米微粒尺寸测量方法的研究.砗酸盐通报.2001,5:59-61.
    26 R.P.Hjelm,J.T.Mang,C.B.Skidmore,etc.Parameterization of structures in energetic materials.Http://www.lansce.lanl.gov/research/cond-matter/mang.htm.
    27 J.T.Mang,C.B.Skidmore,R.P.Hjelm,etc.Characterization of high-explosive systems by small-angle neutron scattering.Http://www.lansce.lanl.gov/research/pdf//mang.htm.
    28 田英姿,陈克复.用压汞法和氮吸附法测定孔径分布及比表面积.中国造纸,2004,23(4):21-23.
    29 柳义,王洪立,赵昕等.用X光小角散射法研究氧化铁干凝胶结构.原子能科学技术,2002,36(6):539-542.
    30 王云,陈宁.粉体粒度与研磨技术.中国粉体技术,2000,6(4):13-16.
    31 胡松青,李琳,郭祀远,蔡妙颜.现代颗粒粒度测量技术.现代化工,2002,22(1):58-61.
    32 刘自汤,劳允亮著.起爆药实验.北京:北京理工大学出版社,1995.
    33 刘振海,畠山立子著.分析化学手册(第二版)第八分册 热分析.北京:化学工业出版社,2000.
    34 陈镜泓,李传儒著.热分析及其应用.北京:科学出版社,1985.
    35 Eyring H,Powell R E,Duffy G H,etc.Chem.Rev.1949,45:69-181.
    36 Bdzil J B.J.Fluid Mech.1981,108:195-226.
    37 Price D.Contrasting patterns in the behavior of high explosives.Process of 11~(th)International Symposium on combustion,1967.
    38 孙承纬,卫玉章,周之奎著.应用爆轰物理.北京:国防工业出版社,2000.
    39 吕春绪著.工业炸药.北京:兵器工业出版社,1994.
    40 穆哈迈德.苏塞斯卡著,邵英斌译.炸药测试方法.绵阳:中物院流体物理研究所、中物院化工材料研究所科技丛书,1998.
    41 张宝坪,张庆明,黄风雷著.爆轰物理学.北京:兵器工业出版社,2001.
    42 吕春绪著.工业炸药理论.北京:兵器工业出版社,200.
    1 严继民,张启元,高敬琼著.吸附与凝聚-固体的表面与孔(第二版).北京:科学出版社,1986.
    2 陈天云.硝酸铵的自敏化及应用研究.南京:南京理工大学,2000.
    3 徐如人,庞文琴著.分子筛与多孔材料.北京:科学出版社,2004.
    4 程传煊编著.表面物理化学.北京:科学技术文献出版社,1998.
    5 傅献彩,沈文霞,姚天扬编著.物理化学(下册).北京:高等教育出版社,1990.
    6 顾锡人,朱瑶,李外朗等著.表面化学.北京:科学出版社,1999.
    7 Quantachrome instruments.High speed gas sorption analyzer NOVA manual,2002.
    8 陈天云.膨化硝酸铵白敏化特征实验研究.兵工学报,2004,25(1):34-36.
    9 G.Horvath and K.Kawazoe.Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon.J.Chem.Eng(Japan),1983,16(5):470-475.
    10 E.P.Barrett,L.G.Joyner and P.P.Halenda.The determination of pore volume and area distributions in porous substances:Ⅰ.Computations from nitrogen isotherms.J.Amer.Chem.Soc.,1951,73:373-380.
    11 叶志文,吕春绪,刘祖亮.膨化硝酸铵的微观结构研究.爆破器,2002,31(1):7-10.
    12 张宝平,张庆明,黄风雷著.爆轰物理学.北京:兵器工业出版社,2001.
    13 章冠人,陈大年著.凝集炸药起爆动力学.北京:国防工业出版社,2002.
    14 唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究.沈阳建筑工程学院学报(自然科学版),2001,17(41:272-275.
    15 杨华明,张花,欧阳静.介孔材料分形表征的研究进展.功能材料,2005,36(4):495-503.
    16 胡在良.材料微孔分形特性的试验研究.武汉理工大学硕士学位论文,2005.
    17 谢晓永,唐洪明,王春华等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比.天然气工 业,2006,26(12):100-102.
    18 葛仕福,施明恒.被干燥多孔物料中孔隙大小及分布的探讨.应用科学学报,2005,23(1):94-98.
    19 C.Oommen,S.R.Jain.Ammonium nitrate:a promising rocket propellant oxidizer.Journal of Hazardous Materials,1999,253-281.
    20 张海燕,陈红.低特征信号推进剂的氧化剂—相稳定硝酸铵.飞航导弹,1996,2:38-41.
    21 A.O.Remya Sudhakar,Suresh Mathew.Thermal behaviour of CuO doped phase-stabilised ammonium nitrate.Thermochimica Acta,2006,451:5-9.
    22 谢晓永,唐洪明,王春华等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比.天然气工业,2006,26(12):100-102.
    23 唐明,李晓.多种因素对混凝土孔结构分形特征的影响研究.沈阳建筑大学学报(自然科学版),2005,21(3):232-237.
    24 杨华明,张花,欧阳静.介孔材料分形表征的研究进展.功能材料,2005,36(4):495-503.
    25 周宏伟,谢和平.多孔介质孔隙度与比表面积的分形描述.西安矿业学院学报.1997,17(2):97-101.
    26 蒋林.生物质型煤试验和神经网络、分形理论应用研究.浙江大学出版社,2002.
    27 韦江雄,余其俊,曾小星,白瑞英.混凝土中孔结构的分形维数研究冰.华南理工大学学报(自然科学版),2007,35(2):121-124.
    28 陈三强,刘永忠,程光旭,黄昌斌.用压汞法计算冻干物料的表面分形维数.食品科学,2004,25(7):25-28.
    29 刘龙波,王旭辉.由吸附等温线分析膨润土的分形孔隙.高校化学工程学报,2003,5(17):591-595.
    30 盛永刚,徐耀,李志宏等.气体吸附法测定二氧化硅干凝胶的分形维数.物理学报,2005,54(1):221-227.
    31 李留仁,赵艳艳,李忠兴等.多孔介质微观孔隙结构分形特征及分形系数的意义.石油大学学报(自然科学版),2004,28(3):105-110.
    32 袁玉燕.不规则粉体粒度及形貌的表征与测试技术研究.南京理工大学硕士学位论文,2001.
    33 李志宏,巩雁军,吴东等.介孔氧化硅的分形特征.核技术,2004,27(1):14-17.
    34 马兴华,王鲁英,完明睿等.颗粒孔结构的积木分形模型.过程工程学报,2002,2(5):385-391.
    35 B.B.Mandelbrot.The Fractal Geometry of Nature.San Francisco:Freeman Co.,1982,144-146.
    36 刘显东,陆现彩,侯庆锋等.基于吸附等温线的表面分形研究及其地球科学应用.地球科学进展,2005,20(2):21-206.
    37 张玮,张宁生.固相颗粒在分形多孔介质中运移的网络模拟.西安石油学院学报(自然科学版)2000,15(2):14-17.
    38 张玉柱,张庆军,莫文玲等.烧结矿微孔隙的分形特征.烧结球团,2005,30(4):1-4.
    39 葛荣德,刘志宏,陈慧光等.工艺条件对氧化锆超细粉末团聚体表面分维的影响.中南矿冶学院学报,1994,25(4):470-475.
    40 赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究.煤炭学报,1998,23(4):439-442.
    41 姜秀民,杨海平,闫澈等.超细化煤粉表面形态分形特征.中国电机工程学报,2003.23(12):165-169.
    42 廖寄乔,黄伯云,王华.超细钨粉的粒度表征.中国有色金属学报,2002,12(3):448-453.
    43 刘自汤,劳允亮编著.起爆药实验.北京:北京理工大学出版社,1995.
    44 吕春绪著.工业炸药理论.北京:兵器工业出版社,2003.
    45 M.Q.Brewster,T.A.Sheridan.Final report on combustion studies of clean burning propellants.submitted to Thiocol,1990.
    46 蔡敏敏,陈天云,黄建祯,等.无机盐添加剂对硝酸铵相转变及结块性的影响.南京理工大学学报,2000,24(1):76-79.
    47 亓希国,汪旭光,夏柏如.利用DSC曲线表征添加剂对防爆硝酸铵相转变的影响.爆破器材,2005,34(2):1-3.
    1 吕春绪,刘祖亮,叶志文.硝酸铵膨化机理研究.火炸药学报,1998,2:16-18.
    2 吕春绪等著.膨化硝铵炸药.北京:兵器工业出版社,2001.
    3 吕春绪.硝酸铵膨化技术及应用.中国工程科学,2000,2(2):60-63
    4 吕春绪.硝酸铵膨化理论研究.中国工程科学,2001,3(9):58-63.
    5 LU Chunxu,Liu Zuliang,Chen Tianyun and LU Ming.Self-sensitization Theory of Expanded Ammonium Nitrate.34th International Proceeding of ICT,Karlsruhe,2004.
    6 LU Chunxu.Self-sensitivity Theory Design of Expanded Ammonium Nitrate Explosive.Proceedings of ICETs,2000.
    7 吕春绪,刘祖亮,惠群明.膨化硝酸铵白敏化理论形成与发展.火炸药学报,2000,4:1-4.
    8 Lionel Bome,Jean-Claude Patedoye and Christian Spyckerelle.Quantitative characterization of internal defects in RDX crystals.Propellants,Explosives,Pyrotechnics.1999,24:255-259.
    9 C.K.Skidmore,D.B.Phillipe,P.M.Howe,etc.The evolution of microstructural changes in pressed HMX explosives.LA-UR-98-3473,1998.
    10 J.Sharma,B.C.Beard,J.Forbes,C.S.Coffey.Physical and Chemical Nature of Hot Spots in TATB and HMX.9th International Symposium on Detonation,1989.
    11 Joseph T.Mang,Cary B.Skidmore,F.Kramer John and S.Phillips David.Quantitative morphological characterization of high explosive crystal grains by light diffraction and microscopy.The 31th International Proceeding of ICT,Karlsruhe,2000.
    12 Yu Weifei,Zeng Guiyu,Huang Hui and Nie Fude.Convenient Method to Observe the Interior Structure of Explosive Particles.10~(th)international seminar on new trends in research of energetic materials,2007.
    13 刘振海,畠山立子主编.分析化学手册(第二版)第八分册热分析.北京:化学工业出版社,2000.
    14 董海山,胡荣祖,姚朴,张孝仪编著.含能材料热谱集.北京:国防工业出版社,2002.
    15 李金山.炸药圆柱体的热爆炸临界参数与其长径比的关系研究.含能材料,1995,3(1):34-38.
    16 吕春绪著.工业炸药.北京:兵器工业出版社,1994.
    17 章冠人,陈大年著.凝集炸药起爆动力学.北京:国防工业出版社,2002.
    18 孙锦山,朱建士著.理论爆轰物理.北京:国防工业出版社,1995.
    19 张宝坪,张庆明,黄风雷著.爆轰物理学.北京:兵器工业出版社,2001.
    20 吕春绪著等.工业炸药理论.北京:兵器工业出版社,2003.
    21 B.C.Taylor.Separation of ignition EAN buildup to detonation in pressed TNT.Proceeding of 6~(th)International Symposium on detonation,1976.
    22 多孔粒状铵油炸药.GB 17583,1998.
    23 高大元,吕春绪,董海山等.工业炸药的爆轰性能研究.火炸药学报,2003,26(1):26-29.
    24 穆哈迈德.苏塞斯卡著,邵英斌译.炸药测试方法.绵阳:中物院流体物理研究所-中物院化工材料研究所科协,1998.
    25 刘祖亮.硝酸铵自敏化的基本原理和技术途径.爆破器材,2003,32(6):4-7.
    26 惠君明,苏洪文,解立峰等.粉状工业炸药的敏化方法.火炸药,1997,1:10-12.
    27 Atsumi Miyake,Keiya Takahara,Terushige Ogawa,etc.Influence of physical properties of ammonium nitrate on the detonation behaviour of ANFO.Journal of Loss Prevention in the Process Industries,2001,14:533-538.
    28 C.H.Johansson and P.A.Persson.Detonics of High Explosives.London:Academic Press,1970.
    1 董海山,周芬芬.高能炸药及相关物性能.北京:科学出版社,1989.
    2 曾贵玉,聂福德,王建华,田野.高速气流碰撞法制备超细TATB粒子的研究.火工品,2003,1:1-3.
    3 J.T.Mang,C.B.Skidmore and Ray Green.Small-angel X-ray scattering study of intergranular porosity in a pressed powder of TATB.LA-UR-00-5343,2000.
    4 夏庆中,陈波,曾贵玉等.三氨基三硝基苯材料微孔结构的小角x射线散射实验研究.物理学报,2005,54(7):3273-3277.
    5 马桂秋,原续波,盛京.小角X光散射法研究聚丙烯/乙丙橡胶合金的相结构.高分子学报,2002,1:63-67.
    6 文尚刚,王胜强,黄文斌等.密度对压装B炸药燃烧转爆轰性能的影响.火炸药学报,2006,29(5):5-8.
    7 孙承纬,卫玉章,周之奎.应用爆轰物理.北京:国防工业出版社,2000.
    1 G.Demol,J.Goutelle,P.Mazel.CHARME:a reactive model for pressed explosives using pore and grain size distributions as parameters.AIP Conf.Proc.,1998.
    2 张丽华,王泽山.关于发射药粒度对爆速影响的研究.兵工学报,1999,20(3):228-232.
    3 曾贵玉,黄辉,郁卫飞.含能材料粒度对性能的影响.GF报告:GF-A0093537G,2006.
    4 吕春绪著.工业炸药理论.北京:兵器工业出版社,2003.
    5 B.K.Rao,P.Jena.Design of high-energetic materials at the nanoscale.Synthesis,Characterization and Properties of Energetic/Reactive Nanomaterials Symposium(Mater.Res.Soc.Symposium Proceedings Vol.800),2004.
    6 Zeng Guiyu,Yu Weifei,Huang Hui,Lu Chunxu.Preparation of TATB based Nanocomposite Energetic Materials.Proceedings of the 10th Seminar New Trends in Research of Energetic Materials.Pardubice,2007.
    7 Zeng Guiyu,Nie Fude,Huang Hui,Zhao Lin,Lu Chunxu.Preparation of TATB-BTF Nanocomposite Energetic Materials using solvent Vaporizing method.Proceedings of the 2007 International Autumn Seminar on Propellants,Explosives and Pyrotechnics,Xi'an,2007.
    8 Zeng Guiyu,Nie Fude,Huang Hui,Zhao Lin,Lu Chunxu.Preparation of TATB based nanocomposite particles by high energy impacting method.The 6th China International Conference on Nanoscience and Technology,Chengdu,2007.
    9 Pivkina Alla,Ulyanova Polina,Frolov Yurii,etc.Nanomaterials for Heterogeneous Combustion.Propellants,Explosives,Pyrotechnics,2004,29(1):39-49.
    10 曾贵玉,郁卫飞,聂福德,等.超细炸药粉体性能及其应用研究进展.含能材料,2005,13(5):349-353.
    11 郁卫飞,黄辉,聂福德,等.纳米复合含能材料的研究进展.含能材料,2005,13(5):340-343.
    12 杨光成,聂福德,曾贵玉.超细TATB-BTF核-壳型复合粒子的制备.火炸药学报,2005,28(2):72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700