CO_2煤层封存流动—力学理论及场地力学稳定性数值模拟方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳是最主要温室气体,二氧化碳煤层封存(CO_2-ECBM)是一项有望同时实现CO_2大规模减排和增加煤层气资源产量的一举两得的技术。封存过程中多组分气体的渗流规律和场地的力学稳定性评价是该技术可行性研究的重要内容,然而我国这方面的研究目前还较少。在这样的背景下,本文利用岩土力学、渗流力学、有限元数值分析理论以及室内试验对深部非采煤层二氧化碳封存过程进行了较为系统的研究,内容涉及固气耦合理论、试验、程序开发及其初步应用四个方面,核心内容如下:
     第一,分析了二氧化碳煤层封存流动和场地稳定性分析中的关键岩土力学问题,给出了CO_2-ECBM过程固气耦合分析的完整数学模型,并提出了一个新的考虑吸附膨胀效应的煤岩孔隙率、渗透率的动态演化方程。数值计算表明,这一演化方程能够正确体现煤岩吸附膨胀引起的孔隙率和渗透率降低的现象。(第三章)
     第二,煤岩的试验研究。进行了煤岩的抗拉以及较低和较高围压下三轴抗压特性的试验研究,指出煤岩的抗拉强度可以忽略。较低围压下三轴试验,煤岩呈现明显的线性弹性变形特性,在深部围压较高条件下,煤岩很快呈现明显的塑性变形,应采用考虑塑性硬化的本构模型加以刻画。(第四章)
     第三,煤岩塑性硬化特征描述。结合煤岩三轴试验数据,创新性地提出了岩土塑性理论中初始屈服的一个新的定义方法,并给出了应用三轴试验数据计算路径相关硬化参量的新方法。基于此,分析了煤岩塑性硬化过程中的内摩擦角、内聚力的变化趋势,基于试验数据用非线性函数拟合了后继屈服轨迹并比较了拟合效果,并发现q-p应力空间中的屈服轨迹的割线斜率不是定值而是随着塑性硬化而不断增加的。(第四章)
     第四,提出了一个新的塑性硬化本构模型—基于伪强度参数的塑性硬化模型,该模型能够反映煤岩塑性硬化过程中q-p屈服轨迹斜率的非定值特性。将该模型嵌入作者开发的COALSEEP 1.0程序中,对三轴试验应力-应变曲线进行的数值模拟表明应力应变特性和试验结果吻合较好。(第四章和第五章)
     第五,煤岩的吸附-弹性本构模型及参数估计。从理论上严格证明了缪协兴提出的湿度应力场理论并将其用作吸附膨胀介质一般的吸附-弹性本构模型。对该模型中线膨胀系数进行了研究,给出了煤岩吸附线膨胀系数的一个理论估计方法,这一方法不仅对估算煤岩线膨胀系数是有用的,而且还在作为煤岩力学参数的线膨胀系数和煤岩吸附特性参数之间架设了桥梁,对于全面而深入地理解煤岩的性质是有意义的。(第五章)
     第六,塑性屈服破坏函数对应的耗散势及其热动力学限制。通过求解本文构造的耗散微分方程,给出了一族线性屈服破坏函数对应的耗散势函数,这不仅沟通了传统的屈服破坏函数与热动力学中耗散势函数之间定量的解析关系,也给屈服破坏函数的理性验证提供了一个新思路。(第五章)
     第七,固相介质吸附-弹塑性本构框架和煤岩吸附-弹塑性本构模型。采用唯象的方法,将吸附量作为固相介质独立的热动力学状态变量引入到塑性屈服函数中,推导了吸附-弹塑性增量本构关系并给出了加卸载准则。当屈服函数与吸附量无关时,本构关系自动退化为只考虑吸附膨胀特性的增量弹塑性本构关系,如果还不考虑吸附量对固相介质膨胀效应,本构关系即退化为传统的增量弹塑性本构关系。将前文提出的基于伪强度参数的塑性硬化模型代入这一本构框架,得到了煤岩吸附-弹塑性本构模型。(第五章)
     第八,耦合分析数学模型的求解算法和软件开发。给出了耦合微分方程组的整体求解方案及各个场方程有限元求解的弱解积分形式。特别是组分摩尔比场采用了特征线有限元算法,其中还用到了本文给出的一个判断点与多面体空间位置关系的一个新算法—向量判别法,该算法具有实现简单、计算量小的优点。基于上述一系列算法,编制了有限元固气耦合分析软件COALSEEP1.0。这些构成了本文的数值模拟方法的研究。(第六章)
     第九,CO_2煤层封存流动及场地扰动的数值模拟研究。对非耦合、水平剖面上五点注采工况下CO_2-ECBM过程的流场分布规律以及流固耦合、地层纵剖面上双井抽注工况下CO_2-ECBM中渗流和场地变形进行了数值模拟研究。最后分析了煤层完全充满二氧化碳的极端条件下煤层膨胀对注采套管的影响。(第七章)
CO_2 is a main Green house gas that contributes the most to the Greenhouse effect of the Earth. CO_2-ECBM is an attractive technology that can store CO_2 massively underground and meanwhile enhance coalbed methane recovery. The flowing law of the multi-component fluids and the sequestration site stability in CO_2-ECBM are key contents of the feasibility study of this technology. However, there are few studies in this field in China as CO_2-ECBM still just starts here. In this thesis, the author took a systematic research in view of the geomechanics of coal and gases flow in CO_2 sequestration on the basis of existing related researches. The study results can be divided into four parts in the main, they are respectively the solid-gas coupling mathematical theory and models, lab tests, FE program developing and its preliminary application. They are as following.
     (1) A solid–gas coupling mathematical model considering multi-component fluid and solid interactions was developed after the analysis to the key geomechanics and flow in CO_2-ECBM. In this model, pore and permeability are changing as a result of the deformation and adsorption induced swelling of the coal matrix . So new evolution equations of pore and permeability that can describe this affection were put forward. (Chapter 3.)
     (2) Split tests and conventional triaxial loading-unloading tests of coal samples were conducted. The results show that the tensile strength is about 1% of the CTC strength thus can be neglected. For triaxial tests, when the confining pressure is relative low, the stress-strain curve is nice linear elasticity. When the confining pressure is relatively high, the stress-strain relation is nonlinear and obvious plasticity appears at quite early load stage. So the hardening constitutive models should be adopted at high confining pressures. (Chapter 4.)
     (3) The description of the plastic characteristics of coal. Firstly a new method that defined the initial yield point on each stress–strain curve was put forward creatively. Then a new computational method for strain path dependent hardening parameters using the tiaxial test data was presented. On these two bases, the cohesion and the internal friction angle of coal during the hardening process were calculated and positively correlated to the plasticity. Hardening curves in q-p space were fitted using the CTC tests and the fitting effect of different functions were compared. The fitting results show that the slopes of the q-p curves are increasing with the plasticity hardening. (Chapter 4.)
     (4) On the basis of the description of the hardening characteristics of coal, a new plastic hardening model called pseudo strength parameters-based plastic hardening model was presented. This model can properly discrib the increasing characteristic of the slopes of the q-p curves with the plasticity hardening. It was embedded into the FE program COALSEEP 1.0 developed by the author. Then it was used to simulate the CTC test of coal sample. The simulation result is quite consistent with the experiment. (Chapter 4.)
     (5) Adsorptive-elasticity theory and its parameter estimation. Miao’s Humidity Stress Field Theory was proved strictly and then was used as the adsorptive-elastic constitutive model of adsorption induced swelling media. The swelling coefficient of this model is a key parameter. An estimate method for this parameter of coal was presented, which not only supplied a convenient parameter estimating method but also bridged this mechanical parameter with the adsorptive parameters. This is beneficial to getting a deeper and more comprehensive understanding of coal properties. (Chapter 5.)
     (6) The thermodynamic restrictions of plastic yield and failure functions were studied. The dissipation potential functions corresponding to a class of yield /failure functions were got by solving the Dissipation Differential Equation constructed by the author. Thus the thermodynamic consistency of these yield /failure functions can be verified from this dissipation potential expediently. This bridges the dissipation and plasticity functions and supplies us with a new way for the rational verification of traditional plastic yield/failure functions. ( Chapter 5.)
     (7) The adsorptive-elatoplastic constitutive frame of porous media was studied and a constitutive model of coal belonging to this frame was presented. Based on a phenomenological viewpoint, the adsorption was a independent state variable of coal was supposed.Then adsorption was introduced to the yield function if the fluid affect the yield function. The tensor form of the incremental adsorptive-elatoplastic constitutive relationship and the loading-unloading criterion were presented. Substitute the pseudo strength parameters based plastic hardening model to this constitutive relationship, an adsorption-elatoplastic constitutive model was got for coal. (Chapter 5.)
     (8) The study of the solution algorithm of the coupling mathematical model and its FE program developing. In view of the process of CO_2-ECBM,a solving strategy for the coupling mathematical model and the weak form of each field equation were presented . Especially,the mole ratio field of CH4 was solved with the characteristic finite element method. A new algorithm of Vector Judging Method to judge the spatial relation between point and polyhedron was presented. This algorithm which was called by the program of characteristic finite element method. Then a coupling analysis program of COALSEEP1.0 was developed using FEPG.on the above bases.These constituted the study content of the simulating method in this thesis. (Chapter 6.)
     (9) Numerical simulation study of the flow of multicomponent fluids and the injecting induced deformation of reservoir and ground surface. Three simulating cases were carried. The first was the seepage law of multicomponents fluids at the working condition of five-point method. The second was the injecting induced deformation of reservoir and ground surface at the working condition of one well injecting and the other pumping. The third was influence of CO_2-induced swelling on casing stability in CO_2-ECBM. (Chapter 7.)
引文
[1] 政府间气候变化专门委员会. 第三次评估报告-气候变化 2001[R]. , 2001.
    [2] 杨炳炘(整理), 周春来(整理). 环境伦理与区域可持续发展——香山科学会议第 290 次学术讨论会综述[J]. 科学新闻. 2007(8): 44-45.
    [3] Zerai B. Carbon dioxide sequestration in saline aquifer: Geochemical modeling, reactive transport simulation and single-phase flow experiment[D]. Case Western Reserve University., 2006.
    [4] 陈刚. 京都议定书与国际气候合作[M]. 北京: 新华出版社, 2008.
    [5] Aycaguer A C. Storage of carbon dioxide in geologic reservoirs to reduce greenhouse gas emissions: A life cycle assessment approach[D]. University of California, Los Angeles., 2001.
    [6] IPCC AR4 I W. Climate Change 2007 : The Physical Science Basis[R]. , 2007.
    [7] Houghton J.t., Ding Y., Griggs D J E A. Climate Change 2001:The Scientific Basis[Z]. Cambridge University Press, 2001.
    [8] IPCC Working Group II. IPCC Fourth Assessment Report (AR4)- Impacts, Adaptation and Vulnerability[R]. , 2007.
    [9] 管卫华, 顾朝林, 林振山. 中国能源消费结构的变动规律研究[J]. 自然资源学报. 2006, 21(3): 401-407.
    [10] 中国国家发展和改革委员会. 中国应对气候变化国家方案[R]. , 2007.
    [11] Hendriks, C.a., K. Blok A W C T. The recovery of carbon dioxide from power plants. Proceedings of the Symposium on Climate and Energy[C]. Utrecht, The Netherlands: 1989.
    [12] 朱焱. 适应气候变化与减排温室气体同样重要[J]. 南风窗. 2007(9 月 上).
    [13] IPCC. IPCC Special Report on Carbon dioxide Capture and Storage[R]. , 2007.
    [14] WGIII IPCC Fourth Assessment Report -Report Mitigation of Climate Change[R]. , 2007.
    [15] 国际能源署. 世界能源展望[M]. 北京: 中国石化出版社, 2002.
    [16] 《气候变化国家评估报告》编写委员会. 气候变化国家评估报告[M]. 北京: 科学出版社, 2007.
    [17] 科学技术部等. 中国应对气候变化科技专项行动[R]. , 2007.
    [18] Horn F L, Steinberg M. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery)[J]. Fuel. 1982, 61(5): 415-422.
    [19] 黄斌, 刘练波, 许世森. 二氧化碳的捕获和封存技术进展[J]. 中国电力. 2007, 40(3): 14-17.
    [20] 张洪涛, 文冬光, 李义连, 中国 CO2 地质埋存条件分析及有关建议[J]. 地质通报.2005, 24(12): 1107-1110.
    [21] 孙枢. CO2 地下封存的地质学问题及其对减缓气候变化的意义[J]. 中国基础科学. 2006, 8(3): 17-22.
    [22] 刘延锋. 中国 CO2 地下储存容量及优先储存区域初步评价[R]. , 2006.
    [23] 张亮(编译), 丁岗(审校). CO2 EOR 及其在油藏中的储存[J]. 国外油田工程. 2007, 23(3): 9-12.
    [24] 李小春, 刘延锋, 白冰等 中国深部咸水含水层 CO2 储存优先区域选择[J]. 岩石力学与工程学报. 2006, 25(5): 963-968.
    [25] 周来, 冯启言, 李向东, et al. 深部煤层对 CO2 地质处置机制及应用前景[J]. 地球与环境. 2007, 35(1): 9-14.
    [26] 刘延锋, 李小春, 白冰. 中国 CO2 煤层储存容量初步评价[J]. 岩石力学与工程学报. 2005, 24(16): 2947-2952.
    [27] IPCC. 二氧化碳捕获和封存-决策者摘要和技术摘要[R]. , 2007.
    [28] Patel, Hiren Narendrakumar. Laboratory studies of carbon dioxide sequestration in coal beds[D]. University of Southern California., 2004
    [29] Schoreder K., Ozdemir E. M B L. Sequestration of Carbon Dioxide in Coal Seams[J]. J of Energy & Environment Research. 2002(2): 54-63.
    [30] Harris R G & I. Coalbed methane and coal geology[M]. London: The Geological Society, 1996.
    [31] Stach E., Mackowsky M. T., Teichmaller M., Taylor G.h.,chandra D. R.,Stach's Textbook of Coal Petroogy[M]. 3 ed. Berlin, Stuttgart: Gerbruder Bortraeger, 1982.
    [32] Al-hawaree M. Geomechanics of carbon dioxide sequestration in coalbed methane reservoirs[D]. University of Alberta (Canada)., 1999.
    [33] 林刚,陈莉纯. 温室气体 CO2 的收集,存储与再利用[J].低温与特气. 1999(2): 14-19.
    [34] Gentzis T. Subsurface sequestration of carbon dioxide -- an overview from an Alberta (Canada) perspective[J]. International Journal of Coal Geology. 2000, 43(1-4): 287-305.
    [35] Hamelinck C N, Faaij A P, Turkenburg W C, et al. CO2 enhanced coalbed methane production in the Netherlands[J]. Energy. 2002, 27(7): 647-674.
    [36] Yamazaki T, Aso K, Chinju J. Japanese potential of CO2 sequestration in coal seams[J]. Applied Energy. 2006, 83(9): 911-920.
    [37] Henk Pagnier, Frank van Bergen, Pawel Krzystolik, Jacek Skiba, Bartlomiej Jura, Jerzy Hadro, Paul Wentink, Guillaume De-Smedt, Hans-Jürgen Kretzschmar, J?rg Fr?bel, Gert Müller-Syring, Bernd Krooss, Andreas Busch, Karl-Heinz Wolf, Saikat Mazumder, Dan Bossie-Codreanu, Xavier Choi, David Grabowski, Daniel Hurtevent, John Gale, et al. Field experiment of ECBM-CO2 in the Upper Silesian Basin of Poland (RECOPOL)[C]. 2005.
    [38] Stevens S H. Natural CO2 Fields as Analogs for Geologic CO2 Storage[J]. 2005:687-697.
    [39] Gale J, Davison J. Transmission of CO2-Safety and Economic Considerations[J]. 2003: 517-522.
    [40] 李小春, 小出仁, 大隅多加志. 二氧化碳地中隔离技术及其岩石力学问题[J]. 岩石力学与工程学报. 2003, 22(6): 989-994.
    [41] Bachu S. CO2 storage in geological media: Role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science. 2008, 34(2): 254-273.
    [42] Sminchak J, Gupta N, Byrer C B P. Issues related to seismic activities induced by the injection of CO2 in deep saline aquifers[J]. J Energy Environ Res. 2002(2): 32-46.
    [43] Streit J E, Siggins A F, Evans B J. Predicting and Monitoring Geomechanical Effects of CO2 Injection[J]. 2005: 751-766.
    [44] KayDamenAndréFaaijAndWimTurkenburg. Health, Safety and Environmental Risks of Underground CO2 Storage–Overview of Mechanisms and Current Knowledge[J]. Climatic Change. 2006, 74(1): 289-318.
    [45] Khaa W. Personal communication on CO2 sequestration in coal layers[R]. Deft University of Technology, FACULTY OF Applied Earth Science, 2003.
    [46] Rigg,a.,allison,g.,bradshaw,j.,ennis-king,j.,gibson-poole,c.,hillis R R A S J E. The search for sites for geological sequestration of CO2 in Australia:a progress report on GEODISC[J]. APPEA J. 2001(41): 711-725.
    [47] Over, J., Vries, J. De, Stork J. Removal of CO2 by storage in the deep underground, chemical utilization and biofixation.[Z]. Utrecht: 1999.
    [48] Holloway S. The underground disposal of carbon dioxide- Final report[R]. Keyworth, Nottingham: British Geological Survey, 1996.
    [49] Li X, Koide H, Ohsumi T, et al. Mechanical Stability of the Potential CO2 Sequestration Sites in Japan[J]. 2003: 501-506.
    [50] 金山词霸金山软件股份有限公司. 国际标准汉字大词典[DB/CD]. 2006.
    [51] 章梦涛,潘一山,梁冰等. 煤岩流体力学[M]. 北京: 科学出版社, 1995.
    [52] 王淑坤, 张万斌. 复合模型力学性质试验研究[J]. 矿山压力与顶板管理. 1994(1): 51-54.
    [53] 潘结南. 煤岩单轴压缩变形破坏机制及与其冲击倾向性的关系[J]. 煤矿安全. 2006, 37(8): 1-4.
    [54] 齐庆新. 煤的直接单轴拉伸特性的试验研究[J]. 煤矿开采. 2001(4): 15-18.
    [55] 吴立新, 王金庄. 煤岩流变特性及其微观影响特征初探[J]. 岩石力学与工程学报. 1996(04).
    [56] 孟召平, 张孝文. 煤材料变形力学特性分析[J]. 焦作工学院学报. 1996, 15(4): 29-34.
    [57] 祝平. 煤岩应变软化特性与地下硐室稳定性分析[J]. 煤矿开采. 1998(2): 41-44.
    [58] 宋建国, 张英华. 煤的损伤参量与损伤特性分析[J]. 煤炭工程. 2005(1): 45-46.
    [59] 宋义敏, 董平, 潘一山. 煤体变形局部化的梯度塑性理论研究[J]. 华北航天工业学院学报. 2001(04).
    [60] 杨永杰. 煤岩强度、变形及微震特征的基础试验研究[D]. 山东科技大学, 2006.
    [61] 申卫兵, 张保平. 不同煤阶煤岩力学参数测试[J]. 岩石力学与工程学报. 2000, 19(S1): 860-862.
    [62] 尤明庆. 岩样三轴压缩的破坏形式和 Coulomb 强度准则[J]. 地质力学学报. 2002, 8(2): 179-185.
    [63] 曹树刚. 煤岩的广义弹粘塑性模型分析[J]. 煤炭学报. 2001, 26(4): 364-369.
    [64] 曹树刚, 鲜学福. 煤岩蠕变损伤特性的实验研究[J]. 岩石力学与工程学报. 2001, 20(6): 817-821.
    [65] 曹树刚, 边金, 等. 岩石蠕变本构关系及改进的西原正夫模型[J]. 岩石力学与工程学报. 2002, 21(5): 632-634.
    [66] 王佑安等. 在瓦斯介质中煤的强度减低及变形的初步研究[R]. 北京矿务局, 1964.
    [67] 游木润. 甲烷对煤的变形特征和应力特征的影响[D]. 中国矿院, 1984.
    [68] 林柏泉, 周世宁. 含瓦斯煤体变形规律的实验研究[J]. 中国矿业大学学报. 1986(03): 9-16.
    [69] 姚宇平, 周世宁. 含瓦斯煤的力学性质[J]. 中国矿业大学学报. 1988(01): 1-7.
    [70] 姚宇平. 吸附瓦斯对煤的变形及强度的影响[J]. 煤矿安全. 1988(12): 37-41.
    [71] 靳钟铭, 赵阳升. 含瓦斯煤层力学特性的实验研究[J]. 岩石力学与工程学报. 1991, 10(3): 271-280.
    [72] 赵阳升. 煤体与瓦斯一相介质藕合作用的研究[D]. 上海: 同济大学, 1992.
    [73] 赵阳升, 胡耀青. 孔隙瓦斯作用下煤体有效应力规律的实验研究[J]. 岩土工程学报. 1995, 17(3): 26-31.
    [74] 孙培德, 钱耀敏. 煤体有效应力规律的实验研究[J]. 矿业安全与环保. 1999(2): 16-18.
    [75] 许江, 鲜学福. 含瓦斯煤的力学特性的实验分析[J]. 重庆大学学报:自然科学版. 1993, 16(5): 42-47.
    [76] 梁冰, 王泳嘉. 含瓦斯煤的内时本构模型[J]. 岩土力学. 1995, 16(3): 22-28.
    [77] 卢平, 朱贵旺, 等. 含瓦斯煤的有效应力与力学变形破坏特性[J]. 中国科学技术大学学报. 2001, 31(6): 686-693.
    [78] 吴世跃, 赵文, 郭勇义. 煤岩体吸附膨胀变形与吸附热力学的参数关系[J]. 东北大学学报:自然科学版. 2005, 26(7): 683-686.
    [79] 吴世跃, 赵文. 含吸附煤层气煤的有效应力分析[J]. 岩石力学与工程学报. 2005, 24(10): 1674-1678.
    [80] B B B, C P J. Instantaneous outbursts in underground coal mines : An overview and association with coal type[J]. International journal of coal geology. 1998, 35(1-4):27-55.
    [81] Ettinger, I.l., Lamba E G. Gas medium in coal-breaking processes[J]. Fuel. 1957, 36(3): 298-306.
    [82] Vinokurova, E.b., Bogomolova, L.i., Ketslakh, A.i.,kontorovich S. Crushing of gas-saturated anthracites[J]. Colloid J. USSR. 1988, 50(1): 112-114.
    [83] 李中成. 关于煤巷掘进工作面与瓦斯突出机理的探讨[J]. 1987, 12(1).
    [84] Soviet Mining Science. 1986 (7): 458-460.
    [85] Aziz, N.i., Ming-li W. The effect of sorbed gas on the strength[J]. Geotech. Geolog. Eng. 1999, 17(3-4): 387-402.
    [86] Viete D R, Ranjith P G. The effect of CO2 on the geomechanical and permeability behaviour of brown coal: Implications for coal seam CO2 sequestration[J]. International Journal of Coal Geology. 2006, 66(3): 204-216.
    [87] Viete D R, Ranjith P G. The mechanical behaviour of coal with respect to CO2 sequestration in deep coal seams[J]. Fuel. 2007, 86(17-18): 2667-2671.
    [88] Wang G X, Wang Z T, Rudolph V, et al. An analytical model of the mechanical properties of bulk coal under confined stress[J]. Fuel. 2007, 86(12-13): 1873-1884.
    [89] 张群. 煤层气储层数值模拟模型及应用的研究[D]. 煤炭科学研究总院, 2003.
    [90] King, G. R. And Ertekin T. A survey of mathematical models related to methane production from coal seams, part 1: empirical and equilibrium sorption model[C]. University of Alabama/Tuscaloosa: 1989.
    [91] King, G. R. And Ertekin T. A survey of mathematical models related to methane production from coal seams, part 2: Non-equilibrium Symposium sorption models[C]. University of Alabama/Tuscaloosa: 1989.
    [92] X.r. Wei, G.x. Wang, P. Massarotto, S.d. Golding A V R. A Review on Recent Advances in the Numerical Simulation for Coalbed Methane[J]. SPE Reservoir Evaluation & Engineering. 2007, 10(6): 657-666.
    [93] Manik. J, T.Ertekin, and Kohler, T. E. Development and validation of a compositional coalbed simulator[J]. Journal of Canadian Petroleum Technology. 2002, 41(4): 39-45.
    [94] Law, D. H.-s., Van Der Meer, L. G. H., Gunter W D. Numerical Simulator Comparison Study for Enhanced Coalbed Methane Recovery Processes, Part I: Pure Carbon Dioxide Injection[C]. Alberta, Canada: 2002.
    [95] Law, D.H.-S., van der Meer, L.G.H. and Gunter, W.D.. Modelling of Carbon Dioxide Sequestration in Coalbeds: A Numerical Challenge[C]. Cairns, Australia,: 2000.
    [96] Wei X R, Wang G X, Massarotto P, et al. Numerical simulation of multicomponent gas diffusion and flow in coals for CO2 enhanced coalbed methane recovery[J]. Chemical Engineering Science. 2007, 62(16): 4193-4203.
    [97] Settari, A. and H.S. Price. Simulation of hydraulic fracturing in low permeabilityreservoirs[J]. Soc. Petr. Eng. J. 1984(24): 141-150.
    [98] Chen, H. Y. And Teufel L W. Coupling fluid-flow and geomechanics in dual-porosity modeling of naturally fractured[C]. San Antonio. Texas. U.S: 1997.
    [99] Chin.L.Y Raghavan, R., and Thomas, L. K.. Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability[C]. Beijing, China: 1998.
    [100] Seeburger D A, Nur A. Pore space model for rock permeability and bulk modulus[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1989, 89(NB1): 527-536.
    [101] Lin. L. J. and Ma. F. water-gas flow and production[C]. 2001.
    [102] Harpalani, S. And Schraufnagel R A. Influence of Matrix Shrinkage and Compressibility on Gas Production from Coalbed Methane Reservoirs[C]. New Orleans, LA: 1990.
    [103] Sawyer, W. K., Paul, G. W., And Schraufnagel R A. Development and Application of a 3D Coalbed Simulator[C]. CIM, Calgary: 1990.
    [104] Robertson E P, Christiansen R L. A Permeability Model for Coal and Other Fractured, Sorptive-Elastic Media[C]. Canton, OH: 2006.
    [105] Shi J Q, Durucan S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE (Society of Petroleum Engineers) Reservoir Evaluation and Engineering. 2005, 8(4): 291-299.
    [106] 孙可明. 低渗透煤层气开采与注气增产流固耦合理论及其应用[D]. 辽宁工程技术大学, 2004.
    [107] 徐剑良. 煤层气渗流过程中流固耦合问题的研究[D]. 西南石油学院, 2003.
    [108] 刘建军, 刘先贵. 煤储层流固耦合渗流的数学模型[J]. 焦作工学院学报. 1999, 18(6): 397-401.
    [109] 文成杨. 双重介质气藏流固耦合数值模拟研究[D]. 西南石油学院, 2006.
    [110] 周志军. 低渗透储层流固耦合渗流理论及应用研究[D]. 大庆石油学院, 2003.
    [111] 阳仿勇. 变形介质气藏流固耦合渗流理论及应用研究[D]. 西南石油学院, 2006.
    [112] Guoxiang Liu A V S. Numerical Modeling of CO2 Sequestration in Coal-Beds with Variable Saturation on COMSOL[C]. Boston: 2007.
    [113] Shi J Q, Durucan S, Fujioka M. A reservoir simulation study of CO2 injection and N2 flooding at the Ishikari coalfield CO2 storage pilot project, Japan[J]. International Journal of Greenhouse Gas Control. 2008, 2(1): 47-57.
    [114] 张群, 李建武, 等. 高煤级煤的煤层气开发潜力——以沁水煤田为例[J]. 煤田地质与勘探. 2001, 29(6): 26-30.
    [115] Harpalani, S., And Schraufnagel R. Shrinkage of Coal Matrix with Release of Gas and its Impact on Permeability of Coal[J]. Fuel. 1990, 69: 551-556.
    [116] 陈鹏. 中国煤炭性质、分类和利用[M]. 北京: 化学工业出版社, 2001.
    [117] 俞启香. 矿井瓦斯防治[M]. 徐州: 中国矿业大学出版社, 1993.
    [118] 桑树勋, 朱炎铭, 张时音. 煤吸附气体的固气作用机理(Ⅰ)——煤孔隙结构与固气作用[J]. 天然气工业. 2005, 25(1): 13-15.
    [119] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报. 2001, 26(1): 40-44.
    [120] 郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报. 1987, 12(04).
    [121] 吴俊, 金奎励, 童有德等. 煤孔隙理论及在瓦斯突出和抽放评价中的应用[J]. 煤炭学报. 1991, 16(03).
    [122] 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报. 2001, 26(5): 552-556.
    [123] A R M. Coal Stracture.[M]. New York: 1982.
    [124] 彼特罗. 煤矿沼气涌出[M]. 北京: 煤炭工业出版社, 1982.
    [125] 吴俊. 煤表面能的吸附法计算及研究意义[J]. 煤田地质与勘探. 1994, 22(2): 18-23.
    [126] ApyHhAT 等. 突出发展过程中煤甲烷固溶体吸附[J]. 煤矿安全译丛. 1984(1)
    [127] 孙培德. 煤与甲烷气体相互作用机理的研究[J]. 煤. 2000, 9(1): 18-21.
    [128] 鲜学福,杨明莉. 我国煤层气开发基础研究方面的一些进展与展望[J]. 中国科学技术大学学报. 2004, 34(S1).
    [129] 曾凡桂,郝玉英,赵玉兰,孟亮. 煤吸附的高分子溶液理论[J]. 煤炭转化. 1995, 18(04): 31-37.
    [130] 朱连山. 瓦斯在煤层中的赋存状态[J]. 矿业安全与环保. 1983(01).
    [131] BB 霍多特. 煤与瓦斯突出[M]. 中国工业出版社, 1966.
    [132] .K.科留金. 论突出的本质[M]. 国外煤和瓦斯突出资料汇编(一), 1978.
    [133] A 艾鲁尼,Ba 鲍宾 Aa 高尔是洛夫. 煤体中 CH4 与 CO2 平衡吸附实验数据分析[J]. Soviet Mining Science. 1986(3): 246-253.
    [134] 崔永君. 煤对 CH4、N2、CO2 及多组分气体吸附的研究[D]. 煤炭科学研究总院, 2004.
    [135] B. M. Krooss, F. Van Bergen, Y. Gensterblum et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology. 2002, 51(2): 69-92.
    [136] 张庆玲, 张群, 崔永君等. 煤对多组分气体吸附特征研究[J]. 天然气工业. 2005, 25(01): 57-60.
    [137] Busch A, Gensterblum Y, Krooss B M. Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures[J]. International Journal of Coal Geology. 2003, 55(2-4): 205-224.
    [138] Harpalani. Study of coal sorption isotherms using a multicomponent gas mixture[C]. Tuscaloosa, Alabama: 1993.
    [139] 张力, 何学秋, 王恩元等. 煤吸附特性的研究[J]. 太原理工大学学报. 2001(05).
    [140] 王剑光, 佘小广. 注气驱替煤层气机理研究[J]. 中国煤炭. 2004, 30(12): 44-46.
    [141] 聂百胜, 段三明. 煤吸附瓦斯的本质[J]. 太原理工大学学报. 1998, 29(4): 417-421.
    [142] Reucroft P J, Patel H. Gas-induced swelling in coal[J]. Fuel. 1986, 65(6): 816-820.
    [143] Reucroft, P.J, Sethuraman A R. Effect of pressure on carbon dioxide induced coal swelling[J]. Energy Fuels. 1987(1): 72-75.
    [144] Walker, P.L., Verma, S.K., Rivera-Utrilla, J., Khan, M.R.. A direct measurement of expansion in coals and macerals induced by carbon dioxide and methanol[J]. Fuel. 1988(67): 719-726.
    [145] Levine J R. Model study of influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J]. Coalbed Methane and Coal Geology,Geological Society Special Publication. 1996(109): 197-212.
    [146] Mazumder, S., Siemons, N., Wolf K H. Differential swelling and permeability change of coal in response to CO2 injection for enhanced coalbed methane[C]. Tuscaloosa: 2006.
    [147] Siemons N, Busch A. Measurement and interpretation of supercritical CO2 sorption on various coals[J]. International Journal of Coal Geology. 2007, 69(4): 229-242.
    [148] John W. Larsen, Robert A. Flowers, Ii A P J H. Structural Rearrangement of Strained Coals[J]. Energy Fuels. 1997, 11(5): 998-1002.
    [149] Ceglarska-stefanska G, Czaplinski A. Correlation between sorption and dilatometric processes in hard coals[J]. Fuel. 1993, 72(3): 413-417.
    [150] Karacan C O. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection[J]. Energy Fuels. 2003, 17(6): 1595-1608.
    [151] Karacan, Mitchell G D. Behavior and effect of different coal microlithotypes during gas transport for carbon dioxide sequestration into coal seams[J]. International Journal of Coal Geology. 2003, 53(4): 201-217.
    [152] Day, Stuart; Fry, Robyn; Sakurovs, Richard. Swelling of Australian coals in supercritical CO2[J]. International Journal of Coal Geology. 2008, 74(1): 41-52.
    [153] Kelemen, S.R., Kwiatek, L.M.. Physical properties of dry block Argonne premium bituminous coal related to CO2, CH4 and N2 adsorption[C]. Tuscaloosa: 2007.
    [154] 张遂安. 有关煤层气开采过程中煤层气解吸作用类型的探索[J]. 中国煤层气. 2004, 1(1): 26-28.
    [155] 周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报. 1990, 15(1): 15-24.
    [156] 马志宏, 郭勇义, 等. 注入二氧化碳及氮气驱替煤层气机理的实验研究[J]. 太原理工大学学报. 2001, 32(4): 335-338.
    [157] 于洪观, 范维唐, 孙茂远等. 煤对 CH4/CO2 二元气体等温吸附特性及其预测[J]. 煤炭学报. 2005, 30(5): 618-622.
    [158] 唐书恒, 马彩霞, 叶建平. 注二氧化碳提高煤层甲烷采收率的实验模拟[J]. 中国矿业大学学报. 2006, 35(5): 607-611.
    [159] 唐书恒, 杨起, 等. 注气提高煤层甲烷采收率机理及实验研究[J]. 石油实验地质. 2002, 24(6): 545-549.
    [160] Coussy O. Mechanics of porous continua[M]. Chichester ;: Wiley,, 1995: 455.
    [161] 冉启全, 李士伦. 流固耦合油藏数值模拟中物性参数动态模型研究[J]. 石油勘探与开发. 1997, 24(3): 61-65.
    [162] 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展:A 辑. 2003, 18(4): 419-426.
    [163] 付玉, 郭肖, 贾英. 煤基质收缩对裂隙渗透率影响的新数学模型[J]. 天然气工业. 2005, 25(2): 143-145.
    [164] Palmer, I. And Mansoori J. How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model[C]. Denver, CO: 1996.
    [165] Pekot L J, S Reeves R. Modeling coal matrix shrinkage and differential swelling with CO2 injection for enhanced coalbed methane recovery and carbon sequestration applications[R]. Advanced Resources International. U.S.D.epartment of Energy, 2002.
    [166] Scherer. Dilateon of porous glass[J]. Journal of the American Ceramic Society. 1986, 69(6): 473-480.
    [167] Bentz, D.P., Garboczi, E.J., Quenard, D.A. MODELING DRYING SHRINKAGE IN RECONSTRUCTED POROUS MATERIALS:appilication to porous Vycor glass[J]. Modelling Simul.Mater. Sci. Eng. 1998, 6: 211-236.
    [168] 杨永杰. 煤岩强度、变形及微震特征的基础试验研究[J]. 岩石力学与工程学报. 2006(08).
    [169] 张学言,闫澎旺. 岩土塑性力学基础[M].. 天津: 天津大学出版社, 2006.
    [170] 黄文熙濮家骝,陈愈炯. 土的硬化规律和屈服函数[J]. 岩土工程学报. 1981, 3(3).
    [171] 黄文熙. 硬化规律对土的弹塑性应力-应变模型影响的研究[J]. 岩土工程学报. 1980, 2(1).
    [172] 黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983.
    [173] 章梦涛,潘一山梁冰等. 煤岩流体力学[M]. 北京: 科学出版社, 1995.
    [174] 缪协兴, 杨成永. 膨胀岩体中的湿度应力场理论[J]. 岩土力学. 1993, 14(4): 49-55.
    [175] M G. Design methods for structure in swelling rock[J]. International Society of Rock Mechanics. 1975(6): 377-381.
    [176] Wittke W, Pierau B. Foundation for the design and construction of tunnel in swelling rock[C]. Switzerland: 1979.
    [177] 缪协兴. 用湿度应力场理论解圆形硐室遇水作用问题[J]. 岩土工程学报. 1995, 17(5): 86-90.
    [178] 缪协兴. 用湿度应力场理论分析膨胀岩巷道围岩变形[J]. 中国矿业大学学报. 1995, 24(1): 58-63.
    [179] 卢爱红, 茅献彪. 湿度应力场的数值模拟[J]. 岩石力学与工程学报. 2002, 21(A02): 2470-2473.
    [180] 缪协兴, 茅献彪, 卢爱红. 湿度应力场理论在软岩巷道围岩稳定性控制中的应用[J]. 矿山压力与顶板管理. 2002, 19(3): 1-2.
    [181] 缪协兴,陈志达. 湿度应力场理论的耦合方程[J]. 力学与实践. 1995, 17(6): 22-24.
    [182] 朱珍德, 张爱军, 张勇. 基于湿度应力场理论的膨胀岩弹塑性本构关系[J]. 岩土力学. 2004, 25(5): 700-702.
    [183] 谈慕华,黄蕴元. 表面物理化学[M]. 北京: 中国建筑工业出版社, 1985.
    [184] 钟玲文, 张慧, 等. 煤的比表面积 孔体积及其对煤吸附能力的影响[J]. 煤田地质与勘探. 2002, 30(3): 26-28.
    [185] 崔永君, 张群, 张泓. 不同煤级煤对 CH4、N2 和 CO2 单组分气体的吸附[J]. 天然气工业. 2005, 25(1): 61-65.
    [186] 何学秋, 王恩元. 孔隙气体对煤体变形及蚀损作用机理[J]. 中国矿业大学学报. 1996, 25(1): 6-11.
    [187] 郑颖人,沈珠江,龚晓楠. 岩土塑性力学原理-广义塑性力学[M]. 北京: 中国建筑工业出版社, 2002.
    [188] 屈智炯. 土的塑性力学[M]. 成都: 成都科技大学出版社, 1987.
    [189] 王仁, 黄克智,朱兆祥. 塑性力学进展[M]. 北京: 中国铁道出版社, 1988.
    [190] 史永胜, 曾红春, 郑宏. 多强度参数屈服面的各向同性强化规律[J]. 2003, 22(S1): 2168-2172.
    [191] 匡震邦. 非线性连续介质力学基础[M]. 西安: 西安交通大学出版社, 1989.
    [192] 黄筑平. 连续介质力学基础[M]. 北京: 高等教育出版社, 2003.
    [193] 秦理曼. 基于能量耗散的土的本构关系研究[D]. 大连理工大学, 2006.
    [194] Ziegler H. An introduction to thermomechanics[M]. Amsterdam: North-Holland Pub. Co, 1983.
    [195] Houlsby.G.T. A study of plasticity theories and their application to soils[D]. Cambridge: University of Cambridge, 1981.
    [196] I. F. Collins and G. T. Houlsby. Application of Thermomechanical Principles to the Modelling of Geotechnical Materials[J]. Mathematical, Physical and Engineering Sciences. 1997, 453(1964): 1975-2001.
    [197] Houlsby.G.T,Puzrin A M.. A thermomechanical framework for constitutive models for rate-independent dissipative materials[J]. International Journal of Plasticity. 2000(16): 1 017-1 047.
    [198] Collins. I. F. A systematic procedure for constructing critical state models in three dimensions[J]. International Journal of Solids and Structures. 2003, 40(8): 4379-4397.
    [199] F.Collins,The concept of stored plastic work or frozen elastic energy in soil mechanics[J]. Géotechnique. 2005, 55(5):373-382.
    [200] Collins.I.F,Hilder T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics. 2002, 26(11): 1313-1347.
    [201] 姜礼尚,陈亚浙,刘西垣等. 数学物理方程讲义(第二版)[M]. 北京: 高等教育出版社, 1996.
    [202] 袁益让. 多孔介质中可压缩可混溶驱动问题的特征—有限元方法[J]. 计算数学. 1992, 14(04): 385-399.
    [203] 胡健伟, 汤怀民. 微分方程数值方法[M]. 北京: 科学出版社, 1999.
    [204] 朱以文, 蔡元奇, 李伟. 等参元逆变换算法在渗流-位移耦合场分析中的应用[J]. 计算力学学报. 2002(02).
    [205] 刘光廷, 高政国. 三维凸型混凝土骨料随机投放算法[J]. 清华大学学报:自然科学版. 2003, 43(8): 1120-1123.
    [206] 李春光 郑宏 葛修润 王水林.六面体单元等参逆变换的一种迭代解法[J].岩土力学,2004,25(7):1050-1052.
    [207] Li Q, Wu Z, Bat Y, et al. Thermo-hydro-mechanical modeling of CO2 sequestration system around fault environment[J]. Pure and Applied Geophysics. 2006, 163(11): 2585-2593.
    [208] 练章华, 王钢, 何明烛, 等. 套管变形的计算机仿真[J].石油钻采工艺, 1994, 16(3): 21-30.
    [209] 宋明, 杨凤香, 宋胜利, 等. 固井水泥环对套管承载能力的影响规律[J]. 石油钻采工艺. 2002, 24(4): 7-10.
    [210] 李军, 陈勉, 张辉, 等. 不同地应力条件下水泥环形状对套管应力的影响[J]. 天然气工业. 2004, 24(8): 50-53.
    [211] Pekot L J, S Reeves R. Modeling coal matrix shrinkage and differential swelling with CO2 injection for enhanced coalbed methane recovery and carbon sequestration applications[R]. Advanced Resources International.
    [212] 林凯, 杨龙, 史交齐. 水泥环对套管强度影响的理论和试验研究[J]. 石油机械. 2004, 32(5): 13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700