活性炭对有机气体的选择性吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过选用三种商业颗粒活性炭为吸附剂,以甲苯、丙酮、甲苯、甲醇和1,2-二氯乙烷五种有机气体为吸附质,进行单组份固定床恒温吸附实验,关联分析活性炭物性和吸附质物性对吸附行为的影响。同时,进行了甲苯和丙酮、甲醇和1,2二氯乙烷的双组份混合吸附实验,探讨了活性炭的选择吸附及吸附质的竞争吸附机制。主要研究内容及结论包括:
     (1)选用三种活性炭为吸附剂,对其比表面积、孔容、孔结构及表面官能团等物性进行了测试,并以甲苯、丙酮、二甲苯、甲醇和1,2二氯乙烷五种有机气体为吸附质,进行单组份固定床恒温吸附实验。结果显示,活性炭自身物性存在一定差异;对不同吸附质在同一活性炭上的吸附,吸附量、穿透时间及吸附饱和时间均不同;对同一吸附质而言,在不同活性炭上吸附行为同样存在差异。
     (2)结合活性炭物性与吸附实验结果,分析活性炭比表面积、孔容及孔结构、表面官能团对有机气体吸附行为的影响。结果表明,活性炭比表面积及孔容与吸附量不存在明显相关性。物理结构参数中,孔结构是影响其吸附性能的关键参数;而活性炭表面不同类型官能团的存在将对吸附质产生不同的吸附作用效果。
     (3)关联分析吸附质物性与其在活性炭上的吸附行为,得出活性炭的饱和吸附量随着吸附质分子量、分子动力学直径、沸点的增大而增大;活性炭的饱和吸附量随着吸附质分子极性、饱和蒸汽压的增大而减小;活性炭的饱和吸附量与吸附质的熔点和密度关联不大。
     (4)双组份吸附实验表明,活性炭对甲苯和1,2二氯乙烷表现出选择吸附特性。选择与竞争吸附会基于活性炭物性及吸附质物性的差异产生无效吸附孔段、单组份选择吸附孔段、双组份竞争吸附段、通道孔段。竞争吸附段为吸附主体区,竞争机制主要包括孔径堵塞竞争、有效吸附中心直接竞争、取代吸附竞争三种竞争形式。吸附能在一定程度上反应了活性炭对吸附质的选择吸附强度,吸附能大的吸附质在竞争吸附中占有优势。通过吸附能计算表明,活性炭对甲苯的吸附能大于丙酮,对1,2二氯乙烷的吸附能大于甲醇。
Single-component fixed-bed thermostatic adsorption experiments and correlation analysis on the effect of activated carbon and adsorbate properties on adsorption behavior were conducted, where three kinds of granular activated carbons acted as adsorbent, toluene, acetone, xylene, methanol and 1,2-dichloroethane acted as adsorbate. Besides, two component adsorption experiments were also carried out with toluene, acetone and 1,2-dichloroethane, then the mechanism of selective adsorption and competitive adsorption were analyzed.
     (1)Three types of activated carbon were chosen as adsorbents. Their surface area, pore volume, pore structure and surface functional groups were tested, while single-component fixed-bed thermostatic adsorption experiments were conducted using five organic gases, including toluene, acetone, xylene, methanol and 1,2-dichloroethane, as adsorbate. The results showed that there existed diversity of activated carbon property; as for different adsorbate, the adsorption capacity, breakthrough time and saturation time on the same activated carbon were various; when it came to different activated carbon, the adsorption behavior of the same adsorbate was also diverse.
     (2)Combined with activated carbon properties and experimental results, the influence of activated carbon surface area, pore volume, pore structure and surface functional groups on the adsorption behavior were analyzed. The results showed that there was no obvious correlation between specific surface area, pore volume and adsorption capacity; the key parameter affected adsorption properties was pore structure; different types of surface functional groups had different effects on the adsorption for adsorbate.
     (3) Correlation analysis between adsorbate properties and adsorption behavior on activated carbon was conducted. It was illustrated that saturated adsorption capacity increased with adsorbat molecular weight, molecular dynamics diameter and boiling point increased; while decreased with adsorbat molecular polarity and vapor pressure increased; there was no obvious correlation between saturated adsorption capacity and adsorbat melting point and density.
     (4) Two-component experiments demonstrated that the adsorption for toluene and 1,2-dichloroethane showed preferential adsorption. Based on the difference of activated carbon and adsorbate properties, preferential adsorption and competitive adsorption could give rise to invalid pore interval, one-component selective adsorption pore interval, two-component selective adsorption pore interval and channel pore interval. Selective adsorption stage was the body zone, the mechanism of competitive adsorption mainly included pore diameter banked-up competition, effective absorption center competition and vicarious absorption competition. Adsorption energy could reflect selective adsorption strength of activated carbon to a certain extent; larger adsorption energy adsorbate was more favorable during competitive adsorption. Adsorption energy calculation showed that activated carbon adsorption energy for toluene was higher than that for acetone, while for 1,2-dichloroethane was higher than that for methanol.
引文
[1]De Nevers, Noel. Air pollution control engineering[M]. New York: McGraw-Hill,1995:1-55.
    [2]George Tchobanoglous, Franklin L. Burton, H. David Stensel. Wastewater engineering:treatment and reuse[M]. New York:McGraw-Hill,1991:1-50.
    [3]国家环境保护局.大气污染物综合排放标准详解[M].北京:中国环境科学出版社,1997:1-13.
    [4]梁大明.中国煤质活性炭[M].北京:化学工业出版社,2008:1-121.
    [5]付献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990:949-951.
    [6]谢裕坛.活性炭吸附治理多组分有机废气研究[D].杭州:浙江大学,2002:57-58.
    [7]Villacanas F, Pereira MFR, Orfao JJM., et al. Adsorption of simple aromatic compounds on activated carbons[J]. Journal of Colloid and Inter face Science, 2006,293(1):128-136.
    [8]Joong S N, Schwarz J A. Effect of HNO3 treatment on the surface acidity of activated carbons[J]. Carbon,1990,28(5):675-682.
    [9]汤进华,梁晓怿,龙东辉.活性炭孔结构和表面官能团对吸附甲醛性能影响[J].碳素技术,2007,26(3):21-25.
    [10]高德霖,孙小玉.活性炭纤维和微孔吸附的容积充填理论[J].精细化工原料及中间体,2003,(9):2-5.
    [11]Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J]. Carbon, 2005,43(8):1758-1767.
    [12]Yu-Chun Chiang, Pen-Chi Chiang, Chin-Pao Huang. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon,2001, 39(4):523-534.
    [13]王玉新,苏伟,周亚平.不同结构的活性炭对CO2、CH4、N2及O2吸附分离性能[J].化工进展,2009,28(2):206-209.
    [14]Daley MA, Tandon D, Economy J, et al. Elucidating the porous structure of activated carbon fibers using direct and indirect methods[J]. Carbon,1996, 34(10):1191-2000.
    [15]Newcombe G, Drikas M, Hayes R. Influence of characterized natural organic matter on activated carbon adsorption:Ⅱ. Effect on pore volume distribution and adsorption of 2-methylisoborneol[J].Water Research,1997, 31(5):1065-1073.
    [16]Kenneth S.W. Sing. Physisorption of nitrogen by porous materials[J]. Journal of Porous Mater,1995,2(1):5-8.
    [17]Song Yan, Qiao Wen-ming, Seong Ho Yoon, et al. Toluene adsorption on various activated carbons with different pore structures[J]. New Carbon Material,2005,20(4):294-297.
    [18]Liu Jun-li, Han Xue-wen, Shi Yin-rui. Study on Microstructure of Activated Carbon for Acetone Recovery[J]. Chemistry and Industry of Forest Products, 2003,23(1):55-58.
    [19]Virote Boonamnuayvitaya, Srisuda Sae-ung, Wiwut Tanthapanichakoon. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J]. Separation and Purification Technology,2005,42(2):159-168.
    [20]Ana Ma Silvestre-Albero, Anass Wahby, Joaqun Silvestre-Albero, et al. Carbon Molecular Sieves Prepared from Polymeric Precursors:Porous Structure and Hydrogen Adsorption Properties[J]. Industrial and Engineering Chemistry Research,2009,48 (15):7125-7131.
    [21]Lei Li, Patricia A. Quinlivan, Detlef R. U. Knappe. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J]. Carbon,2000,40(10):2085-2100.
    [22]Vivekanand Gaur, Ritesh Asthana, Nishith Verma. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O[J]. Carbon,2006,44(1):46-60.
    [23]Vivekanand Gaur, Asthutosh Sharma, Nishith Verma. Catalytic oxidation of toluene and m-xylene by activated carbon fibers impregnated with transition metals[J]. Carbon,2005,43(15):3041-3053.
    [24]HL Chiang, PC Chiang, YC Chiang, EE Chang. Diffusivity of Microporous Carbon for Benzene and Methyl.Ethyl Ketone Adsorption[J]. Chemosphere, 1999,38(12):2733-2746.
    [25]Francisco Rodriguez-reinoso. The role of carbon materials in heterogeneous catalysis[J]. Carbon,1998,36(3):159-175.
    [26]P Vinke, M van Verbree, AF Voskamp et al. Modification of the surface of gas-active carbon and a chemically activated carbon with HNO3[J]. Carbon, 1994,32(1):675-686.
    [27]白树林,赵桂英.改性活性炭对水溶液中Cr(Ⅲ)吸附的研[J].化学应用与研究,2001,13(6):21-25.
    [28]S. Giraudet, P. Pre, H. Tezel et al. Estimation of adsorption energies using physical characteristics of activated carbons and VOCs'molecular properties[J]. Carbon,2006,44(10):1873-1883.
    [29]Tsai Jiun-Horng, Chiang Hsiu-Mei, Huang Guan-Yinag et al. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers[J]. Journal of Hazardous Materials,2008,154(1):1183-1191.
    [30]Chien-Te Hsieh, Jin-Ming Chen. Adsorption Energy Distribution Model for VOCs onto Activated Carbons[J]. Journal of Colloid and Interface Science, 2002,255(2):248-253.
    [31]潘碧云,李彦旭,王军.活性炭吸附挥发性有机气体的影响因素[J].广东化工,2008,35(1):81-83.
    [32]陈秋燕,袁文辉,关建郁.影响活性炭吸附苯系物条件的研究[J].华南理工大学学报(自然科学版),2000,28(10):117-120.
    [33]Chiang Y C, Pen-C C, Huang C P. Effects of Pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon,2001,39(4):523-534.
    [34]李秉正,刘振宇,雷智平.简单芳香化合物的结构和性质对活性炭吸附行为的影响[J].燃料化学学报,2010,38(2):252-256.
    [35]Song-Woo Lee, Jae-Kee Cheon, Heung-Jai Park et al. Adsorption characteristics of binary vapors among acetone, MEK, benzene, and toluene[J]. Korean Journal of Chemical Engineering,2008,25(5):1154-1159.
    [36]陈江耀.活性半焦净化有机废气的动力学研究[D].广州:广东工业大学,2008:53-55.
    [37]陈良杰.颗粒活性炭对多组分有机气体的吸附研究[D].北京:北京化工大学,2007:43-44.
    [38]李立清,朱正双,秦映心等.两组分有机气体等温吸附模拟与传热传质分析[J].中国电机工程学报,2008,28(26):16-21.
    [39]王长林.颗粒活性炭表面改性技术净化多组分挥发性有机废气的研究[D].天津:天津大学,2004:47.
    [40]金一中,徐灏,谢裕坛.活性炭吸附苯、甲苯废气的研究[J].高校化学工程 学报,2004,18(2):258-263.
    [41]M.A. Lillo-Rodenas, A.J. Fletcher, K.M. Thomas et al. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration[J]. Carbon,2006,44(8):1455-1463.
    [42]朱正双,李立清,郜豫川等.多组分有机气体吸附性能与吸附剂选择性分析[J].天然气化工,2008,33(2):47-51.
    [43]杨通在,罗顺忠,许云书.氮吸附法表征多孔材料的孔结构[J].碳素,2006,(1):17-22.
    [44]Gong Guo-zhuo, Xie Qiang, Zheng Yan-feng et al. Regulation of pore size distribution in coal-based activated carbon[J]. New Carbon Materials,2009, 24(2):141-145.
    [45]吴明铂,查庆芳,邱介山等.PAN活性炭纤维表面结构[J].大连理工大学学报,2003,43(5):591-594.
    [46]向守信,束仁龙,饶蔚兰等.活性炭改性及其在油气分离中的应用[J].应用化工,2010,39(10):1609-1612.
    [47]Shan Xiao-mei, Zhu Shu-quan, Zhang Wen-hui. Effect of surface modification of activated carbon on its adsorption capacity for NH3[J]. Journal of China University of Mining and Technology,2008,18(2):261-265.
    [48]陈金妹,张健ASAP2020比表面积及孔隙分析仪的应用[J].分析仪器,2009,(3):61-64.
    [49]Gregg SJ, Sing KSW. Adsorption, Surface Area and Porosity,2nd Edition[M]. London:Harcourt Brace Jovanovich,1982:94-100.
    [50]Rudzinski W, Everett DH. Adsorption of Gases on Heterogeneous Surfaces[M]. London:Harcourt Brace Jovanovich,1992:257-287.
    [51]Chi-Yuan Lu, Ming-Yen Wey. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas[J]. Fuel Processing Technology,2007,88(6):557-567.
    [52]F. Cosnier, A. Celzard, G.. Furdin et al. Hydrophobisation of active carbon surface and effect on the adsorption of water[J]. Carbon,2005,43(12): 2554-2563.
    [53]刘守新,陈曦,张显权.活性炭孔结构和表面化学性质对吸附硝基苯的影响[J].环境科学,2008,29(5):1192-1196.
    [54]任爱玲,王启山,郭斌.污泥活性炭的制备、结构表征及吸附特性[J].哈尔滨工业大学学报,2007,39(6):993-996.
    [55]林倩,罗新兵,杨文渊等.用于低度白酒的活性炭孔隙结构及表面化学性质的分析与表征[J].酿酒科技,2007,(8):101-104.
    [56]李立清,秦映心,王大伟等.丙酮在活性炭上的脱附实验和数值模拟[J].中国电机工程学报,2010,30(2):77-85.
    [57]魏文德.有机化工原料大全[M].北京:化学工业出版社,1999:203-254.
    [58]陈冠荣.化工百科全书(1)[M].北京:化学工业出版社,1995:10-910.
    [59]周学良,王琪,陶洛彬.精细化工产品手册一常用试剂与高纯物[M].北京:化学工业出版社,2002:50-600.
    [60]Allan F. M. Barton. Handbook of solubility parameters and other cohesion parameters, second edition[M]. Boca Raton:CRC Press,1991:304-508.
    [61]Y. Marcus. The properties of solvents (Wiley series in solution chemistry)[M]. New York:Wiley,1998:256-435.
    [62]Kateina Mastovska, Steven J. Lehotay. Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues [J]. Journal of Chromatography A,2004,1040(2):259-272.
    [63]刘守新,陈孝云,陈曦等.表面酸碱2步改性对活性炭吸附Cr(Ⅵ)的影响[J].环境科学,2005,26(6):89-93.
    [64]金燕,蒋文举,江霞等.微波加热对活性炭表面基团及其对S02吸附性能的影响[J].环境污染治理技术与设备,2003,4(4):35-38.
    [65]李平,修国华.活性炭纤维填充床内多组分竞争吸附[J].化工学报,2001,52(11):987-992.
    [66]庞丽萍,王浚.活性炭床多组分竞争吸附数值方法研究[J].系统仿真学报,2005,17(9):2104-2107.
    [67]朱正双.吸附和变压吸附多组分有机气体的实验与模拟研究[D].长沙:中南大学,2008:15-45.
    [68]辜敏,陈昌国,鲜学福.Langmuir方程在变压吸附过程中的应用[J].广东化工,2002,7(1):29-32.
    [69]Qiuli Lu, George A. Sorial. The role of adsorbent pore size distribution in multicomponent adsorption on activated carbon[J]. Carbon,2004,42(15): 3313-3142.
    [70]Hadas Abir, Moshe Sheintuch. Atomistic calculation of adsorption in activated carbon with pore-size distribution[J]. Journal of Colloid and Interface Science, 2010,342(2):445-454.
    [71]Thanh X. Nguyen, Nathalie Cohaut, Jun-Seok Bae et al. New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse monte carlo simulation[J]. Langmuir,2008,24(15):7912-7922.
    [72]傅成诚,梅凡民,周亮.改性活性炭对氨气吸附性能的研究[J].纺织高校基础科学学报,2009,22(3):386-389.
    [73]陈孝云,林秀兰,魏起华等.活性炭表面化学改性及应用研究进展[J].科学技术与工程,2008,8(19):5463-5467.
    [74]C. Pelekani, V.L. Snoeyink. Competitive adsorption in natural water:role of activated carbon pore size[J]. Water Research,1999,33(5):1209-1219.
    [75]Costas Pelekani, Vernon L. Snoeyink. Competitive adsorption between atrazine and methylene blue on activated carbon:the importance of pore size distribution[J].Carbon,2000,38(10):1423-1436.
    [76]Seyed A. Dastgheib, Tanju Karanfil. The effect of the physical and chemical characteristics of activated carbons on the adsorption energy and affinity coefficient of Dubinin equation[J]. Journal of Colloid and Interface Science, 2005,292(2):312-321.
    [77]G.O. Wood. Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations. A review with compilations and correlations[J]. Carbon,2001,39(3): 343-356.
    [78]Jufang Wu, Marianne E. Stromqvist, Ola Claesson et al. A systematic approach for modeling the affinity coefficient in the Dubinin-Radushkevich equation[J]. Carbon,2002,40(14):2587-2596.
    [79]岑泽文,曾汉才,张鹏宇等PAN-ACF表面物化特性及其吸附能[J].电力环境保护,2004,20(3):57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700