煤岩多孔材料的显微结构特征和吸附性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文把煤作为一种特殊的多孔材料和吸附材料,对煤层的显微结构进行系统研究及其气体吸附性初步探讨,对认识煤的储气特征,掌握煤与瓦斯吸附放散特性,加强煤矿瓦斯治理,提高煤矿开采安全及提高对煤层气藏规律的认识,为煤层气探勘开发方面的技术进步奠定理论基础,具有重大理论和现实意义。
     基于前人在煤结构方面的研究工作,论文中对山西和顺的TC、ZB、CG、XDD四个矿区采集的33个煤样进行了偏光镜分析、扫描电镜分析、能谱分析、红外分析等。开展山西和顺地区煤岩的微观结构特征以及煤岩吸附煤层气的机理研究。从煤的孔隙、裂隙结构特性等方面揭示了含煤层气煤作为一种孔隙裂隙双重介质的特征。它决定了煤的吸附容积和煤的储存性能。微孔存在于煤基质部分。煤中割理通常正交或近似正交,垂直或近似垂直于煤层面。煤具有极其发育的微孔隙,有很大的比表面积。测试数据表明,在光学显微镜下观察到的微孔的直径一般在0.005~1.5mm之间,原生孔、外生孔、矿物质孔个别较大的,一般在1~10mm之间。而在扫描电镜更大的倍数下能观察到更小的微气孔,常见单个气孔大小为0.05~3μm。部分微孔被粘土矿物充填,成分多为伊利石、高岭石、自生石英和其他矿物等。
     不同煤种的红外特征频率测试结果基本一致,但吸收峰的位置有所变化,图谱中,方向结构、脂肪结构和含氧官能团的结构成分吸收频率近于一致,最大区别就是在相对吸收强度上有所变化。吸收强度不同,代表相应基团数目的不同,分子结构存在很大差异。煤的大分子结构中,分子组成十分复杂,煤层气气体在煤内表面的吸附是物理吸附,红外分析的结果表面煤岩内含大量有机质,煤的大分子结构里有各种官能团,这些官能团能与煤层气中的气体发生吸附。
     吸附的本质是煤表面分子和煤层气气体分子之间相互吸引的结果。比表面积的大小取决于微孔体积的大小分布的多少,与中孔的体积大小关系不明显。随后分析了煤的空隙结构与煤层气吸附性特征,孔隙平均直径越大,总比表面积越小,孔隙平均直径越小,总比表面积越大。本论文总结了煤看作特殊多孔吸附材料在特殊环境下吸附气的影响因素,并分析了实验室建立实验模型的可行性和必要性。
This paper, taking the coal as a special kind of porous and adsorption materials, The microstructure of the coal seam and the gas adsorption properties was discussed. The storage characteristics of coal gas, adsorption and desorption characteristics of coal and gas was studied again. It will do good to the safe enhancement of the coal mining and the improving acknowledge of storage characteristics. Also this will help to the development of the theory and technology, which is of great theoretical and practical significance.
     By combining the previous theory in the coal structure, analyses 33 coal samples from the four coal mines, namely, TC, ZB, CG and XDD in Heshun, Shanxi Province through various means, including polarized light microscopy, scanning electron microscopy , spectrum analysis, infrared analysis and so on. Finally, and it reveals the a double fractured porous media characteristics of coal bed methane from the coal pores, cracks structural characteristics, and so on. It determines the coal’s adsorption capacity and storage performance. Cleat in coal is usually orthogonal or nearly vertical at the coal level. The coal has great micro-pores with a very, very specific surface area. The results showed that the diameter of the micropore was at (0.005~1.5mm) through optical microscopic observation. The diameter of some larger pores, such as original pores, foreign pores and mineral pores, were between 1 to 10nm. The larger the scanning electron microscopy is, the smaller the pores could be observed. At this time, The diameter of the pores are about 0.05~3μm. Surface area depends on the size distribution of micropore volume number, and its relationship with the size of the medium hole is not obvious. Subsequently the author analyzes the coal’s gap structure and coal bed methane’s adsorption characteristics. The larger the average pore diameter, the smaller the surface area, and the smaller the average pore diameter, the larger the surface area.
     The main peaks of different coal samples in these IR spectrums were the same, but the locations of each peak were a little different from those of others. The results of the IR analysis reveal that the coal contains a lot of organic matter, and coal macromolecular structure has a variety of functional groups which can result in the adsorption of the coal bed methane gas.
     It results from the mutual attraction between the coal’s surface molecules and the coal bed methane gas molecules. The absorption frequency of direction structure, adipose structure and the structure of oxygen-containing functional groups were basically identical. However, the intensities of them are different, which indicated that they have different amount of functional groups and structures.The molecular composition in the coal’s macromolecular structure is very complex, and the adsorption of the coal bed methane gas in the inner surface is physical. This article also summarizes the influential factors of the coal’s gas-adsorption as special porous adsorbents under special circumstances and analyzes the feasibility and necessity of establishment of experimental model in the laboratory.
引文
[1]黄启翔.瓦斯压力对煤岩材料全应力-应变过程瓦斯渗透特性的影响[J].材料导报,2010,24(8):80-83.
    [2]潘振武.我国煤矿瓦斯资源及抽放概况[J],天然气工业,1989,9(5):11-16.
    [3]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [4] FLORES R M. Coalbed methane: from hazard to resource[J]. Int J Coal Geology,1998,35(1-4):3-26.
    [5] Gan H,Nandi S P,Walker P L.Nature of porosity in American coals[J].Fuel,1972,51:272-277.
    [6]陈鹏.中国煤炭性质、分类和利用[M].化学工业出版社,2005(8):106-110.
    [7]张慧,李小彦.扫描电子显微镜在煤岩学上的应用[J].电子显微学报,2004,23(4):467-467.
    [8]郭平,孙良田,孙雷,等.吸附对气藏及凝析气藏储量的影响探讨[J].西南石油学院学报,1998,20(1):29.
    [9]王明寿,汤达桢,张尚虎.煤储层孔隙研究现状及其意义[J].中国煤层气,2004,2(1):9-11.
    [10]钟玲文,张慧.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26-28.
    [11]严继民,张启元,高敬琮,等.吸附与凝聚[M].北京:科学出版社,1986.
    [12]陈昌国,鲜晓红,张代均,等.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报,1998,21(3):75-79.
    [13]张庆玲,曹利戈.煤的等温吸附测试中数据处理问题研究[J].煤炭学报,2003,28(2):131-135.
    [14] Bustin R M,Clarkson C R. Geological controls on coalbed methane reservoir capacity and gas content [J].International Journal of Coal Geology,1998,38(1-2):3-26.
    [15]巴卡耶娜.煤炭成分对煤吸附甲烷容量及其天然气含甲烷量的影响(煤层气译文辑).1980,73-88.
    [16] Clarkson C R. Bustin R M,Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin:Implications for coalbed methane potential [J].Fuel,1996,13(10):1483-1498.
    [17] Laxminarayana C, Crosdale, P J.Role of coal type and rank on methane sorption characteristics of Bowen Basion, Australia coals[J].International Journal of Coal Geology, Fuel,1999,40(4):309-325.
    [18]秦勇.中国煤层气地质研究进展与评述[J].高等地质学报,2003,9(3):365-373.
    [19]张晓东,桑树勋,秦勇等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报,2005,34(4):427-432.
    [20] Ettinger I,Zimakov B,Yanovskaya.Natural factors influencing coal sorption properties Petro-graphy and the sorption properties of coals[J].Fuel,1966(45):243-259.
    [21] Killingley J S,Levy J H,Day S J,Methane capacities of Bowen Basin coals related to coal properties [J]. Fuel,1983,76(9):813-819.
    [22]钟玲文,郑玉柱,员争荣等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报,2002,27(6):581-585.
    [23]唐书恒,汤达祯,杨起.二元气体等温吸附实验及其对煤层甲烷开发的意义[J].中国地质大学学报,2004,29(2):219-223.
    [24] Crosdale,P.J.,Beamish,B.B.,Valix,M.,1998.Coalbed methane sorption related to coal composition. International Journal of Coal Geology,35:147-158.
    [25]赵旭生,龙伍见.我国煤层气开发的现状及建议[J].中州煤炭,2001(6).
    [26]朱之培,高晋升.煤化学[M].1984.
    [27]于世友,李明富,染兆爱.图象分析系统在煤焦岩相分析中的应用[J].莱钢科技, 2005(6):80-82.
    [28]赵师庆,实用煤岩学[M].北京:地质出版社1991:15-16.
    [29]周曦亚,毕舒.无机材料显微结构分析[M].北京:化学工业出版社,2007:10-11.
    [30]琚宜文,姜波等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005.
    [31]李相臣,康毅力.煤层气储层微观结构特征及研究方法进展[J].中国煤层气.2010,7(2):14-17.
    [32]刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社.1998.
    [33] Mastalerz M, Glikson M. International Journal of Coal Geology,2000,42:207.
    [34] Mastalerz M, Bustin R M. International Journal of Coal Geology,1996,32:55.
    [35] Guo Yingting, Bustin R M. International Journal of Coal Geology,1998,36:259.
    [36] Landais P. Organic Geochemistry,1995,23(8):711.
    [37] SUN Xu-guang, CHEN Jian-ping.Acta Sediment Ologica Sinic,2002,20(4):721.
    [38] LI Rong-xi.Petroleum Geology & Experiment,2001,23(1):84.
    [39] YU Hai-yang, SUN Xu-guang. Spectroscopy and Spectral Analysis,2007,27(5):858.
    [40] Yule B L,Roberts S, Marshall J E A. Organic Geochemistry, 2000, 31:859.
    [41] Ruau O, Landais P, Gardette J L.Fuel,1997, 76(7):645.
    [42] YAO Su-ping, ZHANG Jing-rong, JIN Kui-li. Acta Sediment Ologica Sinic,1996,14(3):1.
    [43] ZHAO Shi-qing, LI Xian-qing. Coal Geology & Exploration,1995,23(3):14.
    [44] ZHENG Hong-ju,Geoscience,1994,8(2):187.
    [45] Cannon C,Sutherland G Betal.Faraday Soe,1945,41:279.
    [46]徐龙君,刘成论.用X射线和FTRI光谱研究突出区煤的结构[J].重庆大学学报(自然科学版),1999,22(4):23-27.
    [47] Gerstein B C,Ryan L M,Murphy D D.An Estimation of Average Poly nuelear Aromatie Ring Sizeinanl owa Vitrainanda Virginia Vitrain. Coal strueture ,Ameriean Chemistry Soeiety,1981,15.
    [48]舒新前,王组纳等.神府煤煤岩组分的结构特征及其差异[J]燃料化学学报,1996,24(5):426.
    [49]朱学栋等.煤中含氧官能团的红外光谱定量分析[J].燃料化学学报,1999,27(4):335.
    [50]陈莞,许学敏,高晋生.煤中氢键的研究[J].燃料化学学报,1998,26(2):140-144.
    [51]周安宁,陈邦杰,王祖侗.镜煤抽提物及残煤的FTIR-PAS研究[J].燃料化学学报,1995,23(l):99-103.
    [52]董庆年,靳国强,陈学艺.红外发射光谱法用于煤化学研究[J].燃料化学学报,2000,28(2):138-141.
    [53] Clarkson C R. Bustin R M,Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential [J].Fuel,1996,13(10):1483-1498.
    [54] Laxminara yana C, Crosdale, P J.Role of coal type and rank on methane sorption characteristics of Bowen Basion, Australia coals [J].International Journal of Coal Geology, Fuel,1999,40(4):309-325.
    [55]秦勇.中国煤层气地质研究进展与评述[J].高等地质学报,2003,9(3):365-373.
    [56] Ettinger I, Zimakov B, Yanovskaya. Natural factors influencing coal sorption properties Petro-graphy and the sorption properties of coals[J]. Fuel,1966,45:243-259.
    [57] Killingley J S,Levy J H,Day S J.Methane capacities of Bowen Basin coals related to coal properties [J]. Fuel,1983,76(9):813-819.
    [58]陈文敏,张自劭.煤化学基础[M]1993:210-213.
    [59] F.London.Z,Physik63,245(1930),Z.Physick.Chem.11,222(1930).
    [60] A. V. Kiselev , N.V. Kovaleva and Yu.S. Nkitin, J. Chromatography 58,19(1974).
    [61]谢建林.煤孔径结构以及表面特性对煤吸附甲烷性能影响的研究[D].太原:太原理工大学采矿工程,2004.
    [62]陈鲜展.立井揭突出煤层封孔测压及抽排技术研究[D].淮南:安徽理工大学,采矿工程,2009.
    [63]陈昌国,辜敏,鲜学福,煤层甲烷的吸附与解吸的研究与发展[J].中国煤层气,1998,(1):27-30.
    [64]李旭.不同变质程度煤比表面积与吸附特征关系的研究[D].北京:煤炭研究总院,安全技术及工程,2007.
    [65]桑树勋,朱炎铭,张井等.煤吸附气体的固气作用机理(Ⅱ).天然气工业,2005,25(1):16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700