轿车齿轮闭式冷精锻近/净成形关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮作为汽车的一个重要传动零件,近年来,随着汽车工业的迅速发展,对其生产技术的要求愈来愈高。冷精锻齿轮与传统加工方法生产的齿轮相比,具有节约材料、机械性能好、生产效率高等优点,是当今齿轮特别是轿车齿轮生产的发展趋势。本文围绕轿车齿轮闭式冷精锻近/净成形技术做了系统的研究。
     以避免端啮,减少震动和噪声,提高轿车直锥齿轮啮合传动平稳性为目的,研究了其修形理论和方法,给出齿向的修形量计算公式和“鼓形”修形中心位置的确定方法,同时根据啮合过程中齿轮基节的变化特点,提出确定齿顶修形量的计算方法。
     闭式冷精锻是轿车齿轮类零件的主要近/净成形技术,它既适合于传统的直锥齿轮近/净成形,也是修形的直锥齿轮近/净成形的一种理想加工工艺,因为目前尚无经济合理的精密切削加工工艺实现修形直锥齿轮的加工。采用刚粘塑性有限元法,模拟了直锥齿轮闭式冷精锻近/净成形过程,得到了金属流动和工件内部损伤值的分布规律,并预测了成形力,为近/净成形工艺优化奠定了理论基础。其成形过程显示材料首先向凹模底部流动,然后在沿径向流动的同时作反向流动,直至整个型腔充满。锻件从小端至大端其损伤值总体均呈上升趋势,而且越靠近大端,损伤值增长速度越快,而在齿顶中间部位,由于挤压过程中材料的汇聚导致损伤值分布曲线上出现较小的波峰。锻件成形过程中,从开始到凹模型腔基本充满,其载荷逐渐上升,至完全充满型腔后,载荷急剧上升,因在凹模型腔上设置了多余金属的分流腔,从而有效抑制了载荷的急剧增大。
     发明了一种闭式冷精锻专用液压模架,阐明了其基本结构和工作运动原理。设计了曲面分模和平面分模两种模具结构,并根据分流锻造原理提出了分流腔的设计原则和方法。分析了曲面分模模具的齿顶断裂和平面分模结构中凹模底部开裂原因。根据分析结果,提出了非均匀过盈预应力组合凹模新结构,并采用传统厚壁圆筒理论、Matlab编程计算和有限元相结合的方法实现了三层组合凹模进行优化设计,有效提高了模具寿命。
     提出直锥齿轮精锻模具的数字化设计与制造技术:同时,采用基体钢代替高速钢并适当降低凹模淬火硬度,使其适合于硬质合金刀具高速精密加工,成功实现了采用高速数控铣代替传统的电火花加工方法加工直齿锥齿轮精锻凹模,显著地提高模具精度和生产效率。
     在分析了螺旋圆柱齿轮结构特点的基础上,采用经典塑性成形理论和有限元数值模拟相结合的方法,对多个螺旋圆柱齿轮闭式冷精锻近/净成形方案进行了探讨,最后得出单向挤压,底部外侧分流为最佳工艺方案,以此为基础,提出了带旋转顶出机构的闭式冷精锻模具方案,为进一步研究和应用打下了理论基础。
     针对上述研究内容和结论(螺旋圆柱齿轮近/净成形除外),采用Y28-400/400数控双动液压机,对轿车直锥齿轮闭式冷精锻近/净成形工艺,精锻齿形凹模的数字化建模与制造技术,非均匀过盈预应力组合凹模及专用液压模架等,进行了详细的实验研究,充分验证这些结论的正确性。应用这些成果,在东风汽车精工齿轮厂建立了生产线,实现了轿车直锥齿轮闭式冷精锻近/净成形的批量生产,所生产的直锥齿轮超过国标GB11365-89的7级精度,齿面粗糙度Ra=0.8~0.4μm,其齿形部分不需任何机械加工就达到了直接装车使用的要求,并已创造出显著的技术经济效益。
Gears are widely used as an important part in power transmission device in car. In recent years, with the rapid development of automobile, the demand on gear's manufacturing becomes much strict. For the cold precision gear forging has a lot of advantages when compared to conventional gear shaping, such as material saving, better mechanical properties and higher productivity etc, cold precision forging has become an alternative method to conventional method in gears manufacturing. This paper studied the closed precision die forging process systematically.
     To avoid edge contact, reduce vibration and noise, increase the stability during power transmission, the gear modification theory and method were studied. The method of calculating modification quantity in teeth length direction and the method to establish the center of crown teeth face were given. Based on the character of base pitch variation during the gears working, the calculation method of modification quantity in teeth tips was obtained.
     Closed die forging is a main near/net shaped forming method for gear parts; it is the best process for producing modified bevel gears until now. Rigid-plastic Finite element method (FEA) was employed to analyze the bevel gear forging process, damage distribution was obtained and the forming load was predicted, that laid the foundation of optimizing process for bevel gear forging. FEA results show that the material flows to the bottom of the teeth cavity die first, and then it flows into the teeth cavity in radial direction until the die cavity is full filled, meanwhile, it flows backward. The damage became higher from the small end to the big end of the bevel gear. Because of the confluence of material, a small peak appears in the middle of the damage distribution curve along the teeth tip. The load keeps rising during forging, when the cavity is full filled, the load rise sharply, since the material can flows into the process compensation space, the load increase can be effectively inhibited.
     A die set for bevel gear forging was invented; its structure and principle of work were described. A curved parting-face die and a plane parting face die were designed. Based on the divided flow forging theory, principle and method for designing process compensation space was given. The fracture of the teeth tip in a curved parting.face die and the crack at the bottom corner in a plane parting face die were analyzed. According to the analysis results, a non-uniform assembled die structure was proposed. A three-layer assembled die was optimized by a combined method of classic thick-wall cylinder theory, Matlab programming and FEA, and its life was obviously increased.
     Digitized design and manufacturing technique was proposed. A matrix steel was used as die material instead of high-speed steel and the heat treatment hardness was decreased to fit the milling requirement. It is successful to use milling as an alternative method to electro-spark machining to manufacture bevel gear cavity die, which greatly increased the accuracy of the die and the manufacture efficiency.
     Based on the characters of helical gear, a number of near/net shaped forging processes were analyzed by classic plastic theory and FEA method. According to the analyse results, the single punch forging with a process compensation space at the big radii-side of the die cavity bottom were decided as the best forging case. Based on the forging characters and selected forging case a die set with a rotational reject device was designed, that laid a foundation for a further study.
     Based on the results above (except for helical gear), experiments for near/net forging of bevel gears were carried on Y28-400/400 double action press. It verified the forging process, digitized die modeling and manufacturing technique, non-uniform assembled structure die. A product line has been built in Dongfeng finished gear plant in Shiyan, the products has a better accuracy than the seventh grade of Chinese standard GB11365-89 and has a teethsurface roughness of Ra=0.4~0.8μm, the teeth can be used in car without any furthermachining, that means the cold forging technology of bevel gears is producing remarkable technical and economic benefit.
引文
[1]杨谐明.主轴主动齿轮锻造工艺[J].机械工人.热加工,1995(10):13-13
    [2]李明亮,杨永顺,王彦可.直齿圆柱齿轮挤压工艺实验[J].锻压技术,2005(6):30-32
    [3]王保民,胡赤兵,邬再新.斜齿轮数控插削加工[J].现代制造工程,2004(9):26-27
    [4]何光远.世纪之交的中国机械制造业[J].中国机械工程学会会讯,1998(1):2-9
    [5]孙艳,解滨.浅谈汽车齿轮锻造毛坯的等温正火工艺[J].长春工程学院学报(自然科学版),2004,5(1):9-11
    [6]黄纪蓉,王宝棣,温静娴.汽车斜齿轮生产工艺对其使用寿命的影响[J].电子显微学报,2006,25(B08):198-199
    [7]夏汉关,董义,黄泽培.精密锻造成形技术在汽车齿轮行业的应用(下)[J].锻造与冲压,2005(11):82-828486
    [8]夏汉关,董义,黄泽培.精密锻造成形技术在汽车齿轮行业的应用(上)[J].锻造与冲压,2005(9):40-404243
    [9]机械工业部北京机电研究所等.冷精锻和闭塞锻造成套技术产业化开发[J].1996
    [10]胡亚民,车路长.精锻成形技术现状及发展[J].锻压机械,1996,31(3):6-9
    [11]山本明,杨国彬.日本最新精密锻造产品及工艺[J].汽车工艺与材料,1997(4):6-9
    [12]冯宝伟,胡江东.日本汽车零件的冷锻技术[J].锻压机械,1998(3):11-13
    [13]大泽佳郎.日本锻造行业的现状[J].锻压技术,1995(1):3-5
    [14]山本明,杨国彬.日本闭式模锻技术的发展[J].汽车工艺与材料,1995(11):1-4
    [15]李光.由德国商用车技术展望我国发展汽车趋势[J].山东机械,2004(1):16-17
    [16]Chang Y C,Hu Z M,Kang B S,et al.A study of cold ironing as a post-process for net-shape manufacture[J].International Journal of Machine Tools & Manufacture,2002,42:945-952
    [17]Cai J,Dean T A,Hu Z M.Alternative die designs in net-shape forging of gears[J].Journal of Materials Processing Technology,2004,150:48-55
    [18]magard V.Cold Forging of Net or Near-net-shape omponents,[J].J.Mater.Process.Technol,1992.35:429-443
    [19]Dean T A.Progress in Net-Shape Forging[J].Advenced Technology of Plasticity,1993:1031-1041
    [20]Dean T A.The net-shape forming of gears[J].Materials and Design,2000,21:271-278
    [21]Kudo H.Towards net-shape forming[J].Journal of Material Processing Technology,1990,22(3):307-342
    [22]洪慎章.冷锻工艺在汽车锻件生产上的应用[J].汽车工艺与材料,1999(7):1-4
    [23]车路长.汽车零部件制造业中冷锻技术的应用[J].汽车技术,1997(4):42-44
    [24]肖汉平.冷锻技术在汽车工业中的应用[J].国外金属加工,1993(5):49-55
    [25]李德成.我国汽车工业锻造技术的发展[J].锻压机械,1995(4):3-9
    [26]胡亚民,温正忠.汽车与锻压工艺[J].汽车工艺与材料,1996(12):10-13
    [27]罗晴岚.”九五”汽车行业对锻压技术装备的需求[J].锻压机械,1996(6):5-7
    [28]朱伟成,刘春伟.汽车零件精密锻造技术动向[J].汽车工艺与材料,2000(3):1-5
    [29]机械工业部北京机电研究所等.冷精锻和闭塞锻造成套技术产业化开发[R].,1996.
    [30]徐祥龙.国内外冷锻生产现状[J].上海锻压,1996(1):1-6
    [31]Dean T A.The net-shape forming of gears[J].Materials and Design,2000,21:271-278
    [32]Kopp R.Some Current Development Trends in Metal Forging Technology[J].Journal of Materials Processing Technology,1996,60:1-10
    [33]Kuzman K.Problems of accuracy control in cold forming[J].Journal of Materials Processing Technology,2001,113:10-15
    [34]中商情报网.中国汽车齿轮配套市场研究报告[EB/OL].http://www.askci.com/reports/2008-11/20081113101237.html,2008-11-16
    [35]51报告在线.2009-2010年中国齿轮行业市场预测与投资前景分析[EB/OL].http://www.51report.com/research/detail/58625989.html,2008-12-5
    [36]席庆坡.直齿圆柱齿轮冷精锻成形数值模拟及齿形修形研究[D].郑州:机械科学 研究院,2003
    [37]张志文.锻压工艺学[M].第一版.北京:机械工业出版社,1983
    [38]耿健.齿轮净成形工艺的数值模拟及工艺优化:[博士学位论文].北京:清华大学机械工程系,2001;
    [39]范广宏,周永松.冷温锻造与润滑[J].锻造与冲压,2005(5):37-39
    [40]Behrens B,Doege E,Reinsch S,et al.Precision forging processes for high-duty automotive components[J].Journal of Materials Processing Technology,2007,185:139-146
    [41]Onodera S.Current Cold-forging Techniques for the Manufacture of Complex Precision Near-net-shapes[J].Journal of Material Processing Technology,1992,35:385-396
    [42]Ma Y L,Qin Y,Balendra R.Forming of hollow gear-shafts with pressure-assisted injection forging(PAIF)[J].Journal of Materials Processing Technology,2005,167:294-301
    [43]Anonym.Forming Process Makes Climbing Gear[J].Manufacturing Engineering,2005,135(1):94-94vmuw
    [44]Aronson R.Metal Forming,Fabricating,Lasers,and Gear Generation[J].Manufacturing Engineering,2006,137(2):249-258
    [45]辛选荣.缓冲齿轮精密冷锻工艺及模具.锻压技术2003 vol1:14-16;
    [46]陈小斌.齿轮模锻成形工艺研究.1999 2:16-18;
    [47]寇淑清.高精度直齿圆柱齿轮冷锻成形加工方法的研究[J].锻压技术,2000,15:10-13
    [48]陈祝同,王浩.国外冷、温锻的现状和发展[J].锻压技术,1984(6):42-45
    [49]Hu C,Wang K,Liu Q.Study on a new technological scheme for cold forging of spur gears[J].Journal of Materials Processing Technology,2007,187-188:600-603
    [50]Lange K,Szentmihalyi V.Optimized cold forging of helical gears by FEM-simulation.[C].in:Solihull.Proceedings of the 9th International Cold Forging Congress.U.K.:1995.283-289
    [51]Meidert M,Knoerr M,Westphal K,et al.Numerical and physical modelling of cold forging of bevel gears[J].Journal of Materials Processing Technology;1992,33(1-2):75-93
    [52]Kim S,Kubota S,Yamanaka M.Application of CAE in cold forging and heat treatment processes for manufacturing of precision helical gear part.J.Mater.Process.Technol.2008,201:25-31
    [53]Jung·S Y,Kang M C,Kim C,Kim C H,Chang Y J,Han S M.A study on the extrusion by a two-step process for manufacturing helical gear.The International Journal of Advanced Manufacturing Technology.2008,(in press)
    [54]Yoshida H,Sawaki Y,Sakaida Y.Shaping of helical gear by two-step cold extrusion.Materials Transactions.2008,49(5):1162-1167
    [55]Kamouneh A A,Nia J,Stephensonb D,Richard V,Garrold D.Diagnosis of involutometric issues in flat rolling of external helical gears through the use of finite-element models.International Journal of Machine Tools & Manufacture.2007,47:1257-1262
    [56]Neugebauer R,Hellfritzsch U,Lahl M.Advanced process limits by rolling of helical gears.International Journal of Material Forming.2008,1:1-4
    [57]Alves M L,Rodrigues J M,Martins P A.Cold forging of gears:experimental and theoretical investigation[J].Finite Elements in Analysis and Design,2001,37:549-558
    [58]Morignchi I.Cold Forging of Gears and Other Complex Shapes[J].Journal of Materials Processing Technology,1992,35:439-450
    [59]Szentmihali V,Lange K,Tronel Y,et al.3-D finite-element simulation of the cold forging of helical gears[J].Journal of Materials Processing Technology,1994,43(2-4):279-291
    [60]蒋鹏,谢谈.国内精密锻造技术的近期状况--第1届全国精密锻造学术研讨会论文综述[J].锻压技术,2002,27(3):12-15
    [61]夏汉关,董义,刘景升,et al.中国锥齿轮精密锻造成形技术的评估[J].锻造与冲 压,2005(5):43-46
    [62]吴诗惇.冷温挤压技术[M].第一版.北京:国防工业出版社,1995
    [63]赵建军,李凯.轿车差速器直齿圆锥齿轮温锻工艺[J].锻造与冲压,2005(5):35-36
    [64]杨欣荣.高速齿轮修形技术在大功率新型高速齿轮箱上的应用[J].机械制造与自动化,2005,34(3):44-47
    [65]Li J,Chou S.Surface design and tooth contact analysis of an innovative modified spur gear with crowned teeth[J].Proceedings of the Institution of Mechanical engineers Part B:Mechanical Engineering Science,2002,219(2):193-207
    [66]Wang Y,Tian Z R,Cheng W.Study on dynamic deformation of spur gears[C].in:Proceedings of the 6th International Conference on Computer-Aided Production Engineering.London:1990.277-284
    [67]李润方,丁玉成,王建军.齿轮本体温度、热变形、弹性啮合特性分析及齿廓修形曲线的研究[J].机械设计,1988(1):1-8
    [68]李润方,王建军.齿轮系统动力学[M].第一版.北京:科学出版社,1997
    [69]Lee Y K,Lee S R,Yang D Y.Process modification of bevel gear forging using threee-dimensional finite element analysis[J].Journal of Materials Processing Technology,2001,113:59-63
    [70]陶燕光,黎上威,马宪本.高速齿轮热变形修形的试验研究[J].齿轮,1988,12(2):25-28
    [71]吴忠鸣,王新云,夏巨谌.基于ANSYS的直齿圆锥齿轮建模及动态接触有限元分析[J].机械传动,2005,29(5):49-55
    [72]刘惟信.关于汽车变速器直齿轮修形的研究[J].汽车齿轮,1989(1):23-25
    [73]杨廷力,叶新,王玉璞.渐开线高速齿轮的齿高修形[J].齿轮,1982,6(3):14-24
    [74]王朝晋.关于齿廓修形的研究[J].齿轮,1986(10):45-48
    [75]仙波正庄.高强度齿轮设[M].第一版.北京:机械工业出版社,1981
    [76]Welbourn D B.Forcing Frequencies Due to Gears[J].Vibrition in Rotating System Conference,1972
    [77]Dubar L,Bricout J P,Wierre C,et al.New surface processes for cold forging of steels[J].Surface and Coatings Technology,1998,102:159-167
    [78]Sheljaskov S.Warm Forging in Comparison with Hot and Cold Forging[J].Advanced Technology of Plasticity,1993:1082-1087
    [79]Mori T,Li S.A new definition of complexity factor of cold forging process[J].Precision Engineering,2008,(in press)
    [80]Bochniak W,Korbel A,Szyndler R,et al.New forging method of bevel gears from structural steel[J].Journal of Materials Processing Technology,2006,173:75-83
    [81]Al-shareedah E M,Lehnhoff T F.Strength calculation for forged straight bevel gear teeth having a linking web[J].International Journal of Mechanical Sciences,1984,26(1):63 -72
    [82]Song J,Imb Y.Process design for closed-die forging of bevel gear by finite element analyses[J].Journal of Materials Processing Technology,2007,192-193:1-7
    [83]Lee Y K,Lee S R,Lee C H,et al.Process modification of bevel gear forging using threedimensional finite element analysis[J].Journal Of Materials Processing Technology,2001,113:59-63
    [84]Mamalis A G,Manolakos D E,Baldoukas A K.Simulation of the precision forging of bevel gears using implicit and explicit FE techniques[J].Journal of Materials Processing Technology,1996,57:164-171
    [85]Yoon J H,Yang D Y.A three-dimensional rigid-plastic finite element analysis of bevel gear forging by using a remeshing technique[J].International Journal of Mechanical Sciences,1990,32(4):277-291
    [86]李智慧.金属材料裂纹体与无裂纹体统一理论若干问题试验研究[D].西安:西安理工大学,2006
    [87]徐春国.轴类件的柔性辊轧成形理论及工艺研究[D].郑州:机械科学研究总院,2006
    [88]Gurson A.L.Continuum Theory of ductile rupture by void nucleation and growth[J]. ASME Journal of Engineering Material and Technology, 1997, 99: 2-15
    [89] Rao A V, Ramakrishnan N, Kumar R K. A comparative evaluation of the theoretical failure criteria for workability in cold forging[J]. Journal of Materials Processing Technology, 2003, 142: 29-42
    [90] Behrens A, just H. Verification of the damage model of effective stresses in cold and warm forging operations by experimental testing and FE simulations[J]. Journal Of Materials Processing Technology, 2002, 125-126: 295-301
    [91] Cherouat A, Saanouni K, Hammi Y. Improvement of forging process of a 3D complex part with respect to damage occurrence[J]. Journal of Materials Processing Technology, 2003,142:307-317
    [92] Mcclintock F A. A Criterion for ductile fracture by the growth of holes[J]. J. appl. Mech, 1986,35:363-369
    [93] Cockcroft M G, Latham D J. Ductile and the workability of metals[J]. J. Inst. Metals, 1968,96:33
    [94] Oyane M. Criterion for ductile fracture and their application[J]. Journal of Material Working Technology, 1980, 4: 65-81
    [95] Rice J; Tracery D. On Ductile Enlargement of Void in Tri-axial .Stress Fields[J]. J. Mech. Phys. Solids, 1969, 17(2): 201-217
    [96] Clift S E, Hartley P, Sturgess C N, et al. Fracture Prediction in Plastic Deformation Process[J]. Int. J. Mech. Sci., 1990, 32(1): 1-17
    [97] Zhang J. Simultaneous determination of cystathionine and NAc-cystathionine using liquid chromatography atmospheric pressure chemical ionization mass spectrometry[J]. 1995,224(1): 17-20
    [98] Wu S, Liang H. A kenetic equation for ductile fracture damage at large plastic strain[J]. Journal of Material Process Technology, 1990, 21: 295-302
    
    [99] Wu S, Dang Z. Analysis of defects during backward extrusion by the rigid-plastic finite-element method[J]. Journal of Material Processing Technology, 1991, 25: 333-340
    [100]Zhang X,Jia J,Peng Y H.Ductile damage and simulation of fine blanking process by FEM[J].Tran.Nonferrous Met.Soc.China,2000,10(3):368-371
    [101]嵇国金.金属成形中的韧性损伤理论和缺陷研究[D].上海:上海交通大学,1999
    [102]贾建军,彭颖红,阮雪榆.精冲过程的韧性断裂[J].上海交通大学学报,1999,33(2):181-183
    [103]贾建军,彭颖红,阮雪榆.基于细观理论的刚塑性有限元方程[J].上海交通大学学报,1998,32(5):10-13
    [104]贾建军,彭颖红,阮雪榆.一种有限元裂纹扩展仿真的网格技术[J].模具技术,2001(5):4-6
    [105]汤安民,朱文艺,卢智先.韧性材料的几种断裂形式及其判据讨论[J].机械强度,2002,24(2):566-570
    [106]张兴全,彭颖红,阮雪榆.多孔体金属材料在塑性变形过程中的缺陷预测[J].模具技术,1998(3):11-14
    [107]刘文波.大质数斜齿轮加工方法的分析[J].机械工人:冷加工,2004(10):52-52
    [108]吴诗淳.损伤力学在塑性加工中的应用[J].中国机械工程,1994,5(3):44-46
    [109]吴诗淳.一个根据冷变形时金属内部损伤导出的韧性断裂准则[C].in:第三回中日冷间锻造学术座谈会论文集.北京:1 990
    [110]刘桂华.楔横轧变形过程中内部空心缺陷产生机理的模拟研究[J].机械工程学报,2004(2):150-152
    [111]Yohngjkim N R.Determination of preform shape to improve dimensional accuracy of the forged crown gear form in a closed-die forging process[J].International Journal of Mechanical Sciences,2001,43:853-870
    [112]Kutuk M A,Eyercioglu O,Yildirim N,et al.Finite element analysis of a cylindrical approach for shrink-fit precision gear forging dies[J].Proceedings of the Institution of Mechanical Engineers,2003,217(6):667-685
    [113]Eyercioglu O,Kutuk M A,Yilmaz N F.Shrink fit design for precision gear forging dies[J],journal of materials processing technology,2008,ⅹⅹⅹⅹ:0-0
    [114]Fu M,Shang B.Stress analysis of the precision forging die for a bevel gear and its optimal design using the.boundary-element method[J].Journal Of Materials-Processing Technology,1995,53:511-520
    [115]Xu X L,Yu Z W.Failure analysis of diesel engine flywheel ring-gears[J].2005,12:25-34
    [116]Santos C A,Aguilar M T,Campos H B,et al.Failure analysis of the die in the third hot forging stage of a gear blank[J].Engineering Failure Analysis,2006,13:886-897
    [117]夏巨谌.精密塑性成形工艺[M].第一版.北京:机械工业出版社,1999
    [118]娄华威,高锦章.基于厚壁圆筒理论的组合凹模优化设计[J].2003(1):16-19
    [119]罗中华,张质良.多层压配组合冷挤压凹模疲劳强度优化设计[J].上海交通大学学报,2002,36(4):467-469
    [120]徐小兵.冷挤压三层组合凹模的优化设计[J].金属成形工艺,2003,21(3):59-62
    [121]张会,孙伟.组合式挤压凹模的优化设计[J].锻压技术,2005(4):61-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700