等离子弧焊接过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子弧焊具有电弧能量密度高、阳极电弧力作用强的特点,可以实现单道焊双面成形,当阳极电弧力足够大时还可以形成小孔效应,所以具有较高的焊接生产效率。但影响等离子弧焊接过程的因素较多,特别是穿孔等离子弧焊中的小孔状态不易保持,限制了其在工业生产中的广泛应用。如何提高等离子弧焊接过程的稳定性一直是人们致力要解决的问题。随着计算机技术的发展,数值模拟技术在焊接研究中得到了广泛应用。本文对等离子弧焊接过程进行数值模拟研究,为确定等离子弧焊接工艺、提高焊接过程稳定性提供理论依据。
     首先,根据流体动力学的质量守恒、动量守恒和能量守恒以及麦克斯韦方程组,建立了二维等离子弧焊电弧的数值分析模型。因为所建模型包括了一部分约束喷嘴和钨极,所以该模型可以反映焊枪结构和钨极形状等对等离子电弧的影响。在确定合适的边界条件后,利用基于有限体积法的流体分析软件,选用SIMPLEC算法求解所建电弧模型,可以得到等离子弧焊电弧温度场、流场、电磁场等。模拟研究了焊接电流、离子气流量、弧长、钨极内缩量等工艺参数对电弧特性的影响,以及钨极形状和喷枪结构等对电弧的影响。另外,本文建立了湍流状态下的等离子电弧模型,并将湍流等离子电弧模型与层流等离子电弧模型计算结果进行了比较。根据湍流模型得到的平均有效粘性系数与动力粘性系数之比和层流模型得到的马赫数,认为等离子电弧一般处于层流不可压缩状态。
     其次,在分析等离子弧焊接工艺特点的基础上,分别建立了三维熔透型静止电弧和运动电弧作用下的熔池数值分析模型。在模型中,等离子电弧作用于工件上表面的热流密度和电流密度分布为上述等离子电弧模型计算结果。通过粘性系数的设置来解决固液同一化问题,即当温度在熔点以下时给定一个较大的粘性系数。并采用大型有限元分析软件ANSYS求解得到了熔池温度场与流场分布情况。
     最后,在考虑等离子弧焊接小孔存在的情况下,建立三维非轴对称等离子电弧模型,以研究电弧反翘现象。研究结果表明,电弧反翘与小孔尺寸之间存在一定的关系,随小孔尺寸的增大电弧反翘变弱;电弧轴线与小孔轴线之间存在一定的偏差是形成电弧反翘的必要条件,在适当的焊接速度下,可以形成电弧轴线与小孔轴线之间的偏差。对单探针有源电弧反翘检测电路也进行了模拟研究,结果表明,附加电阻上的电压信号与小孔尺寸间存在规律性关系,其电压随小孔尺寸的增加呈减小趋势。根据模拟研究结果,设计了一种两探针的有源电弧反翘检测电路,可以检测出小孔的尺寸状态及变化情况。
The plasma arc welding (PAW) possesses a higher productivity for its high energy density arc and a powerful arc force at the anode. This kind of welding technology can finish the welding process only with single pass, and even keyhole effect appears when the arc force is strong enough. But too many factors affect the stability of the PAW process, especially the status of the keyhole in keyhole PAW, which restricts its widely application in industry. How to keep the stability of PAW process has been concerned always. While, with the development of computer technology, numerical simulation is widely used in the welding technology. So simulation study on the PAW process is put forward here, to provide theoretical instruct for the PAW process.
     Based on the set of conservation equations for mass, momentum, energy and the Maxwell equations, a two-dimensional mathematical model has been developed. The model includes a part of nozzle and tungsten electrode to study the influence of nozzle configuration and electrode shape on the plasma arc characters. Setting proper boundary condition, some kind of CFD software based on finite volume method is used to solve the model with SIMPLEC algorithm. The temperature field, flow field and electromagnetic field of the plasma arc are gotten and analyzed from the model. And the influence of current, ionized gas flow rate, arc length etc on plasma arc character are also studied numerically, as well as the nozzle configuration and electrode shape. To verify the supposition that the plasma arc is in laminar flow state, another plasma arc model is built in which arc flow state is supposed to be turbulent. The results of the two kinds of arc model are compared, and the plasma arc is considered to be laminar judged by the ratio of effective viscosity and dynamic viscosity calculated in turbulent arc model. Also, the plasma arc is considered to be incompressible by the Mach number gotten form the laminar arc model.
     Analyzing the PAW process, three-dimensional weld pool models acted by static arc and moving arc respectively have been developed to predict the temperature and flow of it. The heat flux and current density distributions at the anode are taken from the results of plasma arc model. The solid part of workpiece is taken as liquid by setting a great viscosity to the workpiece when the temperature is above the melting point. Finally, the weld pool models are solved by ANSYS software.
     A three-dimensional non-axisymmetrical plasma arc model has been developed to study the plasma arc reflection phenomenon in the keyhole PAW, considering the existing of keyhole. The simulating results show that the arc reflection gets weaker with the increase of keyhole dimension, and a higher welding velocity to induce the offset between the arc axis and keyhole axis is necessary to the appearance of arc reflection. The theory of arc reflection detecting circuit is also simulated studied. The result shows that there is some certain relation between the keyhole dimension and voltage signal on the additional resistance, that is, the voltage signal on the additional resistance decreases with the increase of keyhole dimension. According to the simulated results, a new kind of arc reflection detecting circuit with two probes is designed which can detect the keyhole dimension and its changing.
引文
[1] 金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1981.
    [2] 董春林,朱轶峰,张慧,等.穿孔等离子弧焊正面弧光传感技术研究[J].机械工程学报,2001,37(3):27~30.
    [3] 王耀文,陈强,孙振国,等. 等离子弧焊接穿孔行为的声信号传感[J]. 机械工程学报,2001,37(1): 53~56.
    [4] 王慧钧,王其隆,刘中华.铝合金等离子弧焊穿孔熔池正面图象检测与处理[J].材料科学与工艺,1998,6(3):92~96.
    [5] Zhang Y M,Zhang S B,Liu Y C. A plasma cloud charge sensor for pulse keyhole process control[J]. Measurement Science and Technology,2001,12(8):1365~1370.
    [6] 易小林.等离子弧焊中等离子云检测机理与模糊控制的研究[D].天津:天津大学,2003.
    [7] 汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [8] 过增元,赵文华.电弧和热的等离子体[M].北京:科学出版社,1986.
    [9] Strachan D C , Barrault M R . Axial velocity variations in high-current free-burning arcs.Journal of Physics D (Applied Physics),1976,9(3):435~46.
    [10] Ramakrishnan S,Stokes A D, Lowke J J.An approximate model for high-current free-burning arcs.Journal of Physics D (Applied Physics),1978, 11(16):2267~2280.
    [11] Hsu K C,Etemadi K, Pfender E.Stady of the free-burning high-intensity argon arc[J].Journal of Applied Physics,1983,54(3):1293~1299.
    [12] Hsu K C , Pfender E . Two-temperature modeling of the free-burning, high-intensity arc[J].Journal of Applied Physics,1983,54(8):4359~4366.
    [13] M C TSAI,SINDO KOU.Heat transfer and fluid flow in welding arcs produced by sharpened and flat electrodes[J].International Journal of Heat and Mass Transfer,Journal of Applied Physics,1990,33(10):2089~2098.
    [14] Choo R T C,Szekely J,Westhoff R C.0n the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: Part I. modeling the welding arc[J]. Metall. Trans. B,1992,23B(6):357~69.
    [15] Kovitya P,Lowke J J.Two-dimensional analysis of free burning arcs inargon[J].Journal of Physics D:Applied Physics, 1985,18(1):53~70.
    [16] Kovitya P,Cram L E.Two-dimensional model of gas-tungsten welding arcs[J].Welding Journal,1986,65(12):34~39.
    [17] Tsai M C,Kou,Sindo.Heat transfer and fluid flow in welding arcs produced by sharpened and flat electrodes[J] . International Journal of Heat and Mass Transfer,1990,33(10):2089~2098.
    [18] Kovitya P,Schmidt H P.Theory of free-burning arc columns including the influence of the cathode[J].Journal of Physics D: Applied Physics,1992 25(11), 1600~1606
    [19] Bini R,Monno M,Boulos M I.Numerical and experimental study of transferred arcs in argon[J].Journal of Physics D (Applied Physics),2006,39(15):3253~3266.
    [20] Ramirez Marco,Trapaga,Gerardo.Mathematical modeling of a direct current electric arc: Part I. Analysis of the characteristics of a direct current arc[J].Metallurgical and Materials Transactions B (Process Metallurgy and Materials Processing Science),2004,35(2):363~372.
    [21] Poloskov S I,Erofeev V A,Logvinov R V.Modeling of the heat flow distribution and arc pressure in process of orbital TIG-welding[J].Svarochnoe Proizvodstvo,2005,8:10~15.
    [22] Kumar A,DebRoy T.Calculation of three-dimensional electromagnetic force field during arc welding[J].Journal of Applied Physics,2003,94(2):1267~1277.
    [23] Leblanc T,Andlauer R,Teste P.Power balance at the cathode of an electric arc burning in argon - A spectroscopic approach and a thermal model[J].EPJ Applied Physics,2005,29(3):267~274.
    [24] Zheng Shu,Liu Yue,Liu Jinyuan et al.Two-dimensional numerical simulation on evolution of arc plasma[J].Vacuum,2004,73(3-4):373~379.
    [25] Tanaka Manabu,Ushio Masao,Lowke John J.Numerical study of gas tungsten arc plasma with anode melting[J].Vacuum,2004,73(3-4):381~389.
    [26] Kumar A,DebRoy T.Calculation of three-dimensional electromagnetic force field during arc welding[J].Journal of Applied Physics,2003,94(2):1267~1277.
    [27] Ramachandran K,Marques J L,Vassen R et al.Modelling of arc behaviour inside a F4 APS torch[J].Journal of Physics D (Applied Physics),2006,39(15):3323~3331.
    [28] Choi K,Kim W,Kim K et al.Large-scale finite element analysis of arc-weldingprocesses[J].Journal of Physics D (Applied Physics),2006,39(13):2869~2875.
    [29] Park Jin Myung,Kim Keun Su,Hwang Tae Hyung et al.Three-dimensional modeling of arc root rotation by external magnetic field in nontransferred thermal plasma torches[J].IEEE Transactions on Plasma Science,2003,32(2 I):479~487.
    [30] Urusov R M.Calculation of electric arc in longitudinal magnetic field[J].High Temperature,2003,41(2):148~154.
    [31] Bernardi Davide,Colombo Vittorio,Ghedini Emanuele et al.Three-dimensional time-dependent modeling of magnetically deflected transferred arc[J].IEEE Transactions on Plasma Science,2005,33(2 I):428~429.
    [32] Kumar A,DebRoy T.Calculation of three-dimensional electromagnetic force field during arc welding[J].Journal of Applied Physics,2003,94(2):1267~1277.
    [33] Blais A,Proulx P,Boulos M I.Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon[J].Journal of Physics D (Applied Physics),2003,36(5):488~496.
    [34] Yamamoto Takeshi,Ohji Takayoshi,Miyasaka Fumikazu et al.Simulation model for MAG arc welding as an engineering tool[J].Materials Science Forum,2003,426-432(5):4057~4062.
    [35] Toh Takehiko,Tanaka Jun,Maruki Yasuo et al.Magnetohydrodynamic simulation of DC arc plasma under AC magnetic field[J].ISIJ International,2005,45(7):947~953.
    [36] McKelliget J, Szekely J,Vardelle M et al.Temperature and Velocity Fields in a Gas Stream exiting a Plasma Torch: A Mathematical Model and its Experimental Verification[J].Plasma Chemistry and Plasma Processing,1982,2(3):317~332.
    [37] McKelliget J W,Szekely J.A mathematical model of the cathode region of a high intensity carbon arc[J].Journal of Physics D (Applied Physics),1983,16(6):1007~1022.
    [38] Tanaka M,Ushio M,Chuan Song Wu.One-dimensional analysis of the anode boundary layer in free-burning argon arcs[J].Journal of Physics D (Applied Physics),1999,32(5):605~611.
    [39] Wu C S , Ushio M , Tanaka M . Analysis of the TIG welding arc behavior[J].Computational Materials Science,1997,7(3):308~314.
    [40] Wu C S,Ushio M,Tanaka M.Modeling the anode boundary layer ofhigh-intensity argon arcs[J].Computational Materials Science,1999,15(3):302~310:
    [41] 樊丁,杜华云,张瑞华.GTAW电弧温度场与流场数值模拟[J].电焊机,2004,38(4):6~9.
    [42] 杜华云,樊丁,张瑞华.GTA电弧温度场流场数值计算[J].兰州理工大学学报,2004,30(5):24~27.
    [43] 樊丁,牛尾诚夫,陈剑虹.TIG 电弧传热传质过程的数值模拟分析[J].机械工程学报,1998,34(2):39~45.
    [44] 芦凤桂,姚舜,钱伟方.钨极氩弧焊焊接电弧数值分析[J].上海交通大学学报,2003, 37(12): 1862~1865.
    [45] 芦凤桂,姚舜,张毓新,于海良.TIG焊接电弧等离子体流场的有限元分析[J].焊接技术,2004,33(2):14~16.
    [46] 芦凤桂,姚舜,楼松年,张毓新.熔池表面变形对电弧行为特征的影响[J].焊接学报,2004,25(2):57~60.
    [47] Lu, Fenggui,Tang Xinhua,Yu Hailiang,et al.Numerical simulation on interaction between TIG welding arc and weld pool[J].Computational Materials Science,2006,35(4):458~465.
    [48] McKelliget J , Szekely J . Heat transfer and fluid flow in the welding arc[J] . Metallurgical Transactions A (Physical Metallurgy and Materials Science),1986,17(7):1139~1148.
    [49] Ushio M,Matsda F.IIW document 1982,212-528-82:7~15.
    [50] Kaddani A,Zahrai S, Delalondre C,Simonin O.Three-dimensional modeling of unsteady high-pressure arcs in argon[J].Journal of Physics D (Applied Physics),1995,28:2294~2305.
    [51] Gonzalez J J , Freton P , Gleizes A . Comparisons between two- and three-dimensional models: gas injection and arc attachment[J].Journal of Physics D (Applied Physics),2002,35(24):3181~3191.
    [52] Blais A,Proulx P,Boulos M I.Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon[J].Journal of Physics D: Applied Physics,2003,36(5):488~496.
    [53] McKelliget J,Szekely J,Vardelle M,Fauchais P.Temperature and velocity fields in a gas stream exiting a plasma torch. A mathematical model and its experimental verification[J]. Plasma Chemistry and Plasma Processing,1982,2(3):317~332.
    [54] Chang C H,Ramshaw J D.Numerical simulations of argon plasma jets flowing into cold air[J].Plasma Chemistry and Plasma Processing,1993,13(2):189~209.
    [55] Huang P C,Heberlein J,Pfender E.Two-fluid model of turbulence for a thermal plasma jet[J].Plasma Chemistry and Plasma Processing,1995,15(1):25~46.
    [56] Paik Seungho,Huang P C,Heberlein J,Pfender E.Determination of the arc-root position in a dc plasma torch[J].Plasma Chemistry and Plasma Processing,1993,13(3):379~397.
    [57] Westhoff R,Szekely J.A model of fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma torch[J].Journal of Applied Physics,1991,70(7):3455~3466.
    [58] Bauchire J M,Gonzalez J.J,Gleizes A.Modeling of a DC plasma torch in laminar and turbulent flow[J].Plasma Chemistry and Plasma Processing,1997,17(4):409~432.
    [59] 韩鹏.直流电弧等离子体发生器与射流特性的数值模拟及试验研究[D].清华大学,1999.
    [60] 张文宏.层流等离子体射流的产生及其某些特性的研究[D].中国科学院力学研究所,2000.
    [61] Ramakrishnan S,Stokes A D, Lowke J J.An approximate model for high-current free-burning arcs[J].Journal of Physics D (Applied Physics),1978, 11(16):2267~2280.
    [62] Strachan D C , Barrault M R . Axial velocity variations in high-current free-burning arcs[J].Journal of Physics D (Applied Physics),1976,9(3):435~46.
    [63] Dunn G J,Allemand C D,Eagar T W.Metal vapors in gas tungsten arcs. Part 1. spectroscopy and monochromatic photography[J].Metallurgical Transactions A (Physical Metallurgy and Materials Science),1986,17A(10):1851~1863.
    [64] Rosenhow W M,Hartnett J P.Handbook of heat transfer[M].New-York:McGraw-Hill Book Company,1973:8~126.
    [65] CHOO R T C,SZEKELY J,DAVID S A.0n the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: Part Ⅱ. modeling the welding pool and comparison with experiments[J]. Metallurgical Transaction B,1992,23B(7):371~384.
    [66] 美国 ANSYS 公司北京办事处.ANSYS 计算流体动力学分析指南[R],1998.
    [67] Fan H G,Kovacevic R.Keyhole formation and collapse in plasma arcwelding[J].Journal of Physics D (Applied Physics),1999,32(22):2902~2909.
    [68] Metcalfe J C,Quigley M B C.Heat transfer to the keyhole in plasma welding[J].3rd International Conference on Gas Discharges,London UK,1974,574~577.
    [69] 董红刚,高洪明,吴林.固定电弧等离子弧焊接热传导的数值计算[J].焊接学报,2003(4):24~26,30.
    [70] 王怀刚,武传松,张明贤.小孔等离子弧焊接热场的有限元分析[J].焊接学报.2005,26(7):49~53
    [71] 王怀刚,武传松.小孔等离子弧焊接热场分析的热源模型[C].第十一次全国焊接会议论文集,第二册,2005:361~364.
    [72] Hsu Y F,Rubinsky B.Two-dimensional heat transfer study on the keyhole plasma arc welding process[J].International Journal of Heat and Mass Transfer,1988,31(7):1409~1421.
    [73] Keanini Russell G,Rubinsky Boris.Three-dimensional simulation of the plasma arc welding process[J].International Journal of Heat and Mass Transfer,1993,36(3):3283~3298.
    [74] 孙俊生,武传松,董博玲.PAW+TIG 电弧双面焊接小孔形成过程的数值模拟[J].金属学报,2003,39(1):79~84
    [75] 武传松,孙俊生.等离子与钨极双面电弧焊接热过程的数值模拟[J].金属学报,2003,39(5):499~504.
    [76] 武传松,孙俊生.双面电弧焊接的传热模型[J].物理学报,2002,51(2):286~290.
    [77] Fan H G,Kovacevic R.Keyhole formation and Collapse in plasma arc welding[J].Journal of Physics D (Applied Physics),1999,32(22):2902~2909.
    [78] Lei, Y P,Gu, X H,Shi Y W.Numerical analysis of two-way interaction between weld-pool and arc for GTA welding process[J].Journal of Materials Science and Technology,2001,17(1):171~172.
    [79] Manabu Tanaka,Masao Ushio,John J Lowke.Numerical study of gas tungsten arc plasma with anode melting[J].Vacuum,2004,73:381~389.
    [80] Evans D W,Huang D,McClure J C,et al.Arc efficiency of plasma arc welding[J].Welding Journal,1998,77:53~58.
    [81] 武传松,郑炜,孙俊生.脉冲电流作用下 TIG 焊接熔池行为的数值模拟[J].金属学报,1998,34(4):416~422.
    [82] 杨雪峰,Aristeu da Silveira Neto,Américo Scotti.GTAW 焊接过程中熔池发展的数值模拟及与实验结果的比较[J].四川大学学报,2002,34(6):47~51.
    [83] OREPER G M,SZEKELY J.Heat- and fluid-flow phenomena in weld pools[J].J. Fluid Mech.,1984,147:53~79.
    [84] Yeh J -Y,Brush L N.A boundary interal equation technique for the calculation of weld pool shapes in thin plates[J].Computational Materials Science,1996,6:92~102.
    [85] 武传松,曹振宁,吴林.熔透情况下三维 TIG 焊接熔池流场与热场的数值分析[J].金属学报,1992,28(10):427~432.
    [86] 曹振宁,武传松,吴林.TIG 焊接熔透熔池的数学模型[J].焊接学报,1992,28(1):62~69.
    [87] 王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700