等离子弧焊中等离子云检测机理与模糊控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据目前国内外在等离子弧焊接过程、质量控制方面的研究可知,等离子弧
     焊接过程中电弧的稳定性,焊接质量的稳定性是人们关心的热点,而在小孔等离
     子弧焊接中,检测小孔状态并对此进行控制,从而提高焊接质量是该领域的前沿。
     本文根据等离子弧与熔池之间的相互作用,分析了等离子云(等离子弧反翘)
     产生的机理,并根据焊接熔池形状的变化,分析了等离子云形态变化的机理。根
     据等离子弧喷射速度和等离子弧对熔池作用力,分析当工件没有熔透时,在焊接
     反方向,沿着熔池上表面最大切线角喷射,形成等离子云的机理。建立了仿真模
     型,通过研究,得出等离子云喷射角(等离子弧反翘角)和熔深随焊接电流、焊
     接速度等工艺参数之间的变化规律。
     根据等离子体鞘层理论,得出了探针在等离子云中所产生鞘层电位的计算公
     式,等离子云鞘层电压到达伏级,很容易检测。为了检测等离子云喷射角,提出
     了一种用无电源探针检测等离子云的新方法。通过检测等离子云中不同温度、不
     同等离子云喷射角下的电压值,可以检测等离子云喷射角进行熔深控制。
     研究了探针在高温等离子云中的烧损和熔化规律,结果表明,只要探针位置
     放置适当,完全可以用探针检测高温等离子体,因此采用无电源探针法可以检测
     高于探针熔点的等离子体温度。
     设计了无电源探针法检测等离子云装置,该装置简单、可靠,具有很好的工
     业应用前景。通过试验,验证了鞘层理论的正确性,验证了焊接电流、焊接速度
     以及探针位置对鞘层电压的影响,并分析了探针位置,焊接电流,焊接速度对等
     离子云喷射角的影响规律。
     在理论和试验的基础上,将模糊控制理论引入到等离子弧焊接熔深的控制中,
     建立了模糊控制器模型,提出了一种通过检测等离子云喷射角,并用电流补偿的
     方法,保证等离子云喷射角恒定,进行熔深控制的新方法。仿真研究表明,可以
     实现焊接熔深及熔透的智能控制。
Nowadays, the stability of arc and welding quality plays a crucial role on the
     plasma arc welding from the research of the controls of welding process in the world.
     And it is uneasy to maintain the process of stable welding and to gain a good quality
     of welding line.The control of welding process and quality is an important problem in
     the keyhole plasma arc welding. Therefore, controls of the keyhole are an urgent task
     by means of detecting the state of the keyhole. It is a short cut to improve the welding
     quality in the plasma arc welding. So people are focused on detecting the size of the
     keyhole.
     On the basis ofinterplay between the plasma arc and penetration, the paper
     analyzes the formation of the plasma cloud in plasma arc welding. The state of plasma
     cloud is changed when the shape of the pool is changed. The relation between plasma
     cloud and the shape of pool is pointed out. If work piece is not yet penetrated, the
     plasma cloud must be existed above the work piece on theoppose direction of
     welding velocity; On the other hand, if work piece is penetrated, the plasma cloud
     can.t be existed while plasma efflux must be existed.With the help of the
     phenomenon, if plasma cloud can be detected, work piece is penetrated, or the work
     piece is not penetrated. The paper analyzes that the welding time, welding current and
     welding velocity have an influence on the penetration.From views of plasma arc
     velocity and plasma arc force, plasma cloud is ejected from the maximal tangent angle
     of molten pool in the oppose direction of welding velocity when work piece is
     unpenetrated. The formation of the pool and penetration can determine the angle of
     plasma cloud ejection.Therelations between the welding current and angle of
     ejection plasma cloud are fit out by least double multiplication.
     If the probe is located in the plasma, there is a negative electromotive force in the
     probe. The paperfirst introduces the model of plasma sheath to explain the
     mechanism of phenomenon. It offers the formula to compute plasma cloud voltage.
     The value has only something to do with temperature and plasma component. It is up
     to the level of voltage and easy to be detected. On the above basis, a device of
     detecting plasma cloud without power is designed. It is simple and reliable, and has a
     good future of application in industry. The angle of plasma cloud can reflect the
     penetration. The location tungsten probe, welding velocity and welding current can
     change the angle of plasma cloud.
     The paper studies the rule of melting probe in high temperature plasma cloud. The
     II
    
    
    
    
    
    
     Abstract
     result indicates that the device without power can detect the high temperature plasma
     if the location of probe is sound.
     The experiment proves the theory of the sheath. The welding current, welding
     velocity, and the location of probe can change sheath voltage on the experiment.
     According to the formula between welding current and the angle of plasma cloud
     ejection, the theory of fuzzy control is introduced to plasma welding. Detection of
引文
1. 天津大学中国石油化工总公司第四建设公司编著,金属结构的电弧焊,机
     械工业出版社,1992
     2. 姜焕中主编.电弧焊及电渣焊(第2版),机械工业出版社,1993
     3. 中国机械工程学会焊接学会编.焊接手册(1),机械工业出版社,1992
     4. 崔信昌编著,等离子弧焊接和切割,国防工业出版社,1980.6
     5. 中国机械工程学会焊接学会编,焊接手册第二版第一卷,机械工业出版社,
     2001.7
     6. 沈阳机电学院焊接教研组.等离子弧与焊接,科学出版社,1978
     7. S.Lathabai, B.L.Jarvis, K.J.Barton. Comparison of keyhole and conventional gas
     tungsten arc welds incommercially pure titanium.Materials Science and
     Engineering A299,81~93,2001
     8. 赵吉儒编著,等离子弧焊接,机械工业出版社,1983
     9. 姜焕中.焊接方法及设备第一分册. 北京:机械工业出版社,1981 291-196
     10.Halmoy E. And Fostervoll H. New applications of plasma keyhole welding.
     Welding in the World,1994,34(9):285~291
     11.J K Martikainen. Investigation of the effect of welding parameters on weld
     quality of plasma arc keyhole welding of structural steels. Welding Journal ,1993
     72(7),203~207
     12.Martikainen Jukka K. Plasma arc keyhole welding of high-strength structural
     steels. International Journal for the Joining of Materials,1994,6(3):93~99
     13.Walduck R P. Development of a Robitic Plasma Arc Spot Welding Technique for
     Jaguar Cars, Welding & Matal Fabrication.1994,62(2):51-54
     14.McGee W F,Rybiki D J,Waldron D J. Ternary Gas Plasma Welding
     Torch.United State Patent(5,399,B31)
     15.康键,吴永泰.真空磁压缩等离子弧焊接方法的研究,焊接学报,1987,8(1),
     17-21
     16.Zhang Y M, Zhang S B. Double sided Arc welding increase welding joint
     perntration, Welding Journal,1998,77(6),57-61
     17.Lucas W, Hourse D, Activating Flux.Increasing the Performance and
     Productivity of the TIG and Plasma Process, Welding & Metal
     Fabrication,1996,64(1),11-17
     18.Chen W.H and Chin B.A.Monitoring. joint penetration using infrared sensing
     techniques. Welding Journal,1990.69(4),181-185
     19.Nagarajan,S., Banerjee,P., Chen,W.H. and Chin,B,A. Weld pool size and position
     control using IR sensors. Prosceedings of NSF Design and Manufacturing
     Systems Conference.Arizona State University,1990
     20.L.F.Martinze, R.E.Marques and J.C.Mcclure. Front side keyhole detection in
     aluminum alloys. Welding Journal, 1992, 71(5):49-51
     21.郑兵.铝合金穿孔型等离子弧焊缝成形稳定性.哈尔滨工业大学博士论文,
     1995
     22.董春林,吴林,邵亦陈.穿孔等离子弧历史与现状.中国机械工程学报,2000,
     98
    
    
    
    
    
    
     参考文献
     11(5)577-580
     23.代大山,宋永伦,江伟,张慧,朱轶峰,董春林.小孔等离子弧焊接质量控
     制的研究概况及发展.焊接技术,2000,29(6): 2-4
     24.Mrtikaninen, J.K. and Moisio R.J.I. Investigation of the effect of welding
     parameters on weld quality of plasma arc keyhole welding of structural steels.
     Welding Journal,1992,72(7)328s~340s
     25.Bashenko V.V. and Sosin N.A. Optimization of the plasma arc welding process.
     Welding Journal.1988,67(10)233s~237s
     26.Martikainen Jukka K. Plasma arc keyhole welding of aluminum alloys. Welding
     in the World,1994,34(9):391~392
     27.[日]安藤弘平,长谷川光雄著,施雨湘译,焊接电弧现象,机械工业出版社,
     1985
     28.George E Cook. Weld modeling and control using artificial neural network, IEEE
     Transactions on industry application,1995,31(6),184~189
     29.Zhang Y.M and Zhang S B. Obseration of keyhole during plasma arc welding.
     Welding Journal,1999,78(2),53s~58s
     30.YaoWen Wang and PenSheng Zhao. Noncontact acoustic analysis monitoring of
     plasma arc welding.International Journal of Pressure Vessels and Piping
     78,43~47,2001
     31.Jon M.C. Non-contact acoustic emission monitoring of laser beam.Welding
     Journal 1985,64 43~48
     32.黄从达,胡白喜,陶爱龙.锅炉蛇型管等离子弧声控焊的微型计算机控制.电
     焊机,1984(3):10-14
     33.胡白喜,黄从达.利用声音信号进行脉冲等离子弧全位置焊接质量控制系统
     的研究.焊接,1980(5):17-20
     34.王耀文,陈强,孙振国等.等离子弧焊接穿孔行为的声信号传感,机械工程
     学报,2001,37(1): 53-56
     35.Zhang Jiuhai, Wang Qilong. Study on arc sound in TIG and plasma processes.
     IIW Doc.212-610-85, 1985,7:1-8
     36.A F Manz. Welding arc sounds. Welding Journal, 1981,60(5): 23-27
     37.Martinez L F, Marques R E, Mcclure J C,at el. Font side keyhole detection in
     aluminum alloys. Welding Journal, 1971,5:49-51
     38.Metcalfe J C. Automatic control of plasma welding utilizing the keyhole efflux
     plasma. Welding and Metal Fabrication, 1975(11): 674-677
     39.董春林,朱轶峰,吴林等.穿孔等离子弧焊正面弧光传感技术研究,机械工
     程学报,2001,37(3): 30-33
     40.董春林,吴林,朱轶峰等.不锈钢等离子弧焊熔池小孔行为的弧光传感研
     究.机械工程学报,1999,35(6): 48-51
     41.Dong.Chunlin,Wu.Lin et al,Arc light sensing of keyhole behavior in plasma arc
     welding of stainless steel, IIW.Doc,212-927-99
     42.S B Zhang, Y M Zhang. Efflux plasma charge-based sensing and controlof
     joint penetrationduring keyhole plasma arc welding. Welding Journal,
     2001, 7: 157-162
     43.Steffen H D and KayserH. Automatic control for plasma arc welding. Welding
    
     99
    
    
    
    
    
    
     参考文献
     Journal,1972,6,408~418
     44.白钢.等离子弧焊小孔电压与规范参数的关系初探.西北工业大学学报,
     1997,15(2): 195-199
     45.Y M Zhang and S B Zhang, Y C Liu. A Plasma cloud charge sensor for pulse
     keyhole process control. Measurement Science and Technology, 2001,12: 1-6
     46.Zhang Y.M, Zhang S B, Jiang M and Losch B 2001 Sensing and control of
     double-sided arc welding process Proc.2001 National Science Foundation Design,
     Service and Manufacturing Grantees and Research Conference.(Tampa,FL,7-10
     January 2001)
     47.王慧钧,王其隆,刘中华.铝合金等离子弧焊穿孔熔池正面图像检测与处
     理.材料科学与工艺,1998,6(3): 92-96
     48.王慧均,图像传感变极性等离子弧焊缝稳定成形闭环控制(博士学位论文),
     哈尔滨,哈尔滨工业大学,1998
     49.Kovacevic. R. and Zhang Y.M. Real.time processing for monitoring of free
     weld pool surface. Trans. ASME. J.Mfg SCI. Eng,1997.119.161-169
     50.Zhang, Y. M, Beardsley H. and Kovacevic R. Real-time image processing for 3D
     measurement of weld pool surface, Manufacturing Science and Engineering,
     1994, PED-Vol 68-1,255-262
     51.林兆福. 气体动力学. 北京: 北京航空航天大学出版社. 1988: 31-45
     52.E. S. Lee and S. Ahn. Solidification progress and heat transfer analysis of
     gas-atomized alloy droplets during spray forming. Acta Metall. Mater.. 1994,
     42(9): 3231-3243
     53.徐滨士, 田保红, 马世宁, 刘世参等. 高速电弧喷涂粒子速度和雾化特性试
     验研究. 机械工程学报, 2000,(1): 38-42
     54.S.G.Lambrakos, E.A.Metzbower, P.G.Moore, J.H.Dunn, and A.Monis. A
     numerical model for deep penetration welding processes, Journal of Materials
     Engineering and Performance,2(6),1993,819-836
     55.武传松,郑炜,吴林.脉冲电流作用下TIG焊接熔池行为的数值模拟.金属学
     报,34(4),1998,416-422
     56.曹振宁,武传松,吴林. TIG焊接熔透熔池的数学模型.焊接学报,1996,17(1),
     62-69
     57.武传松,陈定华,吴林.TIG焊接熔池中的流体流动及传热过程的数值模拟,
     1988,9(4),263-269
     58.孙俊生,武传松。电弧压力对MIG焊接熔池几何形状的影响,2001,37(4),
     434-438
     59.武传松陈定华吴林,TIG焊接熔池中的流体流动及传热过程的数值模拟,
     焊接学报,1998,9(4),263~268
     60.张文钺,焊接传热学,机械工业出版社,1989.
     61.Lancaster,J.F., The physics of welding. Pergamon Press, 1984
     62.C.B.德列斯文著,唐福林译. 低温等离子体物理及技术,科学出版社,1980
     63.Smars E., et al. Temperature in Argon Shielding Welding Arc with Iron
     Electrodes, IIWDoc-212-162-68, 1968
     64.孙杏凡编.等离子体及应用,高等教育出版社,1983年8月
     65.Suits C.G., Temperature of High Arcs, J.Appl.phys., 10,728,1939
     100
    
    
    
    
    
    
     参考文献
     66.Finkelnburg W. Elektrischebogen and thermische plasma, Hamdbuch der physik
     Bd 22 Springer, 1956
     67.King L.A. The Positive Colomn in High-and Low Current Arcs,
     Appl.Sci.Res.B5 189, 1955
     68.Holm,R., Messungen der Gesamts trahlung der saule eines wechsels trombogens
     in luft, wiss, veroff.siem.werk.,13,II,87, 1934
     69.过增元等. 电弧和热等离子体,科学出版社,1986
     70.Smars E., et al.Material Transport and Temperature Distribution in Arc between
     Melting Aluminum Electrodes, IIWDoc-212-191-70, 1970
     71.GlicksteinS.S. Temperature Measurement in a Free Burning Arc,
     IIWDoc-212-354-76, 1976
     72.HowdenD.G..Mass Transfer of Metal Vapour and Anode Temperature in Arc
     Welding, Welding Journal, Vol. 48, No.3, 1969
     73.Tomsic M.J and JacksonC.E. Energy distribution in keyhole mode plasma arc
     welds. Welding Journal.1974,53(3),108s~115s
     74.J.F.Lancaster.The physics of welding,Oxford,England,Pergamon Press(First
     Edition),1984,268-680
     75.Yos J.M. AVCO Report RAD-TM-63-7, 1963
     76.Devoto R.S. Phys, Fluids, 10, N.2, 354, 1967
     77.Richard Dendy. Et.al. Plasma physics: an introductory course. Cambridge
     University Press,1995.
     78.National Bureauof Standards, Wavelength And Transition Probabilities for
     Atoms And Atomic Ions, 1980
     79.朱士尧. 等离子体物理基础,科学出版社,1983
     80.Lowke J J, Morrow R and Haidar J. A simplified unified theory of arcs and their
     electrodes. Journal of Physics D: Application Physics.1997,30,2033-2042.
     81.Auciello O and Flamm D.L. Plasma Diagnostics,vol 2:surface Analysis and
     Interactions(Bristol:Academic).1989
     82.N.A.克拉尔,A.W.特里维尔皮斯.等离子体物理学原理,原子能出版社,1983
     年12月
     83.Cooper,J.,Reports on Progress in Physics,Vol.XXIX,Part 1,1966
     84.Burhorn, F.,Z.Physic,155,42,1959
     85.Griem,H.R., Plasma Spectroscopy, McGraw-Hill,NY,1964
     86.Lochte-Holtgreven,W., Plasma Diagnostics, North-Holland Publishing Co.,
     Amsterdam, 1968
     87.Landan,L.D and Lifshitz,E.M. Fluid Mechanics, Pergamon Press,1959:258~289
     88.American Institute of physics. Physical review: a statistical physics, plasma, fluid,
     and related interdisciplinary topics. Pergamon Press. 1993
     89.GriemH.R, Plasma Spectroscopy, McGraw-Hill, NY, 1964
     90.J.A.Bittencourt, Fundamentals of plasma physics, NewYork,Pergamon
     Press,1986
     91.S.Ichimaru, Basic principles of plasma physics: a statistical approach,Reading
     Mass press,1973
     92.唐慕尧. 焊接测试技术,机械工业出版社,1988
     101
    
    
    
    
    
    
     参考文献
     93.赵家瑞等. 空气等离子弧切割机的原理和设计,机械工业出版社,1997
     94.Bouls M, Fauchais P and P.fender E. 1994 Thermal Plasma: Fundamentals and
     Application Vol 1(New York: Plenum press)
     95.Keanini R.G and Rubinsky B. Plasma arc welding under normal and zero gravity
     Welding Journal. 1990,69,41-50
     96.R.T.Choo, J.Szekely and R.C.Westhoff. Modeling of high-current arcs with
     emphasis on free surface phenomena in the weld pool, Welding Research
     Supplement. 1990,9,346s-361s
    
     102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700