ICMEs导致的行星际高密度等离子体云射电辐射测量方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳风是对人类活动产生直接影响的日地系统之链,充满着整个日地行星际空间。受到太阳活动导致的太阳风变化的影响,地球空间环境会产生变化,这些变化会引起一系列影响人类活动的事件。CMEs是尺度最大、最壮观的太阳活动。对CMEs造成的地球空间环境变化尽可能早的预报,对避免或减少灾害性空间天气对地球空间及人类活动的影响具有重要的科学与应用意义。
    把CMEs引起的行星际扰动和产生的地磁活动作为一个相互联系的有机链,是当前国际空间天气研究的主要发展趋势之一。中科院空间中心提出的太阳极轨射电望远镜(SPORT)计划设想在太阳极轨卫星上,利用微波甚至射电频段对CMEs传播导致的行星际高密度等离子体云进行成像遥感观测,从而获得对地球空间天气的预报、预警。这在人类尚属首次,具有非常重要的科学意义以及重要的应用前景,将对日地空间天气系统的研究和应用产生重要作用,并为国际与日共存计划做出重要贡献。本论文的研究内容是SPORT计划中的核心与关键技术部分,主要包括:
    通过对卫星测量数据的分析研究,建立行星际空间等离子体电子密度随日心距变化的理论模型;研究太阳宁静期间日地行星际等离子体云及CMEs在行星际传播时导致的高密度等离子云的射电辐射机理;计算相应的射电辐射亮温;对比分析LASCO日冕仪及Nancay射电日光仪观测到的CME图像。
    研究辐射测量、孔径综合、二元干涉测量原理;分析天线阵稀疏孔径设计对提高综合孔径辐射计空间分辨率的意义;研究解决稀疏孔径设计问题的算法;利用SA算法,设计稀疏孔径设计的具体流程;数值模拟旋转扫描阵列的稀疏孔径设计,包括:圆环、圆平面阵列零冗余及阵列框架重心逼近圆心、低冗余度设计。
    研究辐射计成像系统的构成、主要参数,分析辐射计图像的特征;分析日地行星际高密度等离子体云及天体的辐射计成像的可行性;设计模拟日地行星际高密度等离子体云和天体辐射计图像的具体方法;对预计的SPORT计划中行星际天体和ICMEs导致的高密度等离子云的辐射计图像进行模拟和分离。
Solar-terrestrial interplanetary space is filled with solar wind, which is the chain ofsolar-terrestrial system. The variation of geospace environment, which is provoked byfluctuation of solar wind that caused by solar activities, will induce a serious of eventsthat influence human activities. CMEs are the solar active phenomenon with maximumdimensions. It is of great scientific interest that the influence of disastrous space weatheron geospace and human activities is avoided or reduced via forecast of geospaceenvironment variation which is induced by CMEs.
    At present, it is a main trend on space weather study that interplanetary turbulenceand geomagnetic activity caused by CMEs are considered as an interconnection globalsystem. SPORT (Solar Polar Orbit Radio Telescope) project is a solar wind monitoringmission proposed by Center for Space Science and Applied Research, Chinese Academyof Sciences. It conceive that the high density plasma clouds in interplanetary spacewhich induced by the propagation of CMEs are imaged firstly by radiometer withmicrowave or meter waves. Consequently, the forecast or earlywarning of geospaceweather will be obtained. This project is of great scientific interest and importantapplied prospect. It will have significant effect on study and application ofsolar-terrestrial space weather system and contribute to ILWS project. Research contentsin this paper, which are part of the core and key techniques of SPORT, mainly conclude:
     The theoretical model of electrons density variation of interplanetary spaceplasma with heliocentric distance is established via analyses and study onsatellite measured data. The radiation mechanisms of space plasma in times ofquiet sun and of high density plasmas clouds in times of CMEs propagating ininterplanetary space are researched. The radio emission brightnesstemperatures of them are also calculated. CME image that obtained byLASCO and NRH are analyzed contrastively.
     Radio emission measurement, aperture synthesis and two-elementinterferometry theory are studied. The significance of thinned antenna arraydesign on improving spatial resolution of synthesis aperture radiometer isanalyzed. Algorithms that can be used to resolve the problem of thinnedantenna array design are investigated. Specific flow of the thinned antennaarray design with SAA is devised. The design of thinned antenna array withrotating scanning mode are simulated, which including the design of zero
    redundancy, low redundancy besides the framing gravity center approachcenter of circle of ring arrays and circle plane arrays.The composition and main parameters of image-forming system of radiometerare studied. The characteristics of radiometer images are analyzed. Thefeasibility of obtaining radiometer image of high density plasma clouds andcelestial bodies in solar-terrestrial interplanetary space is analyzed. Simulationand separation of the image are realized by use of the detailed method ofsimulating that given in the paper.1. Study on radio emission of solar-terrestrial interplanetary plasma cloudsElectrons density, temperature and other parameter values of plasma in 0.00465-1AUinterplanetary space are statistically listed by using the data in reference [62, 65] andmeasurement data from Mariner l0. Furthermore, CMEs events that accompanied by solar radiobursts and plasma values near L1 point that affected by these events are also statistically listed.On the basis of study of the varied tendency of number density of solar wind corpuscularstream with the variation of heliocentric distance, the corresponding electrons density ofplasma in interplanetary space is estimated as per ne ' = 2n/ 2×4.73×ne . Moreover,other parameter values of the plasma are also calculated.The variation of interplanetary space plasma parameters in times of CMEspropagating are analyzed on the basis of study of the various radiation mechanisms ofspace plasma. The results show that the high density plasma clouds that induced byICMEs still belong to the category of non-relativistic plasma in despite of differentinfluence in interplanetary space that induced by various ICMEs. Their mainmechanisms of radio radiation are bremsstrahlung, a small amount of cyclotronradiation and a still weaker recombination radiation. The bremsstrahlung brightnesstemperatures of space plasma in times of quiet Sun and of high density plasma clouds intimes of CMEs propagating in 0.00465-1AU interplanetary space are calculated. Thecalculated results show that the detective frequency of radiometer with 1-3K resolutionshould be selected at 30±5MHz when taking image of the high density plasma clouds.Also, solar microwave bursts which are associated with CMEs in the same periodare investigated. The results show that the main radiation mechanisms are thermalbremsstrahlung, cyclotron resonance radiation, plasma radiation and electroniccyclotron maser radiation. The images of CME, which occurred in 1998.4.20, thatobtained respectively by LASCO and NRH are analyzed contrastively. The study show
    that the radiation mechanisms of it that observed by LASCO are recombinationemission and bremsstrahlung, and the radiation mechanism of it that observed by NRHis bremsstrahlung.2. Study on thinned antenna array designIn this paper, SAA is selected to realize the thinned antenna array design via studyof various algorithms which can be used to resolve the thinned antenna array designproblem. On the basis of study of principle, cooling schedule and basic characteristicsof SAA, t 0= 900, α = 0.9999and L k= 100n are selected after a large number ofnumerical simulations. Furthermore, functions of state generation, state acceptance,temperature refreshment and termination criterion of extrinsic cycle are established. Thespecific flow of thinned antenna array design is also provided.Solutions are obtained for ring arrays and planar arrays with in a circle with 7-10elements in the paper. The results show that zero redundancy and low redundancybesides the framing gravity center approach center of circle of the ring arrays and planararrays with in a circle are obtained. Various design schemes have different feature andsuperiority. Therefore, the appropriate scheme should be selected according to thescientific objects and requirements as practically applying.3. Study on the simulation and separation of radiometer images of high densityplasma clouds and celestial bodies in interplanetary spaceSo far no precedents have been discovered that radiometer is used to detectinterplanetary solar wind. In this paper, the feasibility of obtaining radiometer images ofhigh density plasma clouds and celestial bodies in solar-terrestrial interplanetary spaceis studied. Furthermore, the significance of simulating and separating the images isanalyzed. The detailed method of simulating and separating the images is alsoinvestigated.The related parameters as simulating are set as follows. The imaging domain ofspace-borne radiometer is 2×2AU. The pixel resolution is 0.008AU. The grey scale ofimage is 64. The grey scale of summation of cosmic background radiation, thermalnoise of antennas and receivers is 12. The results of numerical simulation show that it isa feasible plan to simulate and separate the radiometer images of high density plasmaclouds and celestial bodies.In general, the selected topic of this paper has not only significance of theoreticalstudy but also application prospect of vital space exploring projects. The research
    findings of this paper provide important theoretic basis and powerful technical supportfor the application of radiometer to space detection. Therefore, a new clew that is worthusing for reference is also provided for detecting interplanetary solar wind.
引文
[1] H. Opgenoorth, M. Guhathakurta, W., T. Kosugi, L. Zelenyi. International living with a star (ILWS), a new collaborative space program in solar, heliospheric and Solar-Terrestrial physics [J]. Geophysical research abstracts, 2003, 5: EAE03-A-05360.
    [2] G. L. Withbroe, M. Guhathakurta, J.T. Hoeksema. Origins of the international living with a star program [J]. Advances in space research, 2005, 35(1): 40-43.
    [3] W. William Liu. Canadian space environment program and international living with a star [J]. Advances in space research, 2005, 35(1): 51-60.
    [4] ILWS missions [EB/OL]. http://ilws.gsfc.nasa.gov/ilws_missions.htm.
    [5] R. G. Marsden, E. J. Smith. Ulysses: a summary of the first high-latitude survey [J]. Advances in space research, 1997, 19(6): 825-834.
    [6] Stein V.H. Haugan. Coordinating with SOHO [J]. Advances in space research, 2005, 36(8): 1557-1560.
    [7] A. Chilingarian, K. Arakelyan, K. Avakyan, V. Babayan, N. Bostanjyan, S. Chilingarian, V. Danielyan, A. Daryan, A. Egikyan, V. Eganov et al,. Correlated measurements of secondary cosmic ray fluxes by the aragats space-environmental center monitors [C]. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 2005, 543(2-3): 483-496.
    [8] Mission objectives [EB/OL]. http://sunland.gsfc.nasa.gov/smex/trace/mission/obj.htm.
    [9] S. N. Kuznetsov, K. Kudela, S. P. Ryumin and Y. V. Gotselyuk. CORONAS-F satellite: tasks for study of particle acceleration [J]. Advances in space research, 2002, 30(7): 1857-1863.
    [10] The genesis project: catching the solar wind [EB/OL]. http://www.space.com/ missionlaunches/ missions/genesis_solar_010727-1.html.
    [11] C. Wigger, W. Hajdas, D. M. Smith, M. Güdel, K. Hurley, A. Mchedlishvili, A. Zehnder. Observing gamma ray bursts with the RHESSI satellite [C]. Nuclear physics B -proceedings supplements, 2004, 132: 331-334.
    [12] Solar radiation & Climate experiment [EB/OL]. http://www.orbital.com/NewsInfo/ Publications/SORCEfact.pdf.
    [13] J. T. Mueller, H. Maldonado, A. S. Driesman. Stereo: the challenges [J]. Acta astronautica, 2003, 53(4-10): 729-738.
    [14] L. M. Zelenyi, A. A. Petrukovich. Prospects of Russian participation in the international LWS program [J]. Advances in space research, 2005, 35(1): 44-50.
    [15] T. Shimizu and Solar-B Team. Solar-B [J]. Advances in space research, 2002, 29(12): 2009-2015.
    [16] Solar dynamics observatory [EB/OL]. http://sdo.gsfc.nasa.gov/
    [17] Eckart Marsch, Richard Marsden, Richard Harrison, Robert Wimmer-Schweingruber, Bernhard Fleck. Solar Orbiter—mission profile, main goals and present status [J]. Advances in space research, 2005, 36(8): 1360-1366.
    [18] 空间太阳望远镜 [EB/OL]. http://www.bao.ac.cn/bao/SST.
    [19] “L1+极轨”日地空间扰动因果链探测计划-夸父计划[EB/OL]. http://space.pku.edu.cn /kuafu/intro.php.
    [20] 刘振兴.中国空间风暴探测计划和国际与日共存计划[J].地球物理学报.2005, 48(3): 724-730.
    [21] Le Vine D M, Griffis A J, Swift C T, et al. ESTAR: a synthetic aperture microwave radiometer for remote sensing applications [C]. Proceedings of the IEEE, 1994, 82(12): 1787-1801.
    [22] Jackson T J, Le Vine D M, Schiebe F R, et al. Large area mapping of soil moisture using passive microwave radiometry in the Washita'92 experiment [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 1993, 3: 1009-1012.
    [23] Le Vine D M, Jackson T J, Swift C T, et al. ESTAR measurements during the southern great plains experiment (SGP99) [J]. IEEE Trans GRS, 2001, 39(8): 1680-1685.
    [24] Guha A, Jacobs J M, Jackson T J, et al. Soil moisture mapping using ESTAR under dry conditions from the southern great plains experiment (SGP99) [J]. IEEE Trans GRS, 2003, 41(10): 2392-2397.
    [25] Le Vine D M, Koblinsky C, Howden S, et al. Salinity measurements during the gulf stream experiment [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 2000, 6:2537-2539.
    [26] Le Vine D M, Haken M, Swift C T. Development of the synthetic aperture radiometer ESTAR and the next generation [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 2004, 2:1260-1263.
    [27] Lambrigtsen B, Wilson W, Tanner A, et al. GeoSTAR-a microwave sounder for geostationary satellites [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 2004, 2: 777-780.
    [28] Tanner A B, Wilson W J, Kangaslahti P P, et al. Prototype development of a geostationary synthetic thinned aperture radiometer, GeoSTAR [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 2004, Ⅱ: 1256-1259.
    [29] Rautiainen K, Valmu H, Jukkala P, et al. Four-element prototype of the HUT interferometric radiometer [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 1999, 1: 234-236.
    [30] Rautiainen K, Butora R, Auer T, et al. Development of airborne aperture synthetic radiometer (HUT-2D) [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 2003, 2: 1232-1234.
    [31] Xiaolong Dong, Ji Wu, Suyun Zhu, et al. Design and implementation of CAS C-band interfereometric synthetic aperture radiometer [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 2000, 2: 866-888.
    [32] Hao Liu, Ji Wu, Shouzheng Ban, et al. The CAS airborne X-band synthetic aperture radiometer: system configuration and experimental results [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 2004, 3: 2230-2233.
    [33] 马腾才,胡希伟.陈银华[M].等离子体物理原理.安徽:中国科技大学出版社,1988,359-370.
    [34] 尤峻汉.天体物理中的辐射机制[M].北京:科学出版社,1983.
    [35] 赵仁扬.太阳射电辐射理论[M].北京:科学出版社,1999.
    [36] Bekefi G., Radiation Processes in Plasmas [M]. New York: Wiley, 1966.
    [37] 朱士尧.等离子体物理基础[M].北京:科学出版社,1983,19-30.
    [38] 杨丕博.天体辐射理论引论[M].武汉:华中师大出版社,1996,1-8.
    [39] 黄佑然.唐玉华.许敖敖等.实测天体物理学[M].北京:科学出版社,1987,11-20.
    [40] 应国玲.周长宝.陈怀迁.微波辐射计[M].北京:海洋出版社,1992,8-13.
    [41] Fawwaz T. Ulaby, Richard K. Moore, Adrian K Fung. Microwave remote sensing [M]. Massachusetts: Addison-Wesley publishing company, 1981.
    [42] K R. Lang. Astrophysical formulae [M]. Berlin: Springer, 1999.
    [43] S. A. Kaplan, V. N. Tsytovich. Plasma astrophysics [M]. New York: Pergamon, 1973.
    [44] 涂传诒等编著.日地空间物理学(行星际与磁层)[M].北京:科学出版社,1988.
    [45] Kulsrud, R. M.. Handbook of plasma physics, vol. 1: basic plasma physics [M]. New York: North Holland, 1983.
    [46] T. J. M. Boyd, J. J. Sanderson. The physics of plasmas, vol. 1, 89 [M]. New York: Cambridge university press, 2003.
    [47] George B. Rybicki, Alan P. Lightman. Radiative processes in astrophysics [M]. New York: Wiley, 1979.
    [48] 章振大.日冕物理[M].北京:科学出版社,2000.
    [49] 林元章.太阳物理导论[M].北京:科学出版社,2000.
    [50] 涂传诒等.日地空间物理学(行星际与磁层)[M].北京:科学出版社,1988.
    [51] Gosling J T. Coronal mass ejections and magnetic flux ropes in interplanetary space [G]. In: Russell C T, Priest E R, Lee L C ed. Physics of magnetic flux ropes, Geophys. Monogr. Ser. Washington D C, 1990, 58: 343-352.
    [52] Neugebauer M, Goldstein R. Particle and field signatures of coronal mass ejections in the solar wind [G]. In: Crooker N, Joselyn J A, Feynman J ed., Coronal Mass Ejections, Geophys. Monogr. Ser. Washington D C, 1997, 99: 245-251.
    [53] Solar and space weather radiophysics [C/OL]. http://ovsa.ovro.caltech.edu/fasr/author_final. html.
    [54] 曹晋滨,李磊,吴季等译.太空物理学导论[M].北京:科学出版社.2001.
    [55] 章振大.太阳物理学[M].北京:科学出版社.1992.
    [56] Gosling J T. Coronal mass ejections: An overview [G]. In: Crooker N, Joselyn J A, Feynman J ed., Coronal Mass Ejections, Geophys. Monogr. Ser. Washington D C, 1997, 99: 9-16.
    [57] 杜丹,李昌兴,王赤.Helios 飞船观测到的行星际日冕物质抛射事件[J].空间科学学报,2004, 24(6): 421-433.
    [58] Liu Y, Richardson J D, Belcher J W. A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4AU [J]. Planetary and space science, 2005, 53(1-3):3-17.
    [59] 李春生,傅其骏.日冕物质抛射与共生射电爆发的地面和空间联测研究[J].天文学进展,2002, 20(3): 211-222.
    [60] Xie Rui-xiang, Wang Min, Yan Yi-hua and Duan Chang-chun. Preliminary analysis of a joint observation of the complex solar radio burst of 1998 September 23 [J]. Chinese astronomy and astrophysics, 2002, 26(3): 308-319.
    [61] 李春生,傅其骏. Astros. Rep. [J]. 2000, 36: 24.
    [62] 赵仁扬,金声震,傅其骏.太阳射电微波爆发[M].北京:科学出版社,1997:30-35
    [63] 汪敏,傅其骏,谢瑞祥. 太阳微波尖峰辐射的高时间、高频率分辨率偏振观测[J].天体物理学报,2000, 20(2): 179-188.
    [64] K R. Lang. Astrophysical Formulae [M]. Berlin: springer, 1999.
    [65] Zheleznyakov, V. V. Radio Emission of the Sun and planet [M]. Oxford: pergamon press, 1970.
    [66] E. C. Sittler, Jr., J. D. Scudder. An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76AU: Voyager 2 and Mariner 10 [J]. Journal of geophysical research, 1980, 85(A10): 5131-5137.
    [67] A. Dal Lago, R. Schwerin, G. Stenborg and W.D. Gonzalez, Coronal mass ejection speeds measured in the solar corona using LASCO C2 and C3 images [J]. Advances in space research, 2003, 32(12): 2619-2624.
    [68] Maia, D., Pick, M., Kerdraon, A., Howard, R., Brueckner, G. E., Michels, D. J., Paswaters, S., Schwenn, R., Lamy, P., Llebaria, A., Simnett, G., Aurass, H. Joint Nan?ay Radioheliograph and LASCO observations of coronal mass ejections -I. The 1 July 1996 event 1998 [J]. Solar physics, 181:121-132.
    [69] 张祖荫,林士杰.微波辐射测量技术及应用[M].电子工业出版社,1995.
    [70] 董晓龙,吴季,黄永辉.综合孔径微波辐射计及其反演成像[J].遥感技术与应用,2000,15(2): 74-78.
    [71] F T Ulaby, R K Moore, A K Fung. Microwave remote sensing, active and passive, vol.1: microwave remote sensing fundamentals and radiometry [M]. Ontario: Addison-Wesley, 1981.
    [72] 姜景山.空间科学与应用[M].北京:科学出版社,2001.
    [73] Ji Wu, Yonghui Huang, Xiaolong Dong. Image retrieval algorithm of two-dimensional synthetic aperture radiometer [C]. Proceedings of international geoscience and remote sensing symposium (IGARSS), 2001, 7: 3268-3270.
    [74] Jansky, K G. Directional studies of atmospherics at high frequencies [J]. Proc. IRE, 1932, 20: 1920-1932.
    [75] McCready, L L, Pawsey, J L, Payne-Scott, Ruby. Solar radiation at radio frequencies and its relation to sunspots [C]. Proceedings of the royal society of London. Series A, mathematical and physical sciences. 1947, 190(1022): 357-375.
    [76] 向德琳,射电天文观察[M].北京:科学出版社,1990: 13.
    [77] Napier, P J Thompson, A Richard. The very large array: design and performance of a modern synthesis radio telescope [C]. Proc. IEEE, 1983, 71(11): 1295-1320.
    [78] Very Long Baseline Array (VLBA) [EB/OL]. http://www.aoc.nrao.edu/
    [79] Thompson A R, Moran J M, Jr Swenson G W. Interferometry and synthesis in radio astronomy [M]. New York: Wiley, 1986.
    [80] 黄永辉.综合孔径成像微波辐射计反演算法及实验研究[D].中国科学院空间科学与应用研究中心硕士论文,2001.
    [81] 吴季,刘浩,孙伟英,姜景山.综合孔径微波辐射计的技术发展及其应用展望[J].遥感技术与应用,2005, 20(1): 24-29.
    [82] 何宝宇.综合孔径微波辐射计空间频率采样研究[D].中国科学院空间科学与应用研究中心硕士论文,2003.
    [83] 黄永辉,吴季.二维综合孔径微波辐射计成像理论与方法研究[J].电子学报,2002, 30(5): 697-701.
    [84] 李靖,王涛,张升伟,姜景山.利用 BG 算法提高微波辐射计的空间分辨率[J].遥感学报,2004, 8 (5): 409-413.
    [85] 向德琳,射电天文观测[M].北京: 科学出版社,1990: 157-158.
    [86] What is the VLA [EB/OL]? http://www.aoc.nrao.edu/vla/html/VLAintro.shtml.
    [87] Navy prototype optical interferometer [EB/OL]. http://ftp.nofs.navy.mil/projects/npoi/.
    [88] Navy prototype optical interferometer [EB/OL]. http://www.answers.com/topic/navy- prototype-optical-interferometer.
    [89] Cambridge optical aperture synthesis telescope [EB/OL]. http://www.mrao.cam.ac.uk/ telescopes/coast/.
    [90] C.O.A.S.T. technical details [EB/OL]. http://www.mrao.cam.ac.uk/telescopes/coast/coast. const.html.
    [91] 文建国.光综合孔径望远镜子孔径阵列的优化和计算机仿真[D].中国矿业大学博士论文,2003.
    [92] 王凌.智能优化算法及其应用[M]. 北京:清华大学出版社,2001.
    [93] Nirwan Ansari, Edwin Hou. Computational intelligence for optimization [M]. London: Kluwer Academic Publishers, 1997.
    [94] 李世炳,邹忠毅.简介导引模拟退火法及其应用[J].物理双月刊,2004,24(2): 307-319.
    [95] 康立山,谢云,尤矢勇等.非数值并行算法(第一册)[M].北京:科学出版社,1994(4): 1-10.
    [96] T. J. Cornwell. A novel principle for optimization of the instantaneous Fourier plane coverage of correlation arrays [J]. IEEE transactions on antennas and propagation, 1988, 36(8): 1165-1167.
    [97] Kumar Ashutosh Singh, Atreya Mukherjee, M K Tiwari. Incorporating kin selection in simulated annealing algorithm and its performance evaluation [J]. European journal of operational research, 2004, 158(1): 34-45.
    [98] 雷功炎.数学模型讲义[M].北京大学出版社,1999.
    [99] 舒宁.微波遥感原理[M].武汉:武汉大学出版社,2001.
    [100] 李长风.3mm 微波辐射成像系统的研制[D].华中科技大学硕士学位论文,2004.
    [101] 谢寿生,徐永进.微波遥感技术与应用[M].北京:电子工业出版社, 1987.
    [102] 吴樊,王 超,张卫国,张 红.机载综合孔径辐射计图像和光学图像融合及评价[J].遥感技术与应用,2005,20(4): 425-429.
    [103] 许殿元,丁树柏.遥感图像信息处理[M].北京:宇航出版社,1990.
    [104] 常庆瑞,蒋平安.遥感技术导论[M]. 北京:科学出版社,2004.
    [105] 黄全亮,张祖荫,郭伟.复杂场景微波辐射图像的模拟[J].红外与激光工程,2003,32(1): 87-91.
    [106] 黄全亮,张祖荫,郭伟.地基毫米波辐射图像模拟生成方法的研究[J].红外与毫米波学报,2002,21(6): 439-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700