ZnO/Au纳米复合物光学性质及利用其拉曼信号实施对蛋白分子的检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种具有六方结构的Ⅱ-Ⅵ族宽带隙半导体材料,室温下带隙宽度高达3.3eV。由于氧化锌具有较高的激子束缚能(60meV),保证了其在室温下较强的激子发光,因而被认为是制作紫外半导体激光器的合适材料。但是其材料本身也具有一些缺陷,金属半导体材料能够利用其金属特性弥补半导体材料的缺陷,使其获得优良的特性,这为材料进一步在器件上应用提供了材料基础。ZnO除了做器件材料外,在生物医药、涂料、食品、化妆品等与人们生活密切相关的各个领域被广泛关注。
     本文通过对ZnO及ZnO/Au纳米复合物的制备和光学性质研究,实现了ZnO/Au纳米复合物对未知蛋白分子的超灵敏检测。具体研究内容如下:
     1.还原法制备水溶性ZnO/Au纳米复合粒子,并研究其光学性质。透射电镜表征了ZnO/Au纳米粒子的晶体形貌和结构;紫外吸收光谱表明ZnO/Au纳米复合物的形成,在250-400 nm波长范围内,对应ZnO的激子吸收,在400-700 nm波长范围内,对应Au的等离子体吸收。结合光谱分析和结构分析确定ZnO和Au之间存在着界面电荷转移。光致发光谱显示了Au对ZnO发光性质的影响。在325nm激光激发下观察到了ZnO/Au纳米复合物的共振拉曼光谱随Au含量变化的规律。
     2.ZnO/Au纳米复合物的生物相容性处理研究,通过改变Au与ZnO的复合的比例关系确定能够使ZnO在水中稳定性好的ZnO,Au的最优比例关系。
     3.采用三明治夹心结构的免疫层析原理研究利用ZnO的共振拉曼信号作为指纹特征来检测未知生物分子。ZnO/Au纳米复合物与人IgG偶联后可以作为一种探针,具有较强的共振拉曼信号。这种方法有较高的检测灵敏度.
     4.通过改变溶液的浓度及盐离子参数获得不同形貌的ZnO/Au纳米复合物,并研究其光学结构特性。
Zinc oxide is aⅡ-Ⅵwide band-gap(3.3eV) semiconductor with wurtzite crystal structure.Due to the large exciton binding energy of 60meV,it is regarded as one of the most promising materials for fabricating efficient ultraviolet(UV) and blue light emitting devices.But the materials have some defects themselves, metal-semiconducting material can remedy defects of semiconducting material by the properties of metals.They would get excellent properties and provide base of the future application in devices.Otherwise,ZnO has also been widely focused in many fields such as medicine,solar energy cell,food,cosmetics and so on.
     In this thesis,ZnO nanomaterials were chosen as the subject of investigation, which was focused on the synthesis and characterization of water-soluble ZnO/Au nanocomposites.ZnO/Au nanocomposites were used for detecting unknown protein molecule base on Resonant Raman Scattering.The details are as follows:
     (1) The ZnO/Au nanocomposites were successful prepared by reduction reaction. The size distribution and morphology of the ZnO/Au nanocomposites were characterized by the TEM.The UV-vis absorption spectra of ZnO/Au nanocomposites exhibited well-defined exciton band of ZnO quantum dots (QDs) in the ultraviolet region(250-400 nm).The plasmon absorption band of Au nanocrystals was observed in the visible region(400-700 nm).Combined with optical spectra and structure analysis,the electron transfer between ZnO and Au may be thought.The photoluminescence of ZnO/Au nanocomposites showed the effect of Au on ZnO nanocomposites.Furthermore,the resonance Raman scattering of the ZnO/Au nanocomposites was observed with excitation of 325 nm light from He—Cd laser.The amount of Au coating on the surface of ZnO is important for obtaining different intensity of enhanced Raman scattering.
     (2) The biocompatible ZnO/Au nanocomposites were studied by changing the the amount of Au on ZnO nanoparticles.Au layer on ZnO surface has great effect on the ZnO in aqueous solution due to the interaction between ligand on Au and water molecule.
     (3) A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to secondary protein by eletrostatic interaction.The detection of proteins was achieved by an antibody-based sandwich assay.A first antibody,which could be specifically recognized by target protein,was attached to a solid silicon surface.The ZnO/Au protein probe could specifically recognize and bind to the complex of the target protein and first antibody.This method on the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.
     (4) Different morphology of ZnO/Au nanocomposites was obtained by changing the salt concentration of solution.We also study on the optical properties of these nanocomposites.
引文
[1]张阳德.纳米生物材料学[M].北京:化学工业出版社,2005.5.
    [2]Henglein A.Small-particle research:phsicochemical properties of extremely-small colloidal metal and semiconductor particlcs[J].Chem.Rev,1989,89(8):1861-1873.
    [3]张阳德.纳米生物分析化学与分子生物学[M].北京:化学工业出版社,2005.7.
    [4]王彦广.刘洋.化学标记与探针技术在分子生物中的应用.北京.化学工业出版社,2007,6
    [5]Koglin E,Sequaris J M.Topics in Current Chemistry.Berlin:Springer-Verlag,1986,134.
    [6]Nabiev I R,Efremov R G,Chumanov G D.Surface-enhanced Raman Scattering and its application to study of biological molecules[J].Sov Phys Usp.,1988,31:241-247.
    [7]Cotton T M.in Surface and interfacial aspects of biomedical polymers[M].New York:Plenum Press,1985.
    [8]Cotton T M.in Spectroscopy of Surfaces[M].New York:Wiley,1988.
    [9]Cotton T M,Kim J H,Chumanov G D.Application of surface-enhanced Raman spectroscopy to biologica-systems[J].J Raman Spectrosc.,1991,22:729-742.
    [10]武建劳,宜贤,傅克德,等。表面增强拉曼散射概述光散射学报,1994,6(1):52-62
    [11]周光明,盛蓉生,曾云鹦.表面增强拉曼光谱技术应用于生物体系的最新进展[J].分析测试学报,1996 15(6):85-91.
    [12]刘桂强,孟耀勇,刘颂豪.拉曼光谱技术在生物医学中的应用[J].激光生物学报,2004 13(2):136-142.
    [13]Kneipp K.High-sensitive SERS on colloidal silver particles in aqueous solution[J].Exp Tech Phys.,1998,36:161-165.
    [14]Kneipp K,Wang Y,Kneipp H,et al.An approach to single molecule detection using surface-enhanced resonance Raman scattering(SERRS):a study using Rhodamine 6G[J].Appl spectrosc.,1995,49:780-784.
    [15]Kneipp K,Kneipp H,Itzkan I,et al.Surface-enhance non-linear Raman scattering at the single molecule level[J].Chem Phys.,1999,247:155-162.
    [16]Nie S,Emory S R.Probing single molecules and single nanoparticles by surface-enhanced Ramanscattering[J].Science,1997,275:1102-1106.
    [17]Thomas E Rohr,Therese Cotton,Ni Fan,et al.Immunoassay employing surface-enhanced Raman spectroscopy[J].Anal Biochem.1989,182:388.
    [18]Dou X,Takama T,Yamaguchi Y,et al.Enzyme Immunoassay Utilizing Surface-Enhanced Raman Scattering of the Enzyme Reaction Product[J].Anal Chem,1997,69:1492.
    [19]徐抒平,王连英,徐蔚青.SERS标记纳米粒子用于免疫识别[J].高等学校化学学报,2003,24(5):900.
    [20]Manfait M,Morjani h,Millot J M,et al.Drug-target interactions on a single living cell:an approach by optical microspectroscopy[J].Proc SPIE-lnt Soc Opt Eng.,1990,1403:695-709.
    [21]Manfait M,Morjani H,Nabiev I.Molecular events on simple living cancer cells as studied by spectrofluorometry and micro-SERS Raman spectroscopy [J].J Cell Pharmacol 1992,3:120-125.
    [22]Efrima S,Bronk B V.Silver colloids impregnating or coating bacteria[J].J Phys Chem.,1998,102:5947-5950.
    [23]Kneipp k,Haka A S,Kneipp H K,et al.Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticels[J].Appl Spectrosc,2002,56(2):150-154.
    [24]Nithipatikom K,Michael J M,Sharon R h,et al.Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells[J].Anal biochem.,2003,322:1 98-207.
    [25]Ishikawa M,Maruyama Y,Ye J Y,et al.Single-molecule imaging and spectroscopy of adenine and an analog of adenine using surface-enhanced Raman scattering and fluorescence[J].J Lumin.,2002,98:81-89.
    [26](?) (?)zg(?)r,Ya.I Alivov,Liu C,et al.A comprehensive review of ZnO materials and devices[.T].J.Appl.Phys,2005,98:041301-1-041301-103.
    [27]Takagahara T.Localization and energy transfer of quasi-two-dimensional excitons in GaAs-AlAs quantum-well heterostructures[J].Phys.Rev.B,1985,31:6552-6556.
    [28]Bi Z,Zhang J W,Yang X D,et al.Optical and structural properties of self-assembled ZnO QD chains by L-MBE[J].J.Crys.Growth,2007,303:407-413.
    [29]Liang H Q,Liu Z P,Zhao J L,et al.Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors[J].Materials Letters,2008,62:1797-1800.
    [30]Sun T J and Qiu J S.Fabrication of ZnO microtube arrays via vapor phase growth[J].Materials Letters,2008,62:1528-1531.
    [31]Mamoru Furuta,Takahiro Hiramatsu,Tokiyoshi Matsuda,et al Oxygen bombardment effects on average crystallite size of sputter-deposited ZnO films[J].Journal of Non-Crystalline Solids,2008,354:1926-1931.
    [32]Huang B,Li J,Wu Y B,et al.Wu Optical constants of transparent ZnO films by RF magnetron sputtering[J].Materials Letters,2008,62:1316-1325.
    [33]Sahu D R.Studies on the properties of sputter-deposited Ag-doped ZnO films[J].Microelectronics Journal,2007,38:1252-1258.
    [34]Kiriakidis G,Suchea M,Christoulakis S,et al.Structural characterization of ZnO thin films deposited by dc magnetron sputtering[J].Thin Solid Films,2007,515:8577-8581.
    [35]Tsai H Y.Characteristics of ZnO thin film deposited by ion beam sputter[J]Journal of Materials Processing Technology,2007,192:55-59.
    [36]Lamb D A and Irvine SJ C.Growth properties of thin film ZnO deposited by MOCVD with n-butyl alcohol as the oxygen precursor[J].J.Crystal Growth,2004,273:111-117.
    [37]Koki Saito,Yasushi Hosokai,Kouhei Nagayama,etal.MOCVD growth of monomethylhydrazine-doped ZnO layers[J].J.Crystal Growth,2004,272:805-810.
    [38]Barbara Maecka,Ewa Drod Ciela and Andrzej Maecki.Mechanism and kinetics of thermal decomposition of zinc oxalate[J].Thermochimica Acta,2004,423:13-19.
    [39]Liang H Q,Liu Z P and Liu Z J.Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors[J].Materials Letters,2008,62:1797-1802.
    [40]Kong X Y and Wang Z L.Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes,nanosprings,and nanospirals[J].Appl.Phys.Lett,2004,84:975-982.
    [41]丛秋滋.多晶二维X射线衍射阴.北京:科学出版社,1997,36.
    [42]陈治明,王建农.半导体器件的材料物理学基础[M].北京:科学出版社,1999.263.
    [43]MaJ G,Liu Y C,Xu C S,et al.Preparation and characterization of Zn0 particles embedded in Si02matrix by reactive magnetron sputtering[J].J Appl Phys,2005,97:103509 1-6.[50]Kong X Y,Ding Y,Wang Z L.sicence,2004,303:1348-1350.
    [44]Spanhel L,Anderson M A.Semiconductor Clusters in the Sol-Gel Process:Quantized Aggregation,Gelation,and Crystal Growthin Concentrated ZnO Colloids[J].J Am Chem Soc,1991,113:2826-2833.
    [45]Sakohara S,Ishida M.Anderson M A.Visible Luminescence and Surface Properties of Nanosized ZnO Colloids Prepared by Hydrolyzing Zinc Acetate[J].J Phys Chem B,1998,102:10169-10175.
    [46]lenglein A.Physicochemical Properties of Small Metal Particles iii Solution Microelectrode Reactions.Chemisorption,Composite Metal Particles,and the Atom-To-Metal Transition[J].J Phys Chem,1993,97:5457-5471.
    [47]Hirakawa T.Kamat P V.Charge Separation and Catalytic Activity ofAg@TiOz Core-Shell Composite Clusters under UV-Irradiation[J].JAm Chem Soc,2005,127:3928-3934.
    [48]Wang,X,Summers C J。 Wang Z L.Self-attraction among aligned AulZnO nanorods under electron beam[J].Appl Phys Lett,2005,86:013111 1-3.beam[J].Appl Phys Lett,2005,86:013111 1-3.
    [50]Kong X Y,Ding Y,Wang Z L.sicence,2004,303:1348-1350.
    [51]Kong X Y,Wang Z L.Spontaneous Polarization-Induced Nanohelixes,Nanosprings,and Nanorings of Piezoelectric Nanobelts[J].Nano.Lett,2003,3:1625-1631.
    [52]Kong X Y,Wang Z L.Appl.Phys.Lett,84,2004,975.
    [53]Yang R S,Ding Y,Wang Z L.Deformation-Free Single-Crystal Nanohelixes of Polar Nanowires[J].Nano.Lett,2004,4:1309-1312.
    [54]Wang Z L,Kong X Y,Zuo J M.Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces[J].Phys.Rev.Lett,2003,91:185502-185506.
    [55]Lao J Y,Huang J Y,Wang D Z,et al.ZnO Nanobridges and Nanonail[J].Nano.Letters, 2003,3:235-238.
    [56]Tong Y H,Liu Y C,Xu C S,et al.Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes[J].J.Phys.Chem.B,2006,110:14714-14718.
    [57]Soon-Ku Hong,Hang-Ju Ko,Chen Y F,et al Control of ZnO film polarity[J].J.Vac.Sci.Technol.B,2002,20:1656-1660.
    [58]Pan J,Pong B J,Chou B W,et al.Photoluminescence of nitrogen-doped ZnO [J].physica status solidi (c),2006,3:611-618.
    [59]Song J H,Wang X D,,Wang Z L.,et al.Elastic Property of Vertically Aligned Nanowires[J].Nano Letters,2005,5:1954-1960.
    [60]Sasa S,Hayafuji T,Kawasaki M,et al.High-field characteristics of ZnO and ZnO/ZnMgO heterostructures[J].physica status solidi (c) 2008,5:115-160.
    [61]Wang X D,Zhou J,Song J H,et al.Piezoelectric-Field Effect Transistor and Nano-Force-Sensor Based on a Single ZnO Nanowire[J].Nano Letters,2006
    [62]Kong X,Wang Z L.Spontaneous Polarization and Helical Nanosprings of Piezoelectric Nanobelts[J].Nano Letters,2003,3:1625-1629.
    [63]Wang Z L,Kong X Y,Ding Y,et al.Semiconducting and Piezoelectric Oxide NanostructuresInduced by Polar Surfaces[J].Adv.Functional Mater.2004,14:944-948.
    [64]Brent A.Buchine,William L.Hughes,Zhong L.Wang,et al.Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts [J].Nano Letters,2006,6:1155-1160.
    [65]Zhao M H,Wang Z L,Scott X.Mao.Piezoelectric Characterization on Individual Zinc Oxide Nanobelt Under Piezoresponse Force Microscope [J].Nano Letters,2004,4:587-591.
    [66]Wang Z L,Song J H.Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J].Science,2006,312:242-244.
    [67]Zaouk D,Zaatar Y,Asmar R,et al.Piezoelectric zinc oxide by electrostatic spray pyrolysis[J].Microelectronics Journal,2006,37:1276-1282.
    [68]Zhou J,Xu N S,Wang Z L.Dissolving Behavior and Stability of ZnO Wires in Biofluids-a Study on Biodegradability and Biocompatibility of ZnO Nanostructures[J].Adv.Mater,2006,18:2432-2435.
    [69]Babita Baruwati,D.Kishore Kumar and Sunkara V.Manorama Hydrothermal synthesis of highly crystalline ZnO nanoparticles:A competitive sensor for LPG and EtOH[J].Sensors and Actuators B:Chemical,2006,119:676-680.
    [70]Lu P,Lee Chow.Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing[J].Thin Solid Films,2008,516:3338.
    [71]Musat V,Rego A M,Monteiro R,et al.Microstructure and gas-sensing properties of sol-gel ZnO thin film[J].Thin Solid Films,2008,516:1512-1516.
    [72]Anna Og Dikovska,P A Atanasov,A Ts Andreev,et al.ZnO thin film on side polished optical fiber for gas sensing applications[J].Applied Surface Science,2007,254:1087-1090.
    [73]Wang Z L,Song J H.Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J].Science,2006,312:242-246.
    [74]Song J H,Zhou J,Wang Z L.Piezoelectric and Semiconducting Dual property Coupled Power Generating Process of a Single ZnO Belt/wire-a Technology for Harvesting Electricity from the Environment [J].Nano Letters,2006,6:1656-1662.
    [75]Jolanta Prywer.Explanation of some peculiarities of crystal morphology deduced from the BFDH law [J].Journal of Crystal Growth,2004,270:699-710.
    [76]Cang H X,Huang W D.and Zhou Y H.Effects of organic solvents on the morphology of the meta-nitroaniline crystal[J].Journal of Crystal Growth,1998,192:236-242.
    [77]Darey R J,Milisarljeric B,Bourne J R,et al.Solvent interactions at crystal surfaces:the kinetic story of alpha.-resorcinol[J].J.Phys.Chem.1988,92:2032-2036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700