电子辐照带盖片GaAs/Ge太阳电池性能演化及退火效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过地面模拟空间环境试验,研究了低能电子(60keV~150keV)辐照下航天器上实用的带盖片的GaAs/Ge太阳电池的辐照损伤效应。通过对电池辐照过程中伏安特性的原位测试,研究了辐照后带盖片GaAs/Ge太阳电池电性能参数的变化规律;利用光谱响应、光学反射率、光致发光光谱(PL)和暗特性测试等方法研究了带盖片GaAs/Ge太阳电池辐照前后性能的变化,分析了低能电子辐照对带盖片GaAs/Ge太阳电池性能衰减的原因;并利用CASINO软件对GaAs/Ge太阳电池进行辐照模拟研究;还对辐照后的太阳电池进行了退火试验研究。
     性能测试结果表明:相同能量条件下,电池性能衰减随着辐照注量的增加而增加。注量一定条件下,100keV电子辐照致使电池损伤最为严重,80keV电子辐照次之,60keV、120keV、150keV电子辐照对电池造成的损伤很小。分析结果表明:100keV电子辐照后电池光谱响应明显下降,点阵结构明显变化,内阻Rs略有上升,低能电子辐照对盖片反射率影响不大。电池电性能参数降低。低能电子辐照对电池整体性能的衰减主要是由于电子对玻璃盖片、电池表面粘结剂、发射区表面产生影响,致使电池性能下降。
     CASINO软件模拟结果表明:100keV的电子在带盖片的GaAs/Ge太阳电池中的入射深度刚好到达结区,对电池的粘结剂、P区和结区产生影响,从而影响光电转换效率,使电池性能明显下降。60keV的电子不能穿透电池表面玻璃盖片,120keV的电子则刚好可以到达电池的基区。
     退火试验结果表明:退火可使辐照后的电池性能得到恢复。在相同退火温度条件下,随着退火时间的延长,电池性能回复越多;相同退火时间条件下,随着退火温度的提高,电池性能回复越快。低能电子对电池的损伤主要是电离效应。
The damage effects of GaAs/Ge solar cell with cover glass under low-energy electron irradiation were studied using a ground-based simulator for space charrged-partide irradiation.It is investigated the eiolution processes of the electrical properties of the irradiated cells using sn insitu I-V measurements, while the mechanisms on the property degradation of the damaged cells were analyzed by means of spectral response measurements, optical reflectance, photoluminecence spectrometer and dark I-V measurements. The annealiny effecys were also studied in the paper.
     The results on the property evolutions indicate thaf the property degradation of the irradiated solar cell increases with increasing the electron fluence as the electron energy wias fixed,while as the fluence was fixed,the most serious damage occurs when the electron energy was 100 keV, then secondary is at the electron energy of 80keV. However, only slight degradation could be measured as the electron energy is 60keV, 120keV, 150keV, respectively.
     Accordingly it is detected analyzed thet 100keV-elevtron irradiation results in obvious decrease in the spectral response curves of the solar cell. There is a slight increase detected in the serial resistance after the cells were irradiated. The wain reasons on the properly degradations was exposed that the electron irradiation exerts damage effects of the glass cover adhesive rubber between the cover and cells also the emission region of the cells.
     Simulation results using the CASINO code indicates thef,the range of 100keV electron in the covered solar cell is located exactly in the jurction of the cells,affecting the behavior of the rubber p-region and juntion region of the cells. Electrons with 60keV energy stop in the cover glass, 120keV electrona can reach the base region of the cell, while 150keV electrons penetrate thoroufhly through the cell, thus there show slight change in the cells in these cases.
     The results of anneal test show that the property of irradiated solar cells can recovery during the anneal test. In the same annealing temperature, the property of solar cells recovery as the anneal time goes; and in the same annealing time, the property recovery faster as the annealing temperature grows. The damage effect of the low energy electron on the solar cell is the ionization effect.
引文
1.施小忠,李世清,鄢和平等. GaAs太阳电池辐照效应研究现状.半导体光电. 1995, 16(4): 313~321
    2.王荣,张新辉,郭增良.空间实用GaAs/Ge太阳电池高能质子辐照效应研究.核技术. 2003, 26(6):1~5
    3. Angelis N de, Bourgoin J C, Takamoto T, et al. Solar Cell degradation by electron irradiation comparison between Si, GaAs and GaInP cell. Solar Energy Materials&Solar Cell. 2001, 66: 458~495
    4.李承受.空间环境下材料的实效.宇航学报. 1992,(1):1-7
    5.胡振宇.空间辐照及热循环作用下被场硅太阳电池损伤效应与机理.哈尔滨工业大学博士学位论文. 2003:1~6
    6.王永东,崔荣强,徐秀琴等.空间太阳电池发展现状与展望.电源技术.2001, 25: 182~185
    7.张忠卫,陆剑锋,池卫英等.砷化镓太阳电池技术的进展与前景.上海航天. 203,(3): 33~38
    8.何炜瑜. GaAs系列太阳电池技术与展望.中国民航学院学报. 2004, (4): 59~64
    9.刘恩科.光电池及其应用.北京:科学出版社.1996:109
    10.王子琦,陈朝,刘士毅. GaAs/Ge异质面太阳电池光谱响应和暗J-V特性的拟合分析.固体电子学研究与进展. 1987, 11(4): 304~313
    11.张忠卫,陆剑峰,池卫英等.砷化镓太阳电池技术的进展与前景.上海航天. 2003, (3): 33~38
    12.刘恩科,朱秉升,罗晋生等.半导体物理学.第四版.西安交通大学出版社. 1998: 24~26
    13.徐洁磊,王亮兴,张忠卫,池卫英等. GaAs/Ge太阳电池异常I-V特性曲线分析.半导体学报. 2005, 26: 192
    14.闵桂荣,郭舜.航天器热控制.第二版.科学出版社, 1998: 68~95
    15.黄本诚.空间环境工程学.宇航出版社. 1993: 54~58
    16.李承受.空间环境下材料的失效.宇航出版社. 1992, (1):1~7
    17. H. B.Garrett. Space Ridiation Models. 1994, (5):1~12
    18.赵晶.空间环境对航天器影响的统计分析.环境技术. 1988, (4):41~52
    19.沈超,刘振兴.外辐射带动态演化的粒子模拟研究.空间科学学报. 2001,21(3):230~237
    20.林国成,陈国珍,朱文明.空间带电粒子和航天器的相互作用.濮祖荫.空间物理前沿进展.气象出版社, 1998: 16~39
    21.王同权,沈永平,王尚武等.空间辐射环境中的辐射效应.国防科技大学学报. 1999, 2(4): 36~39
    22. Robert Y. Loo, G. Sanjiv Kamath, Sheng S. Li. Radiation Damage and Annealing in GaAs Solar Cells. IEEE Transactions on Electron Devices. 1990, 37(2): 485~497
    23. Ronald C. Knechtli, Robert Y. Loo, G. Sanjiv Kamath. Hith-Efficiency GaAs Solar Cells. IEEE Transactions on Electron Devices. 1984, 31(5): 577~588
    24. J. C. Bourgoin, N. de Angelis. Radiation-Induced Defects in Solar Cell Materials. Solar Energy Materials and Solar Cells. 2001, (66): 467~477
    25. S. Makham et al. Prediction of proton-induced degradation of GaAs space solar cells. Solar Energy Materials & Solar Cells. 2006, 90: 1513~1518
    26. Jeffrey H. Warner, et al. Correlation of Electron Radiation Induced~Damage in GaAs Solar Cells. IEEE TRANSACTIONS ON NUCLEAR SCIENCE. 2006, 53(4): 1988~1994
    27. M. Hadrami, et al.Relation between solar cell parameters and space degradation. Solar Energy Materials & Solar Cells. 2006, 90: 1486~1497
    28. XIANG Xianbi, DU Wen hui, LIAO Xianbo, CHANG Xiu fan. Proton Irradiation and Thermal Annealing of GaAs Solar Cells. CHINESE JOURNAL OF SEM ICONDUCTORS. 2001, 22(6): 710
    29.张新辉. GaAs/Ge太阳电池抗电子辐射研究.电源技术. 2004, 8(1): 20
    30.王祖军,唐本奇,黄绍艳等. GaAs太阳电池1 MeV电子辐射效应数值模拟.核电子学与探测技. 2005, 25(1): 97
    31.林理彬,黄万霞,孔梅影.粒子束辐照在AlGaAs/GaAs量子阱材料中引入的深能级缺陷.人工晶体学报. 2005, 29(5): 248
    32. Robert Y. Loo, G. Sanjiv Kamath, Sheng S. Li. Radiation Damage and Annealing in GaAs Solar Cell. IEEE Transactions on Electron Devices. 1990, 37(2):485~497
    33. G.H.Walker and E.J.Conway. Annealing of GaAs Solar Cells Damaged by Electron Irradiation. Journal of the Elecrical Chemical Society. 1978, 125(4):676
    34. R. Loo, L. Goldhammer, B. Anspaugh, et al. Electron and proton degradation in AIGaAs/GaAs Solar Cells. Proceedings of the 13th IEEE Photovoltaic Specialists Conference. 1978: 562
    35. J.H.Heinbockel, E.J.Conway, G.H.Walker. Simultaneous Radiation Damageand Annealing of GaAs Solar Cells. Proceedings of the 14th IEEE Photovoltaic Specialists Conference,1980: 1085
    36. Robert Y. Loo, G. Sanjiv Kamath, Sheng S. Li. Radiation Damage and Annealing in GaAs Solar Cells. IEEE Transactions on Electron Devices. 1990, 37(2): 485~497
    37. R. Y. Loo, R. C. Knechtli and G. S. Kamath. Radiation damage in GaAs cells.in 14 th IEEE Photovoltaic Specialists Conf. (San Diego, CA), Jan.7~10, 1980, pp, 1087~1090
    38. J. H. Heinbockel, E. J. Conway and G. H. Walker. Simultaneous radiation damage and annealing of GaAs solar cells. in Proc. 14 th IEEE Photovoltaic Specialists Conf.(San Diego, CA),Jan.7~10, 1980, pp, 1085~1089
    39. E. J. Conway, G. H. Walker and J. H. Heinbockel, A theoretical model of radiation damage and annealing applied to GaAs solar cells. in15 th IEEE Photovoltaic Specialists Conf.(Kissimmee, FL), May.12~15, 1981, pp, 38~44
    40.隋兆文,陈芬扣,管丽民. Ga1-xAlxAs/ GaAs异质面太阳电池的电子和质子辐照以及退火研究.太阳能学报. 1984, 5 (1):65~69
    41. L.W.Aukerman in Semiconductors and Semimetals, edited by R.K. Willardson and A. C. Beer. 1968,(l4): 343
    42. G. H. Walker. and E. J. Conway, Appl. Phys. Lett, 35, p. 459(1979)
    43. Rober. Y. Loo, G.Sanliv, Sheng S. li. Radiation Damage and Annealing in GaAs Solar Cells. IEEE Transactions on electron devices. 37(2). February 1990, p. 485~497
    44.隋兆文,陈芬扣,管丽民. Ga1-xAlxAs/ GaAs异质面太阳电池的电子和质子辐照以及退火研究.太阳能学报. 1984, 5 (1):65~69
    45.向贤碧,杜文会等. GaAs太阳电池的质子辐照和退火效应.半导体学报. 2001, 22(6):710~714
    46. Wenjun Chen, Zaixiang Qiao, Qiang Sun et al. Bragg Reflector for GaAs Solar Cells on Ge Substrate. Proceedings of SPIE, 2001, 4288: 414~421
    47. Hongwei Xu, Tingsheng Wang. Enhancement of Photoelectron Emission Efficiency of Negative Electron Affinity GaAs Cathode by Embedded GaAs/AlAs Multilayer Reflector. Chinese Journal of Semiconductors. 1992, 13(11): 675
    48. T. Miyamoto, T. Uchida, N. Yokouchi et al. Surface Emitting Lasers Grown by Chemical Beam Epitaxy. Journal of Crystal Growth. 1994, 136: 210
    49. Guohong Wang, Raoyu Ma, Qing Cao et al. High Intensity AlGaInP Yellow LEDs Grown by LP-MOCVD. Chinese Journal of Semi-conductors. 1998,19(9): 712
    50. A. Ibaraki, K. Kawashima, K. Furusawa et al. GaAs/GaAlAs DBR Surface Emitting Lasers Grown by MOVPE. Journal of Crystal Growth. 1988, 93: 809
    51. S. P. Tobin, S. M. Vernon, M. M. Vernon et al. Enhanced Light Absorption in GaAs Solar Cells with Internal Bragg reflectors. 22th IEEE Photovoltaic Specialists Conference, 1991,145~147
    52. D.B. Bushnell, N. J. Ekins-Daukes, K. W. J. Barnham et al. Short-Circuit Current Enhancement in Bragg Stack Multi-Quantum-Well Solar Cells for Multi-Junction Space Cell Applications. Solar Energy Materials and Cells. 2003, 75: 299~305
    53. A. Blondeel, P. Clauws, B. Depuydt. Life Time Measurements on Ge Wafers for Ge/GaAs Solar Cells-Chemical Surface Passivation. Materials Science in Semiconductor Processing. 2001, 4: 301~303
    54. J. C. Chen, M. Ladle Ristow, J. L. Cubbage et al. Effects of Metalorganic Chemical Vapor Deposition Growth Conditions on the GaAs/Ge Solar Cell Properties. Applied Physics Letters. 1991, 58(20): 2282~2284
    55. M. Gonzalez, C. L. Andre. Deep Level Defects in Proton Radiated GaAs Grown on Metamorphic SiGe/Si Substrates. Journal of Applied Physics. 2006, 10(3): 34~53
    56. Ronald C. Knechtli, Robert Y. Loo, G. Sanjiv Kamath. Hith-Efficiency GaAs Solar Cells. IEEE Transactions on Electron Devices. 1984, 31(5): 577~588
    57. Ken Takahashi, Shigeki Yamada, Tsunehiro Unno et al. Characteristics of GaAs Solar Cells on Ge Substrate with a Preliminary Grown Thin Layer of AlGaAs. Solar Energy Materials and Solar Cells. 1998, 50: 169~176
    58. Chen Minbo, Zhang Zhongwei. Development of the GaAs Solar Cell for Space Application. 25th IEEE Photovoltaic Specialists Conference, Washington. D. C, 1996, 122
    59.陆剑峰,张忠卫,池卫英等.空间用GaAs/Ge太阳电池器件工艺研究.稀有金属. 2004, 28(3): 508~510
    60.航天工业部标准.太阳电池电性能测试方法. QT1. 1986: 1~5
    61. J. C. Chen, M. Ladle Ristow, J. L. Cubbage et al. Effects of Metalorganic Chemical Vapor Deposition Growth Conditions on the GaAs/Ge Solar Cell Properties. Applied Physics Letters. 1991, 58(20): 2282~2284
    62.岳婷婷,殷菲,胡晓宁.硅基HgCdTe光伏器件的暗电流特性分析.激光与红外. 2007 , 37:931-934
    63. Kaminski, J.J. Marchand, A. Laugier, New method of parameters extraction from dark I-V curve. Laboratoire de Physique de la Matikre. 1997,20: 203~206
    64. J. C. Bourgoin, N. de Angelis. Radiation-Induced Defects in Solar Cell Materials. Solar Energy Materials and Solar Cells. 2001, (66): 467~477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700