产植酸酶木霉菌的遗传基因改良
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植酸酶(myo-inositol hexakisphosphate phosphohydrolases),是催化植酸及植酸盐水解成肌醇与磷酸的一类酶的总称。植酸酶主要存在于植物、微生物和一些动物组织中。单胃动物如猪、鱼和家禽类不能消化植酸,饲料中加入植酸酶分解植酸,促进单胃动物对磷和金属元素的吸收和利用,另外还可以降低环境中的磷污染。
     本文以木霉为研究对象,以各地采集木霉为基础筛选高产植酸酶菌株。通过植酸钙透明圈筛选法,再经过植酸酶液体发酵酶活最终选择11号菌株为出发菌株进行基因组改组(Genome shuffling)技术。11号菌株通过紫外诱变和亚硝基胍诱变,筛选优良诱变子,将两种诱变子的原生质体分别进行热灭活和紫外灭活,然后随机融合,筛选融合子。
     紫外诱变和亚硝基胍诱变均以出发菌株为诱变菌株,选着合适的剂量进行诱变改良。从大量的诱变子中通过初筛和复筛筛选出合适的诱变子。紫外诱变子Ⅱ的酶活为最高,且5代后培养未发生回复突变,酶活为1.21±0.013 U/L,将此菌株编号为UV-Ⅱ(p<0.05)。亚硝基胍诱变中NTG-4酶活为0.94±0.014 U/L(p<0.05)。
     对木霉的原生质体制备和再生条件进行了研究。分别考察了菌体菌龄、酶浓度、酶解时间、酶解温度等因素对木霉原生质制备和再生的影响。霉菌细胞壁主要成分是多糖,大多数是几丁质、少数种类是纤维素。以UV-Ⅱ出发菌株,以蜗牛酶为溶菌酶制备木霉原生质体。研究得到木霉原生质体制备条件:蜗牛酶浓度2.0mg/mL,菌龄为20h,酶解时间2.0 h,酶解温度30℃。
     基因组改组技术将UV-Ⅱ和NTG-4的原生质体分别进行热灭活和紫外灭活,然后随机结合,使用PEG为融合剂进行原生质体融合。两两结合进行4轮基因组改组,筛选到融合子Fu-②,酶活为2.4±0.016 U/L,比原始菌株分别高出320%。融合子遗传特性稳定。
     对融合子Fu-②进行液体培养基优化实验,得到优化培养基Ⅱ培养基:葡萄糖3.0 g ,可溶性淀粉3.0 g,麸皮0.05 g,NH4NO30.5 g,MgSO4·7H2O 0.05 g,MnSO4·7H2O 0.003 g,FeSO4·7H2O 0.003 g,CaCO3 0.5 g,pH值5.5-6.0,115℃30min灭菌。同时对融合子Fu-②进行液体发酵条件优化:转速115r/min,装液量100 ml(500mL三角瓶),接种量为3%,温度30℃,发酵时间120h,酶活3.68 U /L,酶活提高33.3%。
Phytases (myo-inositol hexakisphosphate phosphohydrolases) catalyze the hydrolysis of phytates to myoinositol and phosphates. Phytases are varied and widespread in nature, which occurr in plants, microorganisms, and animal tissues. Phytases, in general, are known to enhance phosphate and mineral uptake in monogastric animals such as human beings, poultry, swine, and fish, which cannot metabolize phytate besides reducing environmental pollution significantly.
     In this paper, phytase of Trichoderma was studied, and Trichoderma strains of high phytase yield were selected from those strains collected from multiple areas.NO.11 strain of high phytase yield was isolated from soil samples and, which was selected by transparent circle method and the phytase activity method of liquid fermentation. The research is aimed to improve phytase activity by genome shuffling, and the results are as follows. NO.11 strain was treated with ultraviolet radiation and NTG, respectively.Then good mutants were obtained.The protoplasts of goog mutants were heat-killed and UV-inactivated, and combined randomly.At last fusants which were high phytase yield were selected.
     Wiedtype strain was treated with ultraviolet radiation and NTG, respectively. Then the optimal dose for mutant were selected. Lots of mutants were selected with phytase activity method. The high phytase yield strain of UV radiation and NTG mutant was UV-Ⅱand NTG-4, the phytase activity of which were 1.21±0.013 U / L (p <0.05) and 0.94±0.014 U / L (p <0.05), respectively.
     The conditions for protoplast preparation and regeneration were studied. The effects of strain age, the lysozyme concentration, the lysozyme treating time and temperature on preparation and regeneration of protoplast were studied. The chief constituent of fungal cell wall is polysaccharide, which is made chiefly of chitin and few cellulose. It was prepared for Trichoderma lysozyme protoplasts with UV-Ⅱstrain and snail enzyme. The optimum conditions of Trichoderma protoplast are as follow: snail enzyme concentration 2.0mg/mL, strain age 20h, lysozyme time 2.0 h, lysozyme temperature 30℃.
     UV-Ⅱand NTG-4 protoplasts were heat-killed and UV-inactivated, and combined randomly with PEG as the integration agents of protoplast fusion. Fu-②was obtained from genome reorganization, phytase activity of which was 2.4±0.016 U / L and higher 320% compared with the original strains . The fusant is genetically stable.
     The result was found thatⅡliquid medium was the best medium. The mediumⅡ: Glucose 3.0 g, soluble starch 3.0 g, wheat bran 0.05 g, NH4NO30.5 g, MgSO4 ? 7H2O0.05 g, MnSO4 ? 7H2O 0.003 g, FeSO4 ? 7H2O 0.003 g, CaCO30.5 g, pH value of 5.5 -6.0,115℃30min sterilization. The conditions of Fu-②optimization: shaking speed 115r/min, medium volume 100 ml (500 ml volumetric flask), inoculation number 3%, temperature 30℃, fermentation time 120h, phytase activity 3.68 U / L and the enzyme activity was increased 33.3%.
引文
[1]周紫雨,张俊红.植酸酶在饲料中的应用.饲料研究[J], 2006, 7: 55-57
    [2] Haefner S, Knietsch A, Scholten E, et al. Biotechnological production and applications of phytases. Appl Microbiol Biotechnol[J], 2005, 68: 588-597
    [3] Kies AK, De Jonge LH, Kemme PA, Jongbloed AW. 2006. Interaction between protein, phytate, and microbial phytase. In vitro studies. Agric Food Chem[J] 54:1753–1758.
    [4] Bebot-Brigaud A, Dange C, Fauconnier N, Gerard C. 1999. 31P NMR, potentiometric and spectrophotometric studies of phytic acid ionizationand complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+. Inorg Biochem 75:71–78.
    [5] Mullaney, E. J., & Ullah, A. H. J. (2003). Biochemical and Biophysical Research Communication[J]s, 312, 179–184.
    [6] Wodzinski RJ., Ullah AH.. phytase Adv App l Microbiol[J] ,1996 ,42 :263~302
    [7] Mullaney EJ., Daly CB. Advancesin phytase research. Adv Appl Microbiol [J],2000 ,47 :157~199
    [8]黄慧,宋代军,植酸酶的研究进展及应用.添加剂与预混料[J], 2006, 27 (3) : 27 - 29.
    [9] Kerovuo J., Lauraeus M. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol[J] ,1998 ,64 (6) :2079~2085
    [10] Kerovuo J., Lappalainen I. The metal dependence of Bacillus subtilis phytase. Biochem Biophys Res Commun[J] ,2000 ,268 (2) :365~369
    [11]姚斌,范云六.植酸酶的分子生物学与基因工程.生物工程学报[J],2006, 16: 1-5.
    [12] Lei XG, Porres JM. Phytase enzymology, applications, and biotechnology. Biotechnol Lett[J], 2003, 25: 1787
    [13] Zinnina N V, Serkina A V, Gelfand M S et al. Gene cloning ,expression and characterization of novel phytase fromobesum bacterium proteus. FEMS Microbiol. Lett [J]. , 2004, 236 (2):283 - 290-1794.
    [14]罗会颖,姚斌,袁铁铮,等.来源于Eschrechia coli的高比活植酸酶基因的高效表达.生物工程学报[J],2004,24(1):78- 84.
    [15] Lee J, Choi Y, Lee PC, Kang S, Bok J, Cho J. 2007. Recombinant production of Penicillium oxalicum PJ3 phytase in Pichia pastoris. World J Microbiol Biotechnol [J].23:443–446.
    [16] Oh, B. C., Chang, B. S., Park, K. W., Ha, N. C., Kim, H. K., Oh, B. H., et al. (2006). Biochemistry[J], 40, 9669–9676.
    [17] Ostanin K., Saccd A.. Heterologous expression of human prostatic acid phosphatase and site - directed mutagenesis of the enzyme activesite. Biol Chem[J] , 1994, 269 (12):8971
    [18] Tomschy A., Tessier M. . Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three - dimensional structure. Protein Science[J], 2000 ,9 (7):1304~1311
    [19] Jermutus L., Tessier M. Structure - based chimeric enzymes as an alternative to directed enzyme evolution: phytase as a test case. Biotehnol[J] ,2001 ,85 (1) :15~24
    [20] Vats P, Bhattacharya MS, Banerjee UC. 2005. Uses of phytases (myo-inositolhexakisphosphate phosphohydrolases) for combating environmental pollution: a biological approach. Crit Rev Environ Sci Technol [J].35:469–486.
    [21] Silversides FG, Scott TA, Bedford MR. 2004.ect of phytase enzyme and level on nutrient extraction by broilers. Poult Sci[J]. 83:985–989.
    [22] Ebrahimnezhad Y, Shivazad M, Taherkhani R, Nazeradl K. 2008. Eects of ethylenediaminetetraacetic acid on phytate phosphorus utilization and eciency of microbial phytase in broiler chicks. Anim Physiol Anim Nutr [J],92:168–172
    [23] Harrell RF, Reddy MB, Juillerat MA, Cook JD. 2003. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr [J].77:1213–1219.
    [24] Greiner R, Konietzny U. 2006. Phytase for food application. Food Technol Biotechnol[J]. 44:125–140.
    [25] Haros M, Rosell CM, Benedito C. 2001. Fungal phytase as a potential bread making additive. Eur Food Res Technol[J]. 213:317–322.
    [26] Palacios MC, Haros M, Sanz Y, Rosell CM. 2008a. Selection of lactic acid bacteria with high phytate degrading activity for application in whole wheat breadmaking. Food Sci Technol [J].41:82–92.
    [27] Palacios MC, Haros M, Sanz Y, Rosell CM. 2008b. Phytate degradation byBidobacterium on whole wheat fermentation. Food Microbiol[J].25:169–176
    [28] Sajjadi M, Carter CG. 2004. Eeffct of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmosalar, L). Aquacult Nutr[J] 10:135–142.
    [29] Debnath D, Pal AK, Sahu NP, Jain KK, Yengkokpam S, Mukherjee SC. 2005. Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius (Hamilton) fingerlings. Aquacult Res[J]. 36:180–187.
    [30] Nwanna LC, Schwarz FJ. 2007. Effect of supplemental phytase on growth, phosphorus digestibility and bone mineralization of common carp (Cyprinus carpio L). Aquacult Res[J]. 38:1037–1044.
    [31] Hayes JE, Simpson RJ, Richardson AE. 2000. growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose-1-phosphate or inorganic phosphate. Plant Soil [J].220:165–174.
    [32] Richardson AE, Hadobas PA, Hayes JE. 2000. Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ [J].23:397–405.
    [33] Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ. 2001b. Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms.Plant Soil [J].229:47–56.
    [34] Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology[J]. 148:2097–2109.
    [35] Siren M. 1986a. Stabilized pharmaceutical and biological material composition. Patent SE [J].003165.
    [36] Siren M. 1986b. New myo-inositol triphosphoric acid isomer. Patent SW[J].052950
    [37] WANG Shihua, YANG yanling ,HU Kaihui et al.[J]福建农林大学学报35(1),82~86.
    [38]Woo SL, Scala F, RuoccoM, LoritoM. Themolecular biology of the interactions between Trichoderma spp., Phytopathogic fungi and Plants[J]. Phytopathol, 2006, 96: 181~185
    [39]徐同,钟静萍.木霉对土传病原真菌的拮抗作用.植物病理学报[J], 1993, 23 (1) : 63~67
    [40] Chang Y C,Baker R.Increased growth of plant in thepresence of the biological controlagent trichodermaharaianum.[J].Plant Dis,1986, 70:145~148.
    [41]王慧中,赵培洁.多效有机菌肥的研制及其特性研究[J].江西农业科学,1999,11(3):19~23.
    [42]郭润芳,刘晓光,高克祥.拮抗木霉菌在生物防治中的应用与研究进展[J].中国生物防治, 2002, 18 (4): 180~184
    [43] Ding W.L., Cheng H.Z. and Chen, J. Presearch on preventingthemedicinal plant diseases with Trichoderma harzianum preparation [J]. Zhongguo Zhong. Yao Za Zhi., 2003, 28: 24~27
    [44]蒋家珍,赵美琦,薄怀霞,肖杰,李学锋.生物农药在草坪病害防治中的应用研究[J].草业科学, 2004, 21(11): 93~95
    [45] Kazuo Ohno, Akira Isogai, Fumihiko Onabe. Retention behavior of size and aluminum components in handsheets prepared in rosin soap size-alum systems [J]. The Japan Wood Research Society, 1999, 45:238-244
    [46]周德庆,微生物学教程(第二版)[M],北京:高等教育出版社。2002,p214
    [47]赵文婷,邹懿,胡昌华,微生物菌种改良的新方法新策略,生物工程学报[J]. Chin J Biotech 2009,June 25;25(6):801-805
    [48] Stemmer WP.DNA shuflling by random fragmentation and ressembly:in vitro recombination for molecular evolution Proceedings of the National Academy of Sciences of the United States of America[J],1994,91(22):10747-10751.
    [49] Crameri A,Raillard SA,Bermudez E,et al.DNA shuffling of a family of genes from diver sespecies accelerates directed evolution.Nature [J].1998,391 (6664):288-291.
    [50] Zhang YX,Perry K,Vinci VA,et al.Genome shuffling leads to rapid phenotypic improvement in bacteria.Nature, 2002,415(6872):644?646.
    [51]刘璇,郑璞,倪晔等,基因组改组技术选育耐酸性琥珀酸放线杆菌微生物通报[J].NOV20,2009,36(11) :1676-1681
    [52] Ferenczy L.cell fusion-Gene trasfer an dransformation, New York:Raveb Oressam[J],1984.
    [53]罗文生,沈萍.盐生盐杆菌灭活原生质体融合的研究.武汉大学学报[J].1995, (41):751–756.
    [54] Baltz H R, Matsushima P J. Protoplast fusion in streptomycetes condition forefficient genetic recombination and cell regeneration. General Microb[J], 1981, 127: 137—146
    [55]陈五岭,等.西北大学学报[J],19 98;2 8(2):1 47-149,184.
    [56]王沁.假丝酵母原生质体形成和再生研究.遗传[J], 1996, 18(2): 43-45。
    [57]潘力,梁燕嫦,苗小康等,基于基因组改组的米曲霉沪酿3.042多亲株PEG介导融合育种,生物技术[J]中国酿造2008(23):70-73
    [58]李立风,潘力彭昶等,基因组改组:几株同源酱油曲霉的多亲株电融合育种中国调味品[J],2006(07):14-18
    [59]王玉华,李岩,裴晓林,冯雁.基因组改组技术提高干酪乳杆菌的耐酸性.中国生物工程杂志[J].2006,(2):53-58
    [60]赵凯,平文祥,张丽娜等,用Genome shuffling技术选育紫杉醇高产菌株中国科学C辑:生命科学[J] 2008 (38) 3 : 221 ~ 229
    [61]张娜,郭庆启,赵新淮,采用D-饱和试验设计确定产植酸酶菌株代谢的营养条件,微生学通报[J],2008,35(5):674-678
    [62]张丽萍,程辉彩,田连生,植酸酶高产菌株的紫外线-空气等离子体复合诱变选育,中国饲料[J]2006 (9) :13-15
    [63]杨平平,许正宏,王燕等,植酸酶菌种筛选方法的研究,工业微生物[J],2004,34(3):12-15
    [64]彭远义,马丽苹,李春明等,植酸酶产生菌黑曲霉N14的诱变选育及其基因分析,激光生物学报[J],2005,14(3):177-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700