Ag纳米粒子的制备及手性性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴的功能材料,银纳米粒子的性能与其结构、形貌、尺寸以及材料本身所处的环境密切相关。本文分别采用光化学还原和液相化学还原法制备银纳米粒子,并初步探讨了银纳米粒子手性的形成机制。
     采用光化学还原法,以脱氧胆酸钠为稳定剂及手性诱导剂,以紫外灯作为光源,还原Ag+制备了银纳米粒子。用紫外-可见光谱、透射电镜、圆二色光谱等对银纳米粒子进行表征。实验结果表明将pH10的反应溶液陈化24小时后制备的银纳米粒子粒径最小,平均粒径约10 nm。初始制备的球形银纳米粒子在低温下经长时间陈化(>1month)会进一步组装成片状的银纳米结构。所制备的银纳米粒子均具有手性,即具有CD信号。
     采用液相化学还原法,以脱氧胆酸钠为稳定剂和手性诱导剂,以NaBH4作为还原剂,还原Ag+制备了银纳米粒子。将反应溶液在pH7的条件下陈化24小时后,经NaBH4还原得到的银纳米粒子粒径最小。银纳米粒子接近于球形,平均粒径约10 nm。在未陈化pH值为7条件下制备的样品的CD吸收峰的峰值最强。
     以组氨酸作稳定剂和手性诱导剂,以NaBH4作为还原剂,还原Ag+制备了球形银纳米粒子。在pH10的条件下,组氨酸和硝酸银的摩尔比为5:1时制备的银纳米粒子粒径最小,尺寸为5 nm左右。在保持组氨酸和硝酸银的摩尔比不变的条件下,提高Ag+的浓度初始生成的球形纳米粒子会自发组装成圆盘状纳米粒子,而组氨酸在此过程中充当了模板剂的作用。当pH值为10时制备的球形纳米粒子的CD信号较强。本文采用一种新的晶种辅助的方法对各向异性的棒状银纳米的制备进行了初步的研究。
     以抗坏血酸作稳定剂和手性诱导剂,以NaBH4作为还原剂,还原Ag+制备了银纳米粒子。该体系制备的银纳米粒子的尺寸为10 nm左右。我们认为该体系手性的产生具有可逆性,手性的产生是表面原子畸变引起的。
     以D-葡萄糖酸钠作稳定剂和手性诱导剂,以NaBH4作为还原剂,还原Ag+制备了银纳米粒子。加入辅助稳定剂PVP后能有效控制银纳米粒子的团聚,提高银纳米粒子的稳定性和单分散性。该体系的CD吸收峰强度比较弱。
As an advanced functional material, silver nanoparticles have extensive applications in civil and industrial areas. The properties of silver nanoparticles are dependent on their stru- cture, shape, size, and the environment. In this paper silver nanoparticles were prepared by photochemical reduction and chemical reduction, respectively. And the mechanism of the chirality of silver nanoparticles was studied.
     Silver nanoparticles were prepared by photochemical reduction method. By using deoxycholate sodium as stabilizer and chiral inducer, silver nitrate was reduced under the UV light irradiation. The prepared samples were characterized by UV-Vis spectrometer (UV-Vis), transission electron microscopy (TEM) and circular dichroism spectrometer (CD). The results show that silver nanoparticles have the optimal preparation condition. The monodispered Ag nanoparticles (10 nm in diameter) were obtained when the solution was adjusted to pH10 and aged for 24 hours. In addition, the initial obtained spherical silver nanoparticles can self-assemble into silver nanoflakes when aged at a low temperature for a long time (>1month). The circular dichroism spectra show that the prepared silver nanoparticles have optical properties, i.e. chirality.
     Using liquid-phase chemical reduction method, we prepared silver nanoparticles by the reduction of AgNO3 with NaBH4 in the presence of deoxycholate sodium as a stabilizer and chiral inducer. The results show that the monodispered Ag nanoparticles (10 nm in diameter) were obtained when the solution was adjusted to pH 7 and aged for 24 hours. The CD signal of the prepared silver nanoparticles is the strongest when the solution without aging treatment was adjusted to pH 7.
     We prepared silver nanoparticles in the presence of histidine as a stabilizer and chiral inducer by the reduction of AgNO3 with NaBH4. The optimal preparation condition was obtained when the pH value of solution was 10 and the molar ratio of Ag+/histidine was 1:5. On this condition the prepared silver nanoparticles has the average diameter of about 5 nm. The spherical nanoparticles can spontaneously assemble into nanoplates by increasing the initial concentration of Ag+ under the condition of maintaining the molar ratio of silver nitrate and histidine. And the histidine plays a role as a template in this process. The results of circular dichroism spectra show that the CD signal of the spherical silver nanoparticles prepared in the solution of pH10 was strong. In addition, we used a new seed-mediated growth method to prepare the anisotropic rod-shaped silver nanoparticles.
     In the presence of ascorbic acid as a stabilizer and chiral inducer we prepared silver nanoparticles by the reduction of AgNO3 with NaBH4. The results show that the silver nanoparticles obtained are about 10 nm in diameter. The results suggest that the generation of chirality of silver nanoparticles is reversible and the chirality of silver nanoparticles is caused by the distorted surface atoms.
     We prepared silver nanoparticles by the reduction of AgNO3 with NaBH4 in the presence of D-glucose sodium as a stabilizer and chiral inducer. The results show that the addition of PVP can effectively prevent the agglomeration of silver nanoparticles, and improve the stability of silver nanoparticles. The results of circular dichroism spectra show that the CD signal of the silver nanoparticles prepared is week in this system.
引文
[1] H. Gleiter, P. Z. Marquardt. Nanocrystalline structures-an approach to new materials. Metallkunde[J]. 1984, 75(4): 263-267
    [2]许并社.纳米材料及应用技术[M].北京:化学工业出版社, 2004: 15-40
    [3]方云,杨澄宇,陈明清.纳米技术与纳米材料(Ⅰ)纳米技术与纳米材料简介[J].日用化学工业, 2003, 33(1): 55-59
    [4]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社, 2002: 27-39
    [5]黄茜,王京,曹丽冉,等.纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究[J].物理学报, 2009, 58(03): 1000-3290
    [6]陈丽华,徐刚,徐雪青,等. Ag纳米粒子生长动力学的局域表面等离子体共振研究[J].高校化学工程学报, 2009, 23(02): 284-289
    [7] E. Hutter, J. H. Fendler. Exploitation of Localized Surface Plasmon Resonance[J]. Adv. Mater, 2004, 16(19): 1685-1706
    [8] G. Xu, Y. Chen, M. Tazawa, et al. Surface Plasmon Resonance of Silver Nanoparticles on Vanadium Dioxide [J]. J. Phys. Chem. B, 2006, 110(5): 2051-2056
    [9] M. M. Alvarez, J. T. Khoury, T. G. Schaaf , et al. Optical Absorption Spectra of Nanocrystal Gold Molecules[J]. J. Phys. Chem. B,1997,101(19) :3706-3712
    [10]L. Kelly, E. Coronado, L. L. Zhao, et al. The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape and Dielectric Environment[J]. J. Phys. Chem. B, 2003, 107(3): 668- 677
    [11] S. Link and M. A. Elsayed. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver nanodots and Nanorods[J]. J. Phys. Chem. B,1999,103 (40): 8410–8426
    [12]刘霞,何天敬,刘凡镇.含纳米棒银溶胶的制备及其光谱性质研究[J].化学物理学报, 2005, 18 (1): 81-86
    [13] J. J. Mock, M. Barbic, D. R. Smith, et al. Plasmon Resonance of Individual Colloidal Silver Nanop- articles[J]. J.Chem.Phys., 2002, 116(15): 6755-6759
    [14] C. J. Murphy, N. R. Jana. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires[J]. Adv.Mater, 2002, 14(1): 80-82
    [15] K. Franklin, J. H. Song, Y. P. Dong. Photochemical Synthesis of Gold Nanorods[J]. J.Am.Chem.Soc., 2002, 124(48): 14316-14317
    [16] M. X. Fu, Q. B. Li, D. H. Sun , et a1. Rapid Preparation Process of Silver Nanoparticles by Bioreduction and Their Characterizations[J]. Chinese J. Chem. Eng., 2006, 14(1): 114-117
    [17]黄华,吴世法.纳米银胶的光化学制备及其特性研究[J].光子学报, 2005, 34 (11): 1643-1646
    [18] A. J. Haes, C. L.Haynes, A. D. McFarland, et al. Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy[J]. MRS Bulletin. 2005, 30: 368-375
    [19] R. C. Jin, Y. W. Cao, C. A. Mirkin, et al. Photoinduced Conversion of Silver Nanospheres to Nano- prisms[J]. Science, 2001, 294: 1901-1903
    [20] G. S. Metraux, C. A. Mirkin. Rapid Thermal Synthesis of Silver Nanoprisms With Chemically Tail- orable Thickness[J]. Adv. Mater., 2005, 17: 412-415
    [21] R. Jin, Y. C. Cao, C. A. Mirkin, et al. Controlling Anistropic Nanoparticle Growth Through Plasmon Excitation[J]. Nature 2003, 425, 487-490
    [22] B. Wiley, Y. J. Xiong ,Y. N. Xia, et al. Right Bipyramids of Silver: A new Shape Derived from Sin- gle Twinned Seeds[J]. Nano Lett, 2006, 6(4): 765-768
    [23] N. R. Jana, L. Gearheart, C. J. Murphy. Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio[J]. Chem.Conunun., 2001: 617-618
    [24] N. R. Jana, L. Gearheart, C. J. Murphy. Seed-Mediated Growth Approach for Shape-Controlled Syn- thesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template[J]. Adv. Mater., 2001, 13(18): 1389-1393
    [25] B. D. Busbee, S. O. Obare, C.J. Murphy. An Improved Synthesis of High-Aspect-Ratio Gold Nano- rods[J].Adv. Mater., 2003, 15(5): 414-416
    [26]郭党威.光诱导合成十面体银纳米粒子及其SERS活性研究[D].吉林大学硕士学位论文, 2008: 8-20
    [27]安静.银纳米粒子的形貌控制合成及其SERS活性研究[D].吉林大学博士学位论文, 2007: 30-56
    [28] B. H .Hong, S. C. Bae, C. W. Lee, et.al. Ultrathin Single-crystalline Silver Nanowire Formed Arrays in an Ambient Solution Phase[J]. Seience, 2001, 294(5541): 348-351
    [29]邹凯,张晓宏,吴世康,等.光化学法合成银纳米线及其形成机理的研究[J].化学学报, 2004, 62(18): 1771-1774
    [30] J. Xu, J. S. Yin, E. Ma. Nanocrystalline Ag Formed by Low-temperature High-energy Mechanical Attrition[J]. Nanostruct. Mater. ,1997, 8(1): 91-100
    [31] H. Chen, Y. Sheng. Laser Ablation Method: Use of Surfactants to Form the Dispersed Ag Nanoparti- cles[J]. Colloids Surf. A, 2002, (197): 133-139
    [32] H. B.Chang, H. N. Sang, M. P. Seung. Formation of Silver Nanoparticles by Laser Ablation of aSilver Target in NaCl Solution[J]. Appl. Surf. Sci., 2002, 197-198: 628-634
    [33]许北雪,吴锦雷.稀土镧对真空蒸发沉积银纳米粒子团聚的影响[J].物理化学学报, 2002, 18 (1):91-94
    [34]何晓燕,俞梅.纳米银粒子的化学法制备及其表征[J].兰州交通大学学报, 2005, 24(3): 154-156
    [35] G. J. Lee, S. Shin, S. G. Oh. Preparation of Silver Dendritic Nanoparticles using Sodium Polyacrylate in Aqueous Solution[J]. Chem. Lett., 2004, 33(2): 118-119
    [36] S. Tomoo, O. Hiromichi, Y. Yoshiro. Sensitized Photoreduction of Silver Ions in the Presence of acetophenone[J]. J. Photochem. Photobiol., A, 127 (1999) :83-87
    [37]钟福新,蒋治良,李芳,等.纳米银胶的光化学制备及其共振散射光谱研究[J].光谱学与光谱分析, 2000, 20(5): 724-726
    [38]姚素薇,曹艳蕊,张卫国.光还原法制备不同形貌银纳米粒子及其形成机理[J].应用化学, 200 6, 23(4): 438-440
    [39] Y. Zhou, S. H. Yu , C. Y. Wang, et al. A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-crystal Ag Nanorods and Ag Dendrites[J]. Adv. Mater., 1999, 11(10): 850-852
    [40] H. X. Li, M. Z. Lin, J. G. Hou. Electrophoretic Deposition of Ligand-stabilized Silver Nanoparticles Synthesized by the Process of Photochemical Reduction. Journal of Crystal [J]. Growth, 2000, 212: 222-226
    [41] J. Zhu, S. Liu, A. Gedanken, et al. Shape-controlled Synthesis of Silver Nanoparticles by Pulse Sono-electrochemical methods[J]. Langmuir, 2000, 16(16): 6396-6399
    [42]廖学红,朱俊杰,赵小宁,等.纳米银的电化学合成[J].高等学校化学学报, 2000, 21 (12): 1837-1839
    [43] M. Andersson, J. S.Pedersen, E. C. Anders, et al. Silver Nanoparticle Formation in Microemulsions Acting Both as Template and Reducing Agent [J]. Langmuir, 2005, 21(24): 11387-11396
    [44] M. Rong, M. Zhang, H. Liu. Synthesis of Silver Nanoparticles and Their Self-organization Behavior in Epoxy Resin[J]. Polymer, 1999, 40: 6169-6178
    [45]石川,程谟杰,曲振平,等.纳米银催化的甲烷选择还原NO反应研究[J].复旦学报(自然科学版), 2002, 41(3): 269-279
    [46]司民真,武荣国,李世荣.纳米银的制备及有关光学性质简介[J].楚雄师专学报, 1999, 14(3): 4-8
    [47] K. Nishimura, H. Honbo, S.Takeuchi, et al. Design and Performance of 10 Wh Rechargeable Lithium Batteries[J]. Journal of Power Sources, 1997, 68(2): 436-439
    [48]司民真,武荣国,张鹏翔.一种具有较强表面增强喇曼散射效应的纳米银粒子[J].光子学报,1999, 28 (9): 839-840
    [49]姜会庆,汪军,胡心宝,等.纳米银敷料在烧伤创面的应用[J].医学研究生学报, 2001, (5): 439
    [50]袁菁,张莉,黄昕,等.手性超分子组装研究进展[J].化学进展. 2005, 17(5): 781-788
    [51]沈家骢,孙俊奇.超分子科学研究进展[J].中国科学院院刊, 2004, 6: 420-423
    [52]郭培志,刘鸣华,赵修松.手性光学开关研究[J].化学进展, 2008, 20(5): 645-647
    [53] D. C. Sherrington, K. A. Taskinen. Self-assembly in Synthetic Macromolecular Systems via Multiple Hydrogen Bonding Interactions[J]. Chem. Soc. Rev., 2001, 30: 83-93
    [54] S. Che, Z. Liu, T. Ohsunaet, et al.Synthesis and Characterization of Mesoporous Silica with Chiral structure[J]. Nature, 2004, 429: 281-284
    [55] Y. Y. Wu, T. Livneh, Y. X. Zhang, et al.Templated Synthesis of Highly Ordered Mesostructured Nano- wires and Nanowire Arrays[J]. Nano. Lett., 2004, 4: 2337-2342
    [56] S. Gabriel ,O. Krichevski, T. Molotsky, et al. Chirality of Silver Nanoparticles Synthesized on DNA [J]. J.Am.Chem.Soc., 2006, 128:11006-11007
    [57] T. Jeffrey, J. Petty, V. Zheng, et al. DNA-Templated Ag Nano cluster Formation[J]. J.Am.Chem. Soc., 2004, 126: 5207-5212
    [58] C. Gautier, T. Bürgi. Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared[J]. J. Am. Chem. Soc., 2006, 128: 11079-11087
    [59]孙红刚.次磷酸钠液相化学还原法制备纳米银粉的研究[D].四川大学硕士学位论文, 2005: 16
    [60] G. Mie. Beitrage Zur Optik Truber Medien Speziell Kolloidaler Metallosungen[J]. Ann. Phys, 1908, 25(3): 377-445
    [61] R. Jin, Y. Cao, C. A. Mirkin,et al. Photo-Induced Conversion of Silver Nanospheres to Nano- prisms[J]. Science, 2001, 294: 1901-1903
    [62] P. V. Kamat, M. Flumiani, G. V. Hartland. Picosecond Dynamics of Silver Nanoclusters Photo- ejection of Electrons and Fragmentation[J]. J. Phys. Chem. B., 1998, 102: 3123-3128
    [63]酒金婷,葛钥,高绪珊,等.纳米微粒在纺织工业的应用及研究进展[A].织品及纳米技术应用研讨会论文集, 2001: 50-53
    [64]刘力宏,谢剑炜,张淑珍,等.胆酸盐簇集体刚性化微环境的灵敏指示-室温光探针法[J].高等学校化学学报2002, 123(2): 219-221
    [65]孙颖,杨展澜,吴瑾光. Co(DC)2-NaDC凝胶复合络合物的研究[J].光谱学与光谱分析, 1999, 19(2): 172-176
    [66]南海军,刘忠芳,刘绍璞.胆酸盐在酸性介质中自聚集作用的共振瑞利散射光谱及其分析应用研究[J].化学学报, 2006, 64(12): 1253-1259
    [67]张莉,杨展澜,熊尧,等. H+对水溶液中脱氧胆酸钠聚集体的影响[J].物理化学学报, 2004, 20(10): 1196-1199
    [68] H.Yao, T. Fukui, K. Kimura. Chiroptical Responses of d/l-Penicillamine-Capped Gold Clusrers under Perturbations of Temperature Change and Phase Transfer[J]. J. Phys. Chem. B., 2007, 111(41): 14968-14976
    [69] W. A. Hofer, V. Humblot, R. Raval. Conveying Chirality onto the Electronic Structure of Achiral Metals: (R, R)-tartaric Acid on Nickel[J]. Surface Science, 2004, 554: 141-149
    [70] V. Humblot, S. Haq, C. Muryn, et al. From Local Adsorption Stresses to Chiral Surfaces: R,R-Tarta- ric Acid on Ni (110) [J]. J. Am. Chem. Soc., 2002, 124: 503
    [71] C. E. Roman-Velazquez., C. Noguez, I. L. Garzon. Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation[J]. J. Phys. Chem. B., 2003, 107: 12035
    [72] T. Qiu, X. L. Wu, Y. F. Mei, et al. Self-organized Synthesis of Silver Dendritic Nanostructures via an Electroless Metal Deposition Method[J]. Appl. Phys. A, 2005, 81 (4), 669-671
    [73] J. Xiao, Y. Xie, R.Tang, et al., Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures[J]. Adv. Mater., 2001, 13 (24), 1887-1891
    [74]张昊然,李清彪,孙道华,等.纳米级银颗粒的制备方法[J].贵金属, 2005, 26(2): 51-57
    [75]张效岩,王英,张亚.非液相法制备纳米粒子的粒径控制研究[J].功能材料, 2004, 35(21): 2699-2700
    [76]肖子丹,张朝平.赖氨酸-Ag反应机理的研究[J].无机化学学报, 2004, 20(8): 915-919
    [77]游玉华.氨基酸与银离子反应机理及氨基酸-银纳米微粒制备的研究[D].贵州大学硕士学位论文, 2006: 39-41
    [78] K. Chatterjee, J. M. Howe, W. C. Johnson, et al. Static and in Situ TEM Investigation of Phase Relationships, Phase Dissolution, and Interface Motion in Ag-Au-Cu Alloy Nanoparticles[J]. Acta Materialia, 2004, 52: 2923-2935
    [79] S. Auzary, F. Pailloux, M. F. Denanot, et al. Microstructure Imaging of the YBCO Thin Film/MgO Substrate Interface: HRTEM and Fourier Analysis of the Moiréfringe Pattern[J].Thin Solid Films, 1998, 319: 163-167
    [80] G. J. Lee, S. I. Shin, Y. C. Kim, et al. Preparation of Silver Nanorods Through the Control of Temp- erature and pH of Reaction Medium[J]. Mater. Chem. Phys., 2004, 84(2-3): 197-204
    [81] C. S. Ah, S. D. Hong, D. J. Jang. Preparation of Aucore Agshell nanorods and Characterization of Their Surface Plasmon Resonances[J]. J. Phys.. Chem. B.,2001,105(33):7871-7873
    [82] J. Q. Hu, Q. Chen, Z. X.. Xie, et al. A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires[J]. Adv. Funct. Mater., 2004, 14(2): 183-189
    [83]王悦辉,张琦,周济.银纳米立方体的制备及其影响因素[J].材料导报, 2008, 22(03): 144-146
    [84] J. P.Yuan, F. Chen. Degradation of Ascorbic Acid in Aqueous Solution[J]. J. Agric. Food Chem.,1998, 46 (12): 5078-5082
    [85]林敬东,杨振威,钟怀国,等.银纳米粒子的形貌可调控研究[J].化学研究与应用, 2007, 19(2): 169-172
    [86]孙墨杰,贾若琨,张宇帅,等.纳米银的制备研究[J].东北电力大学学报, 2008, 28(1): 5-7
    [87]陈昌.银纳米材料的形貌可控制备及其应用研究[D].浙江大学硕士学位论文, 7-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700