激光等离子体极化光谱诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光驱动X射线源的实验研究是惯性约束聚变(Inertial confinement fusion, ICF)相关物理研究的重要内容之一。激光产生高温等离子体辐射的X射线包含着十分丰富的信息,如等离子体温度、密度、离化度、不透明度以及各种输运波动和不稳定性等参数。为真实了解高温等离子体内部的状态及各种运动过程,必须通过一定的实验手段对等离子体中各种离子和电子的上述状态参数进行测量。等离子体X射线极化度作为反映等离子体内部各向异性的主要物理参数,可以辅助校验等离子体密度、温度等参量,是激光等离子体X射线极化光谱诊断的重要研究内容。极化光谱学主要研究对象是离子-电子碰撞产生的极化光谱,极化X射线对电子分布及磁场非常敏感,能够提供等离子体各向异性的信息。
     本论文是在国家自然科学基金项目(NSAF,No.10576041)的资助下,对激光等离子体X射线极化光谱进行较深入研究。分析等离子体X射线极化机理、诊断方法和X射线晶体衍射理论,设计了以正交布置的“双晶技术”为基础的激光等离子体X射线极化谱仪,在中国工程物理研究院激光聚变研究中心20焦耳激光装置上实验,得到了铝元素激光等离子体类氦极化光谱,验证了激光等离子体内部存在各向异性现象。重点阐述了激光等离子体X射线极化度分析模型、极化光谱诊断方法、极化晶体谱仪设计和实验过程,利用实验数据分析并计算了等离子体X射线的极化度和电子密度。
     论文主要内容包括:
     1.在国内率先开展激光等离子体极化光谱基础理论及极化度计算模型的研究。通过激光等离子体中激光与等离子体相互作用、以及离子与原子碰撞产生分裂的激发辐射分析,在磁量子数变化ΔMJ=0或ΔMJ=±1的情形下会发生塞曼跃迁并辐射极化光谱。综合分析了基于斯托克斯参量、辐射截面和布居排列辐射的三种极化度算法,这三种方法本质上具有一致性,表明极化度会随着碰撞电子能量增加而减小,并逐渐趋近于零。
     2.针对现有双晶法和激光装置接口问题,提出了修正双晶综合诊断方法。该方法的特点是不受光程和全偏振角限制,能够满足晶体诊断X射线的实际应用情况。其中双晶技术相对于角矢量辐射法和旋转分光计法,更适合激光等离子体极化光谱诊断。本文根据实验装置接口情况,结合等光程和全偏振角双晶法的优缺点,提出了激光等离子体极化光谱修正双晶综合诊断方法,实验表明该方法是非常有效的极化光谱诊断方法。
     3.根据激光等离子体极化光谱诊断方法,研制了结构新颖的激光等离子体极化晶体谱仪。传统晶体谱仪一般只有一个通道或者对称的双通道,很难满足等离子体X射线极化光谱诊断。本文采用新型的正交布置双晶结构,即在与入射电子束方向垂直的平面内正交布置两片晶体分析器,形成正交双通道。而每一个通道的晶体分析器可以灵活采用不同几何结构,如平面、椭圆及球面,其色散元件也可以采用不同的晶体材料。
     4.探索激光等离子体极化光谱诊断的实验方案,验证等离子体内部存在各向异性现象。基于斯托克斯参量算法,计算了等光程和不等光程两轮实验数据,获得铝离子类氦共振线w及互组合线y的极化度,分别为+0 .1204_(0.0096)~(0.0204)和+ 0.0885_(0.0916)~(0.0679),与极化度理论值较吻合,结果显示铝激光等离子体内部存在各向异性。
     5.根据类氦共振线与互组合线强度比密度诊断法,结合实验光谱数据,推算出Al离子电子密度为0.9~1.5×10~(20)cm~(-3),与激光等离子体电子密度理论值基本一致。通过所测极化度和密度值探讨了这两个物理参量的定性关系。实验结果数据分析表明该极化晶体谱仪的性能已满足设计要求,适合激光等离子体X射线极化光谱诊断。
Experimental research of laser-produced high energy X-ray source is one of the most important parts of Inertial Confinement Fusion (ICF).The laser-produced high- temperature plasma contains very abundant information, such as the ion temperature, electron density, ionization, opacity, transport, fluctuation, instability, etc. In order to study laser-produced plasma, it is necessary to develop a key diagnostic technology to measure the parameters of ions and electrons. Polarization spectroscopy of X-ray lines represents a diagnostic tool to ascertain the presence of electron beams in high- temperature plasmas. Polarization spectroscopy focuses on the ratio of two orthogonal components of X-ray. And polarized X-ray is susceptible to the distribution of electrons and magnetic field. The anisotropy of plasma is relevant to the temperature and density of plasma electrons.
     This paper was supported by National Natural Science Foundation of China under Grant No.(NSAF)10576041. It has an in-depth study in the polarization theory of laser-produced plasma.The spectrograph has been designed based on X-ray crystal diffractive principle and perpendicularly disposed double-crystal method. The first experiment was carried out at the 20J laser facility of Laser Fusion Research Center, China Academy of Engineering Physics (CAEP). The He-like spectrum emitted from the aluminum plasma was recorded by the imaging plate, which could be used to calculate the polarizability and density of plasmas by some arithmetics.
     The main tasks of author were the designment and experimental studies on polarized X-ray. In this paper, we draw the following conclusions:
     1. In order to analyze the mechanism of polarized X-ray and the polarization degree of physical parameters in laser-produced plasma, the basic theory of laser plasma polarization and computational model of polarization were researched. The polarization effect on X-ray was discussed which including the interaction effect between laser and charged particles, the collisional excitation between electron and ion in laser-produced plasma. The Zeeman transitions and polarized X-ray occurs whenΔMJ=0 orΔMJ=±1. Three theoretical computing methods of polarized X-ray were analyzed emphatically, which are Stokes parameters, magnetic sublevel atomic kinetics, population-alignment collisional-radiative (PACR). The simulated results of three models are essentially in agreement, which respectively based on Stokes parameters, radiation cross-section and population-alignment.It shows that polarization of X-ray will decrease and gradually approaches zero with the increase of collisional electron energy in laser-produced plasma.
     2. The modified comprehensive diagnosis of double-crystal was proposed,which was not restricted to equal optical length and Brewster angle and satisfied to practical application of X-ray diagnosis. Compared with the method of measuring angular emission(MAE) and rotatable spectrometer technique(RST), the method of double- crystal is more adapt to diagnose polarized X-ray. The advantages and disadvantages of three common methods for diagnosing polarized X-ray were discussed.The method of equal optical leghth was flexible but needed two equal optical length, the method of Brewster angle normalized spectral lines based on a non-or-weak polarized line. The experiments indicate that the modified method is extraordinary effective diagnostic method of polarization spectroscopy.
     3. The novel polarized X-ray crystal spectrometer was developed and manufactured with perpendicularly disposed Double-crystal technique. The traditional crystal spectrometer is difficult to diagnose polarization spectrum with only one or symmetric dual channel. In this paper, the new orthogonal double-crystal structure was adopted, that is, the two crystal analyzer was orthogonal layout in the plane perpendicular to the incident electron beam direction. Single channel crystal usually can be divided into three geometric structures, which are flat, elliptical and spherical crystal with different materials.
     4. The experimental scheme of diagnosing polarization spectrum was explored,which could exam the properties of this spectrometer and verify anisotropic phenomenon in laser-produced plasma. By Stokes parameter algorithm, we have worked out polarization of resonance line Pw = +0 .1204_(0.0096)~(0.0204)and intercombination line Py = + 0.0885_(0.0916)~(0.0679) followed by calculating experimental data, which are well identical to the theory. The results show the laser-produced plasma is anisotropy.
     5. It has experimentally diagnosed electron density of Al plasma by ratio of resonance and intercombination.The electron density of Al plasma is 0.9~1.5×10~(20)cm~(-3) which is consistent with the academic value. These experimental results imply that the performance of the spectrometer satisfies the design requirements and it is a good tool for diagnosing laser-produced high-density plasma.
引文
[1]王淦昌全集.第4卷,惯性约束核聚变/王淦昌著[M].石家庄:河北教育出版社,2004
    [2]孙景文.高温等离子体X射线谱学[M].北京:国防工业出版社,2003.
    [3]张颖,魏晓峰,朱启华,等.高功率钕玻璃啁啾脉冲放大系统光谱整形[J] .光学学报,2008, 28( 9):1767~1771.
    [4] hansheng Peng,Xiaojun Huang,Qihua Zhu,et al. 286-TW Ti: sapphire laser at CAEP [J]. Proc.SPIE,2005,5627:1~6.
    [5] Deeney C.,Douglas M.R.,Spielman R.B.,et a1. Enhancement of X-ray power from a z pinch using nested-wire arrays[J].Phys Rev Lett,1998,81(22):4883~4886.
    [6]李丰平,邓建军,邹晓兵,等.喷气Z箍缩X光辐射信号分析[J].强激光与粒子束, 2006,18(8):1405~1408.
    [7]邹亚明.电子束离子阱及高电荷态离子相关物理[J].物理,2003,32(02):98~104
    [8]刘慎业,蒋小华,滕浩,等. 0.351μm激光辐照靶角度和时间分辨的侧向散射研究[J].强激光与粒子束.1999,11(5):591~595.
    [9]江少恩,丁永坤,缪文勇,等.我国激光惯性约束聚变实验研究进展[J].中国科学G辑, 2009, 39(11): 1571~1583.
    [10] Yuichi Inubushi,Hiroaki Nishimura,Masayuki Ochiai.et al. X-ray polarization spectroscopy for measurement of anisotropy of hot electrons generated with ultraintense laser pulse[J]. Rev. Sci. Instrum,2004,75(10):3699~3671.
    [11] Jaehoon Kim,Dong-Eon Kim. Measurement of the degree of polarization of the spectra from laser produced recombining Al plasmas[J]. Phys. Rev. E ,2002,66: 017401.
    [12]顾援,王琛,王伟,等. X射线激光在稠密等离子体诊断中的应用[J].物理,2005,34(6):455~460;
    [13]范品忠,Fin E,关铁堂.软X射线晶体谱仪[J].光学学报,1995,15(7):923~926.
    [14]阳庆国,李泽仁,彭其先,等.圆柱面和圆锥面弯晶谱仪的理论计算及设计[J].光学学报,2009,29(2):382~387
    [15]王瑞荣,陈伟民,董佳钦,等.高分辨X射线晶体谱仪及其在激光等离子体中的应用[J].光学学报,2008,28(6):1220~1224.
    [16] Borwn G.V.,Beiesrdoerfr P., Widmann K. Wide-band hing-resolution soft X-ray spectrometer for the Electron Beam Ion Trap[J] . Rev. Sci. Instrum.,1999,70(l):280~283.
    [17] Henke B.L., Jaanimagi P. A. Two-channel elliptical analyzer spectrograph for absolutetime-resolving time-integrating spectromtry of pulsed X-ray sources in the 100~10000eV region[J]. Rev. Sci. Instrum.,1985,56(8):1537~1545.
    [18] Yaakobi B., Turner R.E.,Schnopper H.W.,et al. Focusing X-ray spectrograph for laser fusion experiments [J]. Rev. Sci. Instrum.,1979,50(l2):1609~1611.
    [19] Shelkovenko T. A.,Pikuz S. A.,Hammer D. A. Use of spherically bent crystals to diagnose wire array z pinches[J]. Rev. Sci. Instrum.,2004,75(10): 3681~3683.
    [20] Kieffer J.C.,Matte J.P.,Chaker M.,et al. X-ray-line polarization spectroscopy in laser- produced plasmas[J]. Rev. Sci. Instrum.,1993,48(6):4648~4658.
    [21] Henderson J. R.,Beiersdorfer P.,Bennett C. L.,et al. Polarization of X-ray emission lines from heliumlike scandium as a probe of the hyperfine interaction[J].Phys. Rev. Lett. 1990,65,705~708.
    [22] Decaux V.,Beiersdorfer P.,Kahn S. M. High resolution measurement of the Ka spectrum of Fe XXV-XVIII: new spectral deagnostics of nonequilibrium astrophysical plasmas[J]. The trophysical journal,1997,482:1076~1084.
    [23] James H.Scofield. Angular distribution of cascade x rays following radiative recombination from a beam[J].physical review A,1991,44(1):139~143.
    [24] Beiersdorfer P.,Bitter M.,Hey D.,et al. Identification of the 1s2s2p 4P5/2→1s22s 2S1/2 magnetic quadrupole inner-shell satellite line in the Ar16+ K-shell X-ray spectrum [J]. Phys. Rev. A ,2002,66: 032504
    [25] Beiersdorfer P,Crespo LO′Pez-urrutia J,Decaux V,et al. Polarization spectroscopy of X-ray transitions from beam-excited highly charged ions[J]. Rev. Sci. Instrum.,1997,68 (1):1073~1077.
    [26] Peter Hakel, Roberto C. Mancini,Jean-Claude Gauthier,et al. X-ray line polarization spectroscopy of He-like Si satellite line spectra[J]. Rev. Sci. Instrum.,2001,72(1): 1245~1247.
    [27] Glenzer S. H.,Fournier K. B.,Decker C.,et al. Accuracy of K-shell spectra modeling in high-density plasmas[M]. physical review E,2000,62(2): 2728~2738.
    [28] Joshua E. Rothenberg. Polarization beam smoothing for inertial confinement fusion[J]. JOURNAL OF APPLIED PHYSICS,2000,87(8):3654~3662.
    [29] Shlyaptseva A. S.,Fedin D. A.,Hamasha S. M.,S. B. Hansen,et al. X-ray spectroscopy and spectropolarimetry of high energy density plasma complemented by LLNL electron beam ion trap experiments[J]. Rev. Sci. Instrum.,2003,74(3):1947~1951
    [30] Shelkovenko T. A.,Pikuz S. A.,Sinars D. B.,et al. Time-resolved spectroscopic measurements ofè1 keV,dense,subnanosecond X-pinch plasma bright spots[J]. PHYSICSOF PLASMAS,2002,9(5): 2165~2173.
    [31] Kim Y. W.,Lee H.D.. Polarization spectroscopic imaging of charge separation in neutral gas-confined laser-produced plasmas[J]. Rev. Sci. Instrum.,2003,74(3): 2123~2127.
    [32] Clothiaux E J,Oks E,Weinheimer J,et al. Measurement of the polarization of line profiles in the X-ray region and the diagnostic possibilities[J].J.Quant. Spectrosc. Radiat.Transfer,1997,58(4-6):531~536.
    [33] Takashi Imazono,Masahiko Ishino,Masato Koike,et al. Performance of a reflection-type polarizer by use of muscovite mica crystal in the soft X-ray region of 1 keV[J]. Rev.Sci.Instrum. 2005,76(2): 023104~023107.
    [34] Hitoki Yoneda,Noboru Hasegawa,Shu-ichi Kawana,et al. Large anisotropy of the electron distribution function in the high-density plasma produced by an ultrashort-pulse UV laser[J]. physical review E,1997,56(1):998~991.
    [35] Tohru Kawamura,Takeshi Kai,Fumihiro Koike,et al. Polarization of He-Radiation due to Anisotropy of Fast-Electron Transport in Ultraintense-Laser-Produced Plasmas[J]. Rev. Lett.,2007,99:115003.
    [36] David N.,Hooker S. M.. Effects of polarization on inverse Bremsstrahlung heating of a plasma[J]. PHYSICAL REVIEW E,2005,72:036402.
    [37] Mehmet Erugrul,Onder Simsek,Oguz Dogan,et al. Measurement of the Kαand KβX-rays polarization degree and polarization effect on the Kβ/Kαintensity ratio[J]. nucl.instr.and Meth.inPhys.Res.B,2001,179:465~468.
    [38]胡希伟.等离子体理论基础[M].北京:北京大学出版社,2006.
    [39] Beyer H.F.,Shevelko V.P., Interoduction to the physics of high charged ions[M].孙景文译.中国工程物理研究院
    [40] Adam M. Y. ,Wuilleumier F..Recent progress in the study of photoionization processes of atomic species by electron spectroscopy using synchrotron radiation[J].Journal of Electron Spectroscopy and Related Phenomena,1979,15(1): 211~224
    [41] Lyman Spitzer,Jr.Richard H?rm. Transport Phenomena in a Completely Ionized Gas[J]. Phys.Rev,1953,89(5):977~981.
    [42] Braginskii S. I.,1965,in Reviews of Plasma Physics,edited by M. A. Leontovich (Consultants Bureau,New York),Vol. 1,pp: 205.
    [43] Gray D. R.,Kilkenny J. D.. The measurement of ion acoustic turbulence and reduced thermal conductivity caused by a large temperature gradient in a laser heated plasma [J] .Plasma Phys. 1980,22,(2):81~111.
    [44] Matte J.P.,Bendib A.,Luciani J.F.. Amplification of magnetic modes in laser-createdplasmas[J]. Phys.Rev.Lett.,1987,58(20):2067~2070.
    [45] Bell A. R. ,Evans R. G. ,Nicholas D. J.. Elecron Energy Transport in Steep Temperature Gradients in Laser-Produced Plasmas[J]. Phys.Rev.Lett.,1981,46(4):243~246.
    [46] Matte J. P. ,Virmont J. Electron Heat Transport down Steep Temperature Gradients [J].Phys.Rev.Lett.,1982,49(26):1936~1939.
    [47] EpperleinG E. M.,Rickard J.,Bell A. R.. Two-Dimensional Nonlocal Electron Transport in Laser-Produced Plasmas[J].Phys. Rev. Lett. 1988,61,2453~2456
    [48] Albritton J. R. Laser Absorption and Heat Transport by Non-Maxwell-Boltzmann Electron Distributions[J].Phys.Rev.Lett.,1983,50(26):2078~2081.
    [49] Ramani A.,Laval G.. Heat flux reduction by electromagnetic instabilities[J].Phys. Fluids 1978,21(6): 980~991
    [50] Okada T.,Yabe T.,Niu K.,Spontaneous Generation of Electromagnetic Waves in Plasmas with Electron Thermal Flux[J].J.Phys.Soc.Jpn. 1977,43,1042~1047
    [51] Kieffer J.C.,Matte J.P.,Pepin H.,et al.. Electron distribution anisotropy in laser-produced plasmas from X-ray line polarization measurements[J]. Phys.Rev.Lett.,1992,68(4):480~483
    [52] Oppenheimer J.R.. Zur Quantenmechanik der Richtungsentartung[J].Z.Phys.1927.43:27~46.
    [53] Inal M.K. ,Dubau J.. Theory of excitation of He-like and Li-like atomic sublevels by directive electrons: application to X-ray line polarisation[J]. J. Phys. B: At. Mol. Phys. 1987,20(16): 4221~4239.
    [54] Inal M.K. ,Dubau J.,Polarisation of dielectronic recombination satellite lines [J]. J. Phys. B: At. Mol. Opt. Phys. 1989,22(20): 3329~3341.
    [55] Novick R.. Stellar and solar X-ray polarimetry[J]. Space Sci. Rev.,1975,18(3): 389~408.
    [56] Haug E.. Electron impact polarization of x-ray lines from hydrogen-like ions during solar flares[J]. Solar Phys.,1981,71:77~89.
    [57] Dhez P.. Polarizers and polarimeters in the X-UV range[J].Nucl.Instrum. Methods Phys.Res.A ,1987,261:66~71
    [58] Lamoureux M.,L. Jacquet and R. H. Pratt. Angular distribution and polarization of the continuum emission in anisotropic plasmas[J]. Phys.Rev.A.,1989,39(12):6323~6334.
    [59] Gabriel A H,Paget T M. Measurement and interpretation of dielectronic recombination satellite line intensities[J]. J. Phys. B: At. Mol. Phys. 1972,5(3): 673~685
    [60] Chaker M.,Kieffer J. C.,Matte J. P.,et al. Interaction of a 1 psec laser pulse with solid matter[J].Phys. Fluids B,1991,3(1): 167~175.
    [61] Inal M. K.,Linear polarization of the 2 p 5 3s→2p6 lines following the inner-shell photoionization of sodiumlike ions[J]. Phys. Rev. A .,2005,72(4):042720~042728.
    [62] Berezhko E G ,Kabachnik N M. Theoretical study of inner-shell alignment of atoms in electron impact ionisation: angular distribution and polarisation of X-rays and Auger electrons[J]. J. Phys. B: At. Mol. Phys. 1977,10 (12): 2467~2477.
    [63] Shore B. W. ,Menzel. D. H. Principles of Atomic Spectra[J],Physics Today ,1968,21(9): 93.
    [64] Takács E.,Meyer E. S.,Gillaspy J. D.,et al. Polarization measurements on a magnetic quadrupole line in Ne-like barium[J],Phys. Rev. A .1996,54(2):1342~1350.
    [65] Takashi Fujimoto ,Sergei A Kazantsev. Plasma polarization spectroscopy[J]. Plasma Phys. Control. Fusion,1997,39:1267~1294 .
    [66] Zhang H.L.,Sampson D.H.,Clark R.E.H.. Relativistic cross sections for excitation of highly charged ions to specific magnetic sublevels by an electron beam[J]. Phys. Rev. A .1990,41(1),198~206.
    [67] Inal M. K. ,Dubau J.. Polarization of Fe xxv 1s2-1s2l lines: Collisional resonances and radiative cascade contributions to 1s2l magnetic-sublevel excitation rates[J].Phys. Rev. A,1993,47(6): 4794~4806.
    [68] R.E.H.Clark,J.Abdallah,Jr.,G.Csanak,et al. Electron-impact cross sections and coherence parameters for the 6s2 1p 1P transition in neutral barium[J]. Phys. Rev. A .1989,40(6): 2935~2949.
    [69] Hammel B.A., Ruggles L.E.. Elliptical spectrograph gated microchannel-plate detector for time resolved spectral measurements in the X-ray region[J]. Rev. Sci. Instrum.,1988,59(8):1828~1830.
    [70] Zhang H.L.,Sampson D.H.,Inal M.K.. Application? Ionization to specific magnetic sublevels by an electron beam: to the effect of inner-shell ionization on the polarization of Se24+ lines[J]. Phys. Rev. A ,2001,63:052713.
    [71] Inal M. K., Zhang H. L.,Sampson D. H.. Circular polarization of the Fe xxv X-ray lines following collisional excitation by longitudinally polarized electrons[J]. Phys. Rev. A ,1992,46: 2449~2461 .
    [72] Inal M. K.,Zhang H. L.,Sampson D. H.,et al. Effect of inner-shell ionization on the circular polarization of the Fe~(24+) . ( 1s2s )_1→(1s~!)0 line produced by collisions with a longitudinally polarized electron beam[J]. Phys. Rev. A ,2002,65: 032727.
    [73] Csanak G. ,Cartwright D.C.. Principal quantum number dependence of polarisation fractions for electron impact excitation of the n1P and n1D states of helium[J]. Phys. B: At.Mol. Opt. Phys. 1989,22(17): 2769~2778.
    [74] Iwamae A, Sato T,Horimoto Y, et al. Polarization of ECR helium plasma and population-alignment collisional-radiative model[J].NIFS-PROC (Natl Inst Fusion Sci),2004,57:152~162.
    [75] Ralchenko Yu.V.,Janev R.K.,Kato T.,et al. Cross setion database for collision processes of helium atom with charged particles,I.Electron impact processes[D],NIFS-DATA-59,2000.
    [76] Ralchenko Yu.V.,Maron Y.. Accelerated recombination due to resonant deexcitation of metastable states[J],Journal of Quantitative Spectroscopy and Radiative Transfer ,2001,71: 609~621.
    [77] OGiLVIE R.E. Parafocusing diffractometry[J]. Rev. Sci. Instrum,1963,34(12): 1344~1347.
    [78] Beyer H F,Mann R ,Folkmann F. High-charge-low-velocity electron capture studied by X-ray line quenching[J]. J. Phys. B: At. Mol. Phys. 1981,14 (11): L377~L381.
    [79] Kemp J.,Sentoku Y.,Sotnikov V.,et al. Collisional relaxation of super themal electrons generated by relativistic laser pulses in dense plasma[J] .Rev. Lett. 2006,97: 235001.
    [80]廖延彪.偏振光学[M].北京:科学出版社,2003.
    [81] Takahashii N, Arai S,Kouchi N,et al. Angular intensity distribution of Balmer-a emission excited by electron impact on H2[J]. J. Phys. B: At. Mol. Phys.1983,16:L547~L552.
    [82] Alexander Ioffe, Sergey Manoshinb. Larmor labelling by thin spin flippers with rotating magnetic field: simulations of performance of neutron scattering instruments[J]. Nucl. Instrum. Methods Phys. Res. A,2004,529(1-3):45~49
    [83] Stephan Fritzsche ,Andrey Surzhykov. Radiative recombination into high-Z few-electron ions: Cross sections and angular distributions[J].Phys. Rev. A,2005,72:012704.
    [84] Beier R,Bachmann C,Burhenn R. Investigation of the polarisation of nonthermal bremsstrahlung from a vacuum spark plasma[J].J. Phys. D: Appl. Phys. ,1981,14(4):643~648.
    [85] Shlyaptseva A.S.,Hansen S.B.,Kantsyrev V. L.,et al. X-ray spectropolarimetry of high-temperature plasmas[J]. Rev. Sci. Instrum.2001,72: 1241~1244
    [86] Shlyaptseva A.S.,Kantsyrev V.L.,Ouart N.,et al. X-ray line spectropolarimetry as a new diagnostic of anisotropic plasma sources[J]. Proceedings of SPIE - The International Society for Optical Engineering,2004,5196: 16~24
    [87] Beiersdorfer P. ,Slater M.. Measurement of the electron cyclotron energy component of the electron beam of an electron beam ion trap[J].Phys. Rev. E.2001,64(6),066408~066414.
    [88] Shlyaptseva A.S.,Mancini R. C.. Theoretical study of polarization properties of dielectronicsatellite lines of Be-like Mg and Fe ions[J]. J. Quant. Spectrosc. Radiat. Transf. 1997,58(2): 917~926.
    [89] Reed K.J. ,Chen M.H. . Relativistic effects on the polarization of line radiation emitted from He-like and H-like ions following electron-impact excitation[J].Phys. Rev. A.1993,48(5): 3644~3651.
    [90] Itikawa Y.,Srivastava R.,Sakimoto K.,Polarization of line radiation emitted from He-like and H-like ions following electron impactPhys[J]. Rev. A .1991,44(11):7195~7198.
    [91] Beiersdorfer P.,Vogel D. A.,Reed K. J.,et al. Measurement and interpretation of the polarization of the X-ray line emission of heliumlike Fe xxv excited by an electron beam[J].Phys. Rev. A 1996,53,3974~3981..
    [92] Shlyaptseva A. S.,Mancini R. C.,Neill P.,et al. Polarization of X-ray Li- and Be-like Fe satellite lines excited by an electron beam[J]. Rev. Sci. Instrum. 1997,68,(1): 1095~1098.
    [93] Chantler C. T.,Paterson D.,Hudson L. T. . Absolute measurement of the resonance lines in heliumlike vanadium on an electron-beam ion trap[J].Phys. Rev. A,2000,62(4):042501.
    [94] Beiersdorfer P.,Brown G.,Utter S.,et al. Polarization of K-shell X-ray transitions of Ti19+ and Ti20+ excited by an electron beam[J].Phys. Rev. A,1999,60:4156~4159..
    [95] Nobuyuki Nakamura,Daiji Kato,Nozomu Miura,et al. Intensity ratio between Lyman-α1 and -α2 lines of hydrogenlike titanium observed in an electron-beam ion trap[J].Phys. Rev. A,2001,63: 024501.
    [96] Tang Bin,Jin Yi,Jiang Meiping,et al. Diffraction properties of four-petal Gaussian beams in uniaxially anisotropic crystal[J]. Chinese Optics Letters,2008,6(10):779~801.
    [97] Henke B L,Gullikson E M,Davis J C. X-ray interactions: photoabsorption,scattering,transmission,and reflection at e=50-30000ev,z=1-92 [J]. At. Data and Nucl. Data Tables.1993,54(2):181~342.
    [98] Knapp D.A.,Marrs R.E.,Elliott S.R.,et al. A high-energy electron beam ion trap for production of high-charge high-Z ions[J]. Nucl. Instrum. Methods Phys. Res. A 1993,334(2):305~312.
    [99] Robbins D. L.,Faenov A. Ya.,Pikuz T. A.,et al. Measurement of the polarization of the K-shell resonance line emission of S13+ and S14+ at relativistic electron beam energies[J]. Phys. Rev. A,2004,70:022715.
    [100]梁栋材.x射线晶体学基础[M].北京:科学出版社,1991:355~356.
    [101]李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990:54~82.
    [102] Bertschinger G.,Biel W.,Jaegers H.,et al. Compact imaging Bragg spectrometer for fusion devices[J]. Rev. Sci. Instrum.,2004,75(10): 3727~3729
    [103]王英华.X光衍射技术基础(第二版) [M].北京:原子能出版社,1993:150~153.
    [104]巴索夫H.T..稠密等离子体诊断学[M].华欣生(主译),中国工程物理研究院,1993:157~168
    [105]项志遴,俞昌旋.高温等离子体诊断技术[M]..上海:上海科学技术出版社,1982:179~182.
    [106]熊先才.双通道椭圆弯晶谱仪的基础理论及实验研究[D].重庆大学,2004.
    [107]邱爱慈,蒯斌,王亮平,等.强光一号Z箍缩实验研究[J].强激光与粒子束,2008,20(11):1911~1922
    [108] Henke B L,Yamada H T,Tanaka T J. Pulsed plasma source spectrometry in t he 80~8000 eV X-ray region [J ] .Rev .Sci . Instrum. ,1983,54(10):1311~1330.
    [109] Fraenkel B. S., Bitter M.,von Goeler S.,et al. Focusing Properties of X-ray Spectrometers with 2D-Curved Crystals for Extended X-ray Sources of Hot Plasmas[J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY,1997,7: 171~185
    [110] Missalla T,Uschmann I,Forster E,et al.. Monochromatic focusing of subpicosecond X-ray pulses in the keV range[J]. Rev. Sci. Instrum,1999,70(2): 1288~1299.
    [111] Sanchez del Rio M.,Fraenkel M.,Zigler A.,et al. Collimation of plasma-produced X-rays by spherical crystals: Ray-tracing simulations and experimental results[J]. Rev. Sci. Instrum.,1999,70(3): 1614~1620.
    [112] Yasutomo Arai,Tomotsugu Aoyama,Shinichi Yoda. Spherical sapphire single-crystal synthesis by aerodynamic levitation with high growth rate[J]. Rev. Sci. Instrum.,2004,75(7): 2262~2265
    [113] Faenov A.Ya.,Magunov A.I.,Pikuz T.A.,et al. X-ray spectromicroscopy of clusters heated by fs laser radiation[C]. CP652,X-ray and iner-shell processes:19th international conferece on X-ray and inner-shell processes. 2003:404~414.
    [114] Hall I M,Woolsey N C,Renner O,et al. High-resolution X-ray spectroscopy using toroidally bent crystals[R],Central Laser Facility Annual Report 2003/2004:197~198.
    [115]卢向东,欧伟英. X射线弯晶谱仪的几何因数对色散角的影响[J].激光杂志,2004,25(6):85~87
    [116] Sinars D B,Cuneo M E,Bennett G R,et al. Monochromatic X-ray backlighting of wire-array z-pinch plasmas using spherically bent quartz crystals[J]. Rev. Sci. Instrum. 2003,74 (3): 2202~2206.
    [117]王琛,X射线激光实验研究[D].中国工程物理院,2004.
    [118] Kolodner P,Yablonovitch E. Proof of the resonant acceleration mechanism for fast electrons in gaseous laser targets[J]. Phys Rev Lett,1976,37:1754~1757.
    [119] Moore C I,Ting A,McNaught S J,et al. A laser-accelerator injector based on laserionization and ponderomotive acceleration of electrons[J]. Phys Rev Lett,1999,82:1688~1691.
    [120] Li Y T,Zhang J,Sheng Z M,et al. Spatial distribution of high-energy electron emission grom water plasmas produced by femtoecond laser pulses[J]. Phys Rev Lett,2003,90:165002.
    [121]梁文锡,李玉同,徐妙华,等.成像板在超强激光与等离子体相互作用产生超热电子研究中的应用[J].中国科学G辑:物理学力学天文学,2009,39 (1): 37~42.
    [122] Amemiya Y,Miyahara J.Imaging plate illuminates many fields[J]. Nature,1988,336:89~90.
    [123] Rowlands J A.The physics of computed radiography[J]. Phys Med Biol,2002,47:123~166.
    [124]祁吉.数字化X线摄影:现状与展望[J].中国临床医学影像杂志,1999,10:4~5.
    [125]于润生,王宝义,魏龙,等.用成像板探测正电子[J].核技术,2000,23(6):401~404.
    [126] Tanaka K A,Kodama R,Fujita H,et al. Studies of ultra-intense laser plasma interactions for fast ignition[J]. Phys Plasmas,2000,7:2014~2022.
    [127] Tanaka K A,Toshinori Y,Takashi S,et al. Calibration of imaging plate for high energy electron spectrometer[J]. Rev Sci Instrum,2005,76:013507.
    [128] Li Y T,Yuan X H,Xu M H,et al.Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses[J]. Phys Rev Lett,2006,96:165003.
    [129] Izumi N,Snavely R,Gregori G,et al. Application of imaging plates to X-ray imaging and spectroscopy in laser plasma experiments[J].Rev Sci Instrum,2006,77:10E325.
    [130] Iwabuchi Y,Mori N,Takahashi K,et al. Mechanism of photostimulated luminescence process in BaFBr:Eu2+phosphors[J].Jpn J Appl Phys,1994,33:178~185.
    [131] Gales S G,Bentley C D.Image plates as X-ray detectors in plasma physics experiments[J]. Rev Sci Instrum,2004,75:4001~4003.
    [132] Fujimoto T.,Sahara H.,Kawachi T.,et al. Polarization of impurity emission lines from a tokamak plasma[J]. Phys.Rev.E,1996,54:R2240~R2243.
    [133] Walden F.,Kunze H.-J.,Petoyan A.,et al. Polarization measurements of the Al xii resonance line emitted from micropinch plasmas of a vacuum spark discharge[J].Phys. Rev. E,1999,59:3562.
    [134]王光昶,郑志坚.飞秒激光与固体靶相互作用中背表面的渡越辐射[J].中国激光,2008,35(4):524~528.
    [135]王洪建,肖沙里,施军,等.激光等离子体X射线极化光谱研究[J].光学精密工程,2008,16(5): 822~826.
    [136] Weinheimer J.,Ahmad I.,Herzog O.,et al. High-resolution X-ray crystal spectrometer/ polarimeter at torus experiment for technology oriented research-94[J]. Rev. Sci. Instrum.,2001,72(6): 2566~2574.
    [137] Bradford John Wargelin,A Study of Diagnostic X-Ray Lines in Heliumlike Neon Using an Electron Beam Ion Trap[D]. Lawrence Livermore National Laboratory,University of California ? Livermore,California ? 94551.
    [138] Boiko V A,Pikuz S A,Faenoy A Ya. The determination of laser plasma electron density by K spectra of multicharged ions[J].J Phys B:Atom Molec Phys,1979,12(11):1889~1909.
    [139] Aglitskii E V,Boiko V A,Vinogradov A V,et al. Diagnostic of dense laser plasmas based on the spectra of hydrogen-like and helium-likemultiply charged ions[J].Sov J Quant Electron,1974,4(3):322~328.
    [140] Ilyukhin A A,Koloshnikov G V,Kramida A E,et al. Determination of the electron temperature profile in a laser plasma from relative populations of the levels of hydrogen-like ions [J].Sov J Quant Electron,1981,11(8): 1071~1075.
    [141] Dalta R U,Griem H R. Electron density measurement using the Stark profiles of Al lines[J].Phys Fluids,1979,22(7):1415~1416.
    [142] De Michelis C , Mattioli M. Soft-X-ray spectroscopic diagnostics of laboratory plasmas[J].Nuclear Fusion,1981,21(6):677~754.
    [143] Chambers D M,Pinto P A,Hawreliak J,et al. K-shell spectroscopy of an independently diagnosed uniaxially expanding laser-produced aluminum plasma[J].Phys Rew E,2002,66(2),026410.
    [144] Renner O,Limpouch J,Krousky E,et al. Spectroscopic characterization of plasma densities of laser-irradiated Al foils[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2003,81:385~394.
    [145] Ilyukhin A. A.,Kramida A. E.,Peregudov G. V.,et al. Determination of plasma electron densities from the intensity ratio of resonance and intercombination lines of helium-like ions[J]. Sov. J. Quant. Electron. 1981,11(1): 34~36
    [146] Aglitskii E. V.,Boiko V. A.,Zakharov S. M.,et al. Observation in laser plasmas and identification of dielectron satellites of spectral lines of hydrogen- and helium-like ions of elements in the Na-V range[J]. Sov. J. Quant. Electron.,1974,4(4):500~513.
    [147] Smith C C,Peacock N J. Electron density measurements using the Stark-broadened line wings of hydrogenic ions in laser-produced plasmas[J].J Phys B,1978,11(15):2749~2763.
    [148] Kunze H J,Gabriel A,Griem H R. Measurement of Collisional Rate Coefficients forHeliumlike Carbon Ions in a Plasma[J]. Phys. Rev. 1968,165: 267~276.
    [149] Aglitskii E V,Boiko V A,Oleg N Krokhin,et al. Observation of ions of ~30–50 charge in a laser plasma [J]. Sov. J. Quant. Electron.,1975,4(9): 1152~1153.
    [150] Boiko V A,Oleg N Krokhin,Pikuz S A. Measurement of the intensity of the 2–10 ? radiation emitted by laser plasmas generated from targets with nuclear charges Z = 12–23 and determination of the plasma electron temperature[J]. Sov. J. Quant. Electron.. 1975,4(10):1212~1215.
    [151] Vinogradov A. V.,Skobelev I. Yu.,Yukov E. A.. Determination of plasma density from spectra of heliumlike ions[J]. Sov. J. Quant. Electron.,1975,5,(6):630~633.
    [152] Bely-Dubau,F.,Faucher,P.,Steenman-Clark,et al. Dielectronic satellite spectra for highly-charged helium-like ions. VII - Calcium spectra: Theory and comparison with SMM observations[J]. Royal Astronomical Society,Monthly Notices,1982,201:1155~1169.
    [153]王洪建,肖沙里,施军,等. Z箍缩等离子体X射线椭圆弯晶谱仪[J].中国激光. 2009,36(1):115~118
    [154]王洪建,肖沙里,施军,等.喷气箍缩等离子体X射线椭圆弯晶谱仪研究[J].光子学报, 2009,38(5):1212~1215.
    [155]施军,肖沙里,王洪建,等. Z箍缩等离子体X射线极化研究[J].光电工程.2008,35(10):32~36.
    [156]施军,肖沙里,王洪建,等.氩气内爆Z箍缩等离子体温度诊断[J].光学精密工程.2009,17(8):1819~1824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700