利用全球导航卫星研究电离层总电子含量特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球导航卫星的广泛应用为我们探测、研究电离层带来了革命性的变化。本文介绍了GPS信号折射效应导出电离层总电子含量(Total Electron Content:TEC)等特征参量的方法,利用GPS-TEC和GPS掩星的长期观测数据,研究了中国地区电离层TEC的变化特征、电离层TEC短期预报技术、极区电离层TEC的UT变化和E层占优电离层等气候学特征。另外,本文还分析了一次磁暴主相期间的极区电离层的响应。
     首先,提出了由地基GPS斜向TEC获取电离层垂直TEC的方法,利用2004年中国及周边地区常年运行的33个GPS观测站和10个测高仪站的电离层TEC和峰值电子密度(Ionospheric F2peak electron density: NmF2)数据,对中国地区电离层TEC与NmF2的变化特性进行了较系统的对比研究,发现电离层TEC的变化与NmF2的变化特性在总体上较为一致。但是,电离层TEC的日变化峰值出现时间早于NmF2的日变化峰值出现时间;电离层TEC的逐日变化要明显的小于NmF2的逐日变化;TEC赤道异常峰出现的纬度要低于NmF2峰的位置,这是由赤道喷泉效应导致的赤道地区顶部电离层倾斜造成的。
     参与开发了一种适用于中国地区电离层TEC的短期预报方法,该方法用自相关函数法对电离层TEC进行单站预报,用改进的克里格方法进行区域重构,可以较好的预报我国地区上空电离层TEC并易于操作实施。利用2004年中国地区地基GPS-TEC数据验证了这一方法并全面评估了这一预报方法的误差,总体上看,在提前1小时预报中国地区电离层TEC时,相对预报误差约为12%左右。讨论了提高预报精度的可能途径,编写了相应的计算机软件并应用於国家气象局"空间天气定量化预报技术及其集成”。
     提出了一个新的极区电离层参数——极区电离层平均电子含量mPEC,分析了南极和北极地区电离层的UT变化特征,发现南极电离层的UT变化要大于北极;还定量评估了太阳光致电离,水平输运和极光粒子沉降对产生极区电离层电子密度的相对贡献。在mPEC所表征的极区电离层中,太阳光致电离的作用是主要的,在南极占60-70%,在北极的冬季占75%左右,其他季节占87%左右;极区等离子体对流及粒子沉降对电子含量在南极相对较突出,约是太阳光致电离的50%左右,在北极则是冬季较明显,但也仅为太阳光致电离的33%,其他季节不足太阳光致电离的15%。这些特征主要是由于地磁轴与地理轴的偏离所致。造成南极的UT效应较北极要大则是由于地磁与地理轴的偏离程度在南极要大于北极。
     首次研究了极夜期间南极地区E层占优电离层(E-Layer Dominated Ionosphere:ELDI)的分布特征及电离层的形态,并与北极进行了对比。极夜期间电离层ELDI特征明显,其分布与极光椭圆位形基本一致,而且其在夜侧的发生率较高,北极为70%左右,而南极为90%左右;极区极夜期间ELDI主要成因是高能粒子沉降引起底部电离层电离率的增大。ELDI特征在南北极的发生率的大小及分布的差异则主要是由于电离层的背景电子密度在南极要小于北极,其根源可能与南北极的中性大气及地理轴与地磁轴的偏离程度的不同有关。
     利用包括GPS-TEC、掩星在内的多手段观测,研究了一典型磁暴期间极区电离层的等离子特征,发现了E层电子密度的增加对TEC正暴的重要性,补充了全球范围内电离层对此次磁暴的响应的认识。
There have been revolutionary changes for the sounding and researching theionosphere due to the widly use of the global navigation satellites. In this paper, weintroduced the methods to derive the ionospheric parameters, such as ionospheric TotalElectron Content (TEC), based on the refringence effect of the GPS singles. Based onthe long-time data set of GPS-TEC and radio occutation, we investigated the variationsof the ionospheric TEC over China region, the short-term forecasting of the ionosphericTEC, the universal time (UT) variation of the ionospheric TEC in the polar regions andthe characters of the E-layer dominated ionosphere in the polar region during the polarnight. Besides these, we also analyzed the ionospheric response to a geomagnetic stormduring its main phase in the polar region.
     We introduced a method to derive the vertical TEC from the slant TEC over the GPSsite on the ground firstly. Then, using the TEC data of33GPS sites from China CrustalMovement Observation Network and the NmF2data of10ionosonde sites in the year of2004, we did some systemativecomparative analysis between the variations of theionospheric TEC and NmF2over China. Generally speaking, there were almost thesame variations of the ionopsheric TEC and NmF2. However, the peak time of diurnalvariation of ionospheric TEC was earlier than NmF2; The day-to-day variation ofionospheric TEC was smaller than NmF2; The location of the northern crest of theequatorial anomaly identified from ionospheric TEC was at lower latitude than thatidentified from ionospheric NmF2, which is caused by the tilt of the top side ionospherebecause of the fountain effect.
     A short-term forecasting method for the ionospheric TEC in China region wasproposed as a member of the group. This method consists of two parts: the single stationforecasting and the regional ionospheric reconstruction. They adopt auto-correlationmethod and corrected Kriging method, respectively. Using the ionospheric TEC dataabove, we analyzed the prediction errors and the relative errors for this method in Chinaregion. The relative error is12%with1hour in advance. Based on the results oftheprediction errors, we provided possible ways for improving the accuracy of theprediction. The softwares of this method were also done and used in Chinameteorological administration.
     A new ionospheric parameter in the polar regions, mean Polar Electron Content(mPEC), was proposed. The variations of mPEC with UT were investigated in the polar regions.It can be found that the UT variation of the ionosphere was stronger in theAntarctic than that in the Arctic. The relative contribution of the photoionization andboth of the transport and paricles precipitation to the ionospheric electrons was alsoestimated. The photoionization is the main source of mPEC standing for the polarionosphere, which was60-70%in the Antarctic, while about75%in winter and87%inthe other seasons in the Arctic. The transport and paricles precipitation was moreimportant to mPEC in the Antarctic than that in the Arctic, which was50%of thephotoionization in the Antarctic, while only33%in winter and less than15%in theother seasons in the Arctic.The reason of thes characters were mainly caused by thetheseparation of the geomagnetic pole from the geographyic pole.
     The characters of the E-layer Dominated Ionosphere (ELDI) in the Antarctic duringpolar night was investigated and compared with that in the Arctic, firstly. The ELDI wasobvious in the polar region during polar night and its distribution was very similar withthe auroral oval. The occurrence of ELDI was higher in the night side, which was about70%in the Arctic and90%in the Antarctic. The ELDI was mainly caused by the highenergy particles precipitation. The difference of the distribution and the occurrence ofELDI between Antarctic and Arctic was because that the electron density was larger inthe Antarctic than Arctic, whose reason may associate with the difference of the neutralatmosphere and the separation of the the geomagnetic pole from the geographyic polebetween theAntarctic and Arctic.
     Based on the multi-observations, including GPS-TEC and radio occutation, theionospheric response to a typical geomagnetic storm was analysed in the Arctic regionduring its main phase. It was found that the increase of electron density in the E-layerwas very important for the positive geomagnetic storm, which was the supplement ofthe knowledge of ionosphere responding to this geomagnetic storm in the global region.
引文
[1]熊年禄,唐存琛,李行健.电离层物理概论.武汉:武汉大学出版社,1999.5,
    [2] APPLETON E V. Two Anomalies in the ionosphere [J]. Nature,1946,157,691.
    [3] LIANG P H. F2ionization and geomagnetic latitudes [J]. Nature,1947,160:642-643.
    [4] MARTYN D F. Atmospheric tides in the ionosphere. I. Solar tides in the F2region[J]. Proc R Soc Lon,1947, Ser. A(189):241-260.
    [5]余涛,万卫星.利用IGS数据分析全球TEC的周年和半年变化特性[J].地球物理学报,2006,49(4):943-9.
    [6] YU T, WAN W X, LIU L B. Global scale annual and semi-annual variations ofdaytime NmF2in high solar activity years [J]. J Atmos Terr Phys,2004,66:1691-1701.
    [7] RISHBETH H, K S C S G. The F-layer at sunrise [J]. J Atmos Terr Phys,1961,21:263-276.
    [8] WRIGHT J W. The F region seasonal anomaly [J]. J Geophys Res,1963,68:4379-4381.
    [9] JOHNSON F S. Composition changes in the upper atmosphere [J]. In: Thrane E edElectron Density Distributions in the Ionosphere and Exosphere Amsterdam,North-Holland,1964,81-84.
    [10] KING G A M. The dissociation of oxygen and high level circulation in theatmosphere [J]. JAtmos Terr Phys,1964,21:231-237.
    [11] RISHBETH H. How the thermospheric circulation affects the ionospheric F2-layer[J]. JAtmos Terr Phys,1998,35(12):1385-1402.
    [12] FULLER-ROWELL T J. The 'Thermospheric spoon': a mechanism for thesemi-annual density variation [J]. J Geophys Res,1998,103:39513-39516.
    [13] MILLWARD G H, RISHBETH H, FULLER-ROWELL T J. Ionospheric F2layerseasonal and semi-annual variations [J]. J Geophys Res,1996,101:5149-5156.
    [14]肖宏波.电离层层析成像及掩星反演方法.博士论文,西安电子科技大学,2007.
    [15]章红平.基于地基GPS的中国区域电离层监测与延迟改正研究.博士论文,中科院上海天文台,2006.
    [16]袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究.博士论文,中科院测地所,2002.
    [17] BROWNE I C, EVANS J V, HARGREAVES J K, et al. Radio echoes from themoon [J]. Proceedings of the Physical Society,1956,69(9):901-920.
    [18] EVANS J V. The measurement of the electron content of the ionosphere by thelunar radio echo method [J]. Proceedings of the Physical Society Section B,1956,69(9):953.
    [19] EVANS J V. some post-war developments in ground-based radiowave sounding ofthe ionosphere [J]. JAtmos Terr Phys,1974,36:2183.
    [20] EVANS J V. satellite beacon contributions to studies of the structure of theionosphere [J]. review of Geophysics and space physics,1977,15(3):325-350.
    [21] MANNUCCI A J, WILSON B D, D.N.YUAN. A global mapping technique forGPS-derived ionospheric total electron content measurements [J]. Radio Sci,1998,33(3):565-582.
    [22] AFRAIMOVICH E L, ASTAFYEVA E I, OINATS A V, et al. Golbal ecletroncontent: A new conception to track solar activity [J]. Ann Geophys,2008,26:335-344.
    [23] ASTAFYEVA E I, AFRAIMOVICH E L, OINATS A V, et al. Dynamics of globalelectron content in1998-2005derived from global GPS data and IRI modeling [J].Adv Space Res,2008,42:763-769.
    [24] HOCKE K. Osicillations of global mean TEC [J]. J Geophys Res,2008,113,A04302.
    [25] HOCKE K. Reply to comment by J. T. Emmert et al. on "Oscillations of globalmean TEC"[J]. J Geophys Res,2009,114,A01310.
    [26] LIBO L, WEIXING W, BAIQI N, et al. Climatology of the mean total electroncontent derived from GPS global ionospheric maps [J]. J Geophys Res,2009,114,A06308
    [27] OTSUKA Y, OGAWA T, SAITO A, et al. A new technique for mapping of totalelectron content using GPS network in Japan [J]. Earth Planets Space,2002,54:63-70.
    [28] WIELGOSZ P, GREJNER-BRZEZINSKA D, KASHANI I. Regional IonosphereMapping with Kriging and Multiquadric Methods [J]. Journal of GlobalPositioning Systems,2003,2(1):48-55.
    [29]万卫星,宁百齐,刘立波等.中国电离层TEC现报系统[J].地球物理学进展,2007,22(4):1040-1045.
    [30] GORNEY D J. Solar cycle effects on the near-earth space environment [J]. RevGeophys,1990,28:315-336.
    [31] LIU L B, WAN W X, CHEN Y D, et al. Solar activity effects of the ionosphere: Abrief review [J]. Chinese Sci Bull,2011,56(7):477-487.
    [32] LIBO LIU, CHEN Y. Statistical analysis of solar activity variations of totalelectron content derived at Jet Propulsion Laboratory from GPS observations [J]. JGeophys Res,2009,114, A10311.
    [33] RUIPING MA, JIYAO XU, WENBIN WANG, et al. Seasonal and latitudinaldifferences of the saturation effect between ionospheric NmF2and solar activity [J].J Geophys Res,2009,114, A10303.
    [34] ZHANG D H, XIAO Z. Study of the ionospheric total electron content response tothe great flare on15April2001using the International GPS Service network forthe whole sunlit hemisphere [J]. J Geophys Res,2003,108:1330-1340.
    [35]陈斌,刘立波,万卫星等.1996~2003年大耀斑事件引起的TEC突然增强的统计分析[J].空间科学学报,2005,25:6-16.
    [36]张东和,肖佐.常青耀斑的日面位置与电离层SITEC的关系[J].科学通报,2000,46:1339-1341.
    [37] ZHANG D H, XIAO Z, K I, et al. GPS-derived ionospheric total electron contentresponse to a solar flare that occurred on14July2000[J]. Radio Sci,2002,37(5),1901-1911.
    [38] BILITZA D. The Importance of EUV Indices for the International ReferenceIonosphere [J]. Phys Chem Earth (C),2000,25:515-521.
    [39] LIU RUIYUAN, P A SMITH, J W KING. A New Solar index which leads toimproved foF2predictions using the CCIR Atlas [J]. Telecommunication Journal,1983,50(8):408-414.
    [40] NUSINOV A A. Ionosphere as a natural detector for investigations of solar EUVflux variations [J]. Adv Space Res,2006,37:426-432.
    [41]霍星亮,袁运斌,欧吉坤.基于GPS资料研究中国区域电离层TEC的周日变化、半年度及冬季异常现象[J].自然科学进展,2005,15(5):626-630.
    [42] EZQUER R G, JAKOWSKI N, JADUR C A. Predicted and measured totalelectron content over Havana [J]. JAtmos Terr Phys,1997,59(5):591-596.
    [43]赵必强.中低纬电离层年度异常与暴时特性研究.博士论文,中国科学院物理与数学研究,2006.
    [44] HUANG Y N, CHENG K. Solar cycle variations of equatorial ionosphericanomaly in total electron content in the Asian region [J]. J Geophys Res,1996,101:24513-24520.
    [45] HUANG Y-N, CHENG K, CHEN S-W. On the Equatorial Anomaly of theIonospheric Total Electron Content Near the Northern Anomaly Crest Region [J]. JGeophys Res,1989,94:13515-13525.
    [46] TSAI H F, LIU J Y, TSAI W H, et al. Seasonal variations of the ionospheric totalelectron content in Asian equatorial anomaly regions [J]. J Geophys Res,2001,106(A12):30363-30369.
    [47] WU C C, FRY C D, LIU J Y, et al. Annual TEC variation in the equatorial anomalyregion during the solar minimum: September1996–August1997[J]. J AtmosSolar-Terr Phys,2004,66:199-207.
    [48] WU C C, LIOU K, SHAN S J, et al. Variation of ionospheric total electron contentin Taiwan region of the equatorial anomaly from1994to2003[J]. Adv Space Res,2008,41:611-616.
    [49] ZHAO B, WAN W, LIU L, et al. Characteristics of the ionospheric total electroncontent of the equatorial ionization anomaly in the Asian-Australian region during1996–2004[J].Ann Geophys,2009,27:3861-3873.
    [50] PR LSS G W. An imaging riometer for ionospheric studies [J]. Handbook ofAtmospheric ElectrodynamicsCRCPress,BocaRaton,FL,1995,
    [51] MENDILLO M. Storms in the ionosphere: patterns and processes for total electroncontent [J]. Rev Geophys,2006,44, RG4001.
    [52] ZHAO B, WAN W, LIU L, et al. Morphology in the total electron content undergeomagnetic disturbed conditions: results from global ionosphere maps [J]. AnnGeophys,2007,25:1555-1568.
    [53] MENDILLO M, KLOBUCHAR J A. Investigations of the ionospheric F regionusing multistation total electron content observations [J]. J Geophys Res,1975,80:643-650.
    [54] DAVIES K. Recent progress in satellite radio beacon studies with particularemphasis on the ATS-6radio beacon experiment [J]. Space Sci Rev,1980,25(4):357-430.
    [55] ESSEX E A, MENDILLO M, SCH DEL J P, et al. A global response of the totalelectron content of the ionosphere to the magnetic storms of17December and18June1972[J]. JAtmos Terr Phys,1981,43:293-306.
    [56]李洪涛,许国昌,薛鸿印等. GPS应用程序设计.北京:科学出版社,1999.
    [57]沈镜祥,施品浩,刘基余.空间大地测量.武汉:中国地质大学出版社,1990.
    [58]蒋虎. GPS无线电掩星技术反演地球大气参数中若干问题的研究,博士论文,中科院上海天文台.2002.
    [59]王建平.中国及周边地区电离层TEC短期预报方法研究.硕士论文,西安电子科技大学,2008.
    [60] SCHAER S. Mapping and Predicting the Earths Ionosphere Using the GlobalPositioning System [J]. PhD thesis,1999, Bern, Germany: The University of Bern.
    [61]常青,张东和,肖佐等. GPS系统硬件延迟估计方法及其在TEC计算中的应用[J].地球物理学报,2001,44(5):596-601.
    [62]黄智,袁洪,万卫星. GPS TEC硬件偏差估计方法的有效性[J].电波科学学报,2003,18(4),472-476.
    [63]周忠谟,易杰军. GPS卫星测量原理与应用[J].测绘出版社,1992,
    [64]刘瑞源,王建平,武业文等.用于中国地区电离层总电子含量短期预报方法[J].电波科学学报,2011,26(1):18-24.
    [65] LIU R Y, LIU G H, WU J. Ionospheric foF2reconstruction and its application tothe short-tern forecasting in China region [J]. Chinese J Geophys,2008,51(2):300-306.
    [66]严豪健,符养,洪振杰等.天基GPS气象学与反演技术.中国科学技术出版社,2007.
    [67] YUNCK T P. A History of GPS Sounding [J]. Special issue of Terrestrial,Atmospheric and Oceanic Science,2000,11(1):1-20.
    [68] KLIORE A J. Occultation experiments:Results of the direct measurements ofMars’atmosphere and ionosphere [J]. Science,1995,149:1243~1248.
    [69] FJELDBO K. the neutral atmosphere of Venus as studied with the Mariner V radioocculatation experiments [J]. the astronomical journal,1971,76(2):123.
    [70] HINSON D P, FLASAR F M, KLIORE A J, et al. Jupiter's ionosphere: Resultsfrom the First Galileo Radio Occultation Experiment [J]. Geophys Res Lett,1997,24(17):2107-2110.
    [71] HINSON D P, TWICKEN J D, KARAYEL E T. Jupiter's ionosphere: New resultsfrom Voyager2radio occultation measurements [J]. J Geophys Res,1998,103(A5):9505-9520.
    [72] FISHBACH F F. A satellite method for pressure and temperature below24km [J].BullAmMeteorolSoc,1965,9:528-530.
    [73] WICKERT J, REIGBER C, BEYERLE G, et al. Atmosphere sounding by GPSradio occultation: First results from CHAMP [J]. Geophys Res Lett,2001,28(17):3263-3266.
    [74] ROCKEN C. COSMIC System Description [J]. Special issue of Terrestrial,Atmospheric and Oceanic Science,2000,11(1):21-52.
    [75]张博雅.利用福尔摩沙卫星三号观测电离层电子密度.硕士论文,国立中央大学太空科学研究所,2007.
    [76]郭鹏.无线电掩星技术与CHAMP掩星资料反演[J].2005.
    [77] HOCKE K. Inversion of GPS meteorology data [J]. Ann Geophys,1997,15:443-450.
    [78] STEINER A K, KIRCHENGAST G, LADREITER H P. Inversion, error analysis,and validation of GPS/MET occultation data [J].Ann Geophys,1999,17:122-138.
    [79] HAJJ G A, R.IBAFIEZ-MEIER, E.R.KURSINSKI, et al. Imaging the Ionospherewith the Global Positioning System [J]. International Journal of Imaging Systemsand Technology,1994,5:174-184
    [80] DANIELL R E, BROWN L D. PRISM: A Parameterized Real-Time IonosphericSpecification Model, Version1.5[J]. Phillips Lab Tech Rep,1995,PL-TR-95-2061.
    [81] SCHREINER W S, SOKOLOVSKIY S V, ROCKEN C. Analysis and validation ofGPS/MET radio occultation data in the ionosphere [J]. Radio Sci,1999,34(4):949-966.
    [82] LIBO LIU, BIQIANG ZHAO, WEIXINGWAN, et al. Seasonal variations of theionospheric electron densities retrieved from Constellation Observing System forMeteorology, Ionosphere, and Climate mission radio occultation measurements [J].J Geophys Res,2009,114, A02302.
    [83] WU Y W, LIU R Y, ZHANG B C, et al. Variations of the ionospheric TEC usingsimultaneous measurements from the China Crustal Movement ObservationNetwork [J].Annales Geophysicae,2012,30(10):1423-1433.
    [84]索玉成. foF2的季节变化特性[J].电波科学学报,1995,10(4):83-89.
    [85] ZHAO B, WAN W, LIU L, et al. Features of annual and semiannual variationsderived from the global ionospheric maps of total electron content [J]. AnnGeophys,2007,25:2513-2527.
    [86] K.G. RATOVSKY, A. V. OINATS, MEDVEDEVAV. Regular features of the polarionosphere characteristics from Digisonde measurements over Norilsk [J]. AdvSpace Res,2013,51(4):545-553.
    [87] LEI J, LIU L. WAN W., et al. A statistical study of ionospheric profile parametersderived from Millstone Hill incoherent scatter radar measurements [J]. GeophysRes Lett,2004,31(14), L14804.
    [88] SAGAWA E, IMMEL T J, FREY H U, et al. Longitudinal structure of theequatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV [J]. JGeophys Res,2005,110, A11302.
    [89] WAN W, J. XIONG, Z. REN, et al. Correlation between the ionospheric WN4signature and the upper atmospheric DE3tide [J]. J Geophys Res,2010,115,A11303.
    [90] ZHANG S, COSTER A J, HOLT J M, et al. Ionospheric longitudinal variations atmidlatitudes: Incoherent scatter radar observation at Millstone Hill [J]. ScienceChina Technological Sciences,2012,55(5):1153-1160.
    [91] ZHANG S-R, FOSTER J C, HOLT J M, et al. Magnetic declination and zonalwind effects on longitudinal differences of ionospheric electron density atmidlatitudes [J]. Journal of Geophysical Research,2012,117(A8), A08329.
    [92] ZHANG S-R, FOSTER J C, COSTER A J, et al. East-West Coast differences intotal electron content over the continental US [J]. Geophysical Research Letters,2011,38(19): L19101.
    [93]吴健,权坤海,曹忠慧等.中纬度观测的电离层F区经度效应及其模式计算[J].空间科学学报,1998,18(2):132-140.
    [94] HUANG W Q, XIAO Z, XIAO S G, et al. Case study of apparent longitudinaldifferences of spreadFoccurrence for two midlatitude stations [J]. Radio Science,2011,46(1): RS1015.
    [95]刘瑞源,刘顺林,徐中华.自相关分析法在中国电离层短期预报中的应用[J].科学通报,2005,50(24):2781-2785.
    [96] CHEN C, WU Z S, XU Z W. Forecasting the local ionospheric foF2parameter onehour ahead during disturbed geomagnetic conditions [J]. J Geophys Res,2010,115,A11315.
    [97] LIU R, XU Z, WU J. Preliminary studies on ionospheric forecasting in China andits surrounding area [J]. JAtmos Solar-Terr Phys,2005,67:1129-1136.
    [98]班盼盼,奚迪龙,陈春等.支持向量机方法在电离层短期预报中的应用[J].现代电子技术,2009,7:114-116.
    [99]徐彤,吴健,吴振森.基于电离层暴时f0F2经验模型Kalman滤波短期预报[J].空间科学学报,2009,29(2):202-207.
    [100]何劲,黄天锡.中国部分地区电离层临界频率的研究[J].武汉大学学报,1991,4:53-60.
    [101]吴健,龙其利.新乡观测的电离层和板厚的统计与建模研究[J].电波科学学报,1998,13(3):291-296.
    [102]徐彤.中低纬电离层模型及其异常现象相关研究.博士论文,西安电子科技大学,2009.
    [103]熊波,万卫星,刘立波等.武汉地区电离层TEC和NmF2及板厚的季节变化[J].空间科学学报,2007,27(2):325-331.
    [104] LIU L. Statistical modeling of ionospheric foF2over Wuhan [J]. Radio Science,2004,39(2): RS2013.
    [105] HUANG Y-N, KANG-CHENG, SEN-WEN-CHEN. On the Equatorial Anomalyof the Ionospheric Total Electron Content Near the Northern Anomaly CrestRegion [J]. J Geophys Res,1989,94(13):13515-13525.
    [106] HUBA J D, JOYCE G, FEDDER J A. Sami2is Another Model of the Ionosphere(SAMI2):A new low-latitude ionosphere model [J]. J Geophys Res,2000,105(A10):23035-23053.
    [107] COSTER A. Space Weather and the Global Positioning System [J]. Space Weather,2008,5(2):15-19.
    [108] MUHTAROV G, KUTIEV I. Autocorrelation method for temporal interpolationand short-term prediction of ionospheric data [J]. Radio Sci,1999,34(2):459-464.
    [109] MARIN D, MIRO G, MIKHAILOV AV. Amethod for foF2short-term prediction[J].4th COST251Workshop proceedings, Madeira, Portugal, COST251TD(99)008:214-222,1999.
    [110] CANDER L R, M M, S S, et al. Ionospheric forecasting technique by artificialneural network [J]. Electron, Lett,1998,34(6):1573-1574.
    [111] ARAUJO-PRADERE E A, FULLER-ROWELL T J, CODRESCU M C. Storm:An empirical storm-time ionospheric correction model, I, Model Description [J].Radio Sci,2002,37(5):1070.
    [112] ARAUJO-PRADERE E A, FULLER-ROWELL T J, CODRESCU M C. Srorm:An emprircal storm-time ionospheric correction model, II, Validation [J]. Radio Sci,2002,37(5):1071.
    [113] RUSHM C M, EDWARDS J W R. An authomated mapping technique forrepresenting the hourly behavior of the ionosphere [J]. Radio Sci,1976,11:931-937.
    [114] SECAN J A, WILKINSON P J. Statistical studies of an effective sunspot number[J]. Radio Sci,1997,32:1717-1724.
    [115] SOJKA J J, THOMPSON D C, SCHUNK R W. Assimilation Ionospheric Model:Development and testing with Combined Ionospheric Campain Caribbeanmeasurements [J]. Radio Sci,2001,36(2):247-259.
    [116] SCHUNK R W, SCHERLIESS L, SOJKA J J. Recent approaches to modelingionospheric weather [J]. Adv Space Res,2003,31(4):819-828.
    [117]王世凯,焦培南,柳文.改进的克里格技术实时重构区域电离层foF2的分布[J].电波科学学报,2006,21(2):166-171.
    [118] LIU R, LIU S, XU Z. Application of autocorrelation method on ionosphericshort-term forecasting in China [J]. Chinese Sci Bull,2006,51(3):352-357.
    [119]刘瑞源,刘国华,吴健.中国地区电离层foF2重构方法及其在短期预报中的应用[J].地球物理学报,2008,51(2):300-306.
    [120] MAO T, W. WAN, X. YUE, et al. An empirical orthogonal function model of totalelectron content over China [J]. Radio Sci,2008,43: RS2009.
    [121]李志刚,程宗颐,冯初刚.电离层预报模型研究[J].地球物理学报,2007,50(2):327-337.
    [122]刘顺林.南极中山站电离层F层特性.博士论文,武汉大学,2005.
    [123]朱爱琴.极区电离层F层特性的南北极对比研究.硕士论文,西安电子科技大学,2008.
    [124]上出洋介, W.鲍明翰.磁层-电离层耦合.科学出版社,2005.
    [125] PARKINSON W C, TORRESON O W. The diurnal variation of the electricpotential of the atmosphere over the oceans [J]. UGGI (Sect Terr Magn Elec) Bull,1931,8:340-341.
    [126] KUZNETSOV V V, V. V. PLOTKIN, I. I. NESTEROVA, et al. Universal diurnalvariation of F2-layer critical frequency [J]. J Geomag Geoelectr,1990,42:1237-1240.
    [127] R.A.DUNCAN. Universal-Time Control of the Arctic and Antarctic F Region [J].J. Geophys. Res,1962,67(5):1823-1830.
    [128] J. J. SOJKA, R. W. SCHUNK. Theoretical Study of the Seasonal Behavior of theGlobal Ionosphere at Solar Maximum [J]. J Geophys Res,1989,94(A6):6739-6749.
    [129] FULLER-ROWELL T J, REES D, QUEGAN S, et al. Simulations of the seasonaland universal time variations of the high-latitude thermosphere and ionosphereusing a coupled, three-dimensional, model [J]. PAGEOPH,1988,127:189-217.
    [130] BESPROZVANNAYA A S. Empiric modelling of the polar foF2in the northernand southern hemispheres [J]. Adv Space Res,1995,16(1):27-36.
    [131] V. V. KUZNETSOV, V. V. PLOTKIN, G. V. NESTEROVA, et al. Universalvariation of the F2-layer critical frequency and solar activity [J]. Earth PlanetsSpace,1998,50:57-61.
    [132] SOJKA J J, SCHUNK R W. Simulations of high latitude ionospheric climatology[J]. JAtmos Solar-Terr Phys,1997,59(2):207-229.
    [133] MAYER C, JAKOWSKI N. Enhanced E-layer ionization in the auroral zonesobserved by radio occultation measurements onboard CHAMP andFormosat-3/COSMIC [J]. Ann Geophys,2009,27:1207-1212.
    [134] FELDSTEIN Y I. On Morphology and Auroral and Magnetic Disturbances atHigh Latitudes [J]. Geomagn Aeron1963,3:227-239.
    [135] HOLZWORTH R H, MENG C-I. Mathematical Representation of the AuroralOval [J]. Geophys Res Lett,1975,2:377-380.
    [136] REES M H. Auroral ionization and excitation by incident energetic electrons [J].PlanetSpace Sci,1963,11:1209-1218.
    [137] HARDY D A, GUSSENHOVEN M S, HOLEMAN E. A statistical model ofauroral electron precipitation [J]. J Geophys Res,1985,90(A5):4229-4248.
    [138] HARDY D A, GUSSENHOVEN M S, BRAUTIGAM D. A Statistical Model ofAuroral Ion Precipitation [J]. J Geophys Res,1989,94(A1):370-392.
    [139] MANSILLA G A. Thermosphere–ionosphere response at middle and highlatitudes during perturbed conditions: A case study [J]. J Atmos Solar-Terr Phys,2008,70(11-12):1448-1454.
    [140] ZHAO B, WAN W, LIU L, et al. Ionospheric response to the geomagnetic stormon13–17April2006in the West Pacific region [J]. J Atmos Solar-Terr Phys,2009,71(1):88-100.
    [141] BUONSANTO M J. Ionospheric Storm-A Review [J]. Space Science Reviews,1999,88:563-601.
    [142] TRIVEDI R, JAIN A, JAIN S, et al. Study of TEC changes during geomagneticstorms occurred near the crest of the equatorial ionospheric ionization anomaly inthe Indian sector [J]. Adv Space Res,2011,48:1617-1630.
    [143] BURNS A G, SOLOMON S C, WANG W, et al. The ionospheric andthermospheric response to CMEs: Challenges and successes [J]. J Atmos Solar-TerrPhys,2007,69(1-2):77-85.
    [144] MALTSEV Y P. The points of controversy in magnetic storm study (review)[J].“Physics of Auroral Phenomena”, Proc XXVI Annual Seminar, Apatity,2003,33-40.
    [145] KUMAR S, SINGH AK. GPS derived ionospheric TEC response to geomagneticstorm on24August2005at Indian low latitude stations [J]. Adv Space Res,2011,47:710-717.
    [146] SHWETA SHARMA, P. GALAV, N. DASHORA, et al. Response of low-latitudeionospheric total electron content to the geomagnetic storm of24August2005[J].J Geophys Res,2011,116,A05317.
    [147] LEI J, WANG W, BURNS A G, et al. Observations and simulations of theionospheric and thermospheric response to the December2006geomagnetic storm:Initial phase [J]. J Geophys Res,2008,113,A01314.
    [148] LEI J, BURNS A G, TSUGAWA T, et al. Observations and simulations ofquasiperiodic ionospheric oscillations and large-scale traveling ionosphericdisturbances during the December2006geomagnetic storm [J]. J Geophys Res,2008,113,A06310.
    [149] FOSTER J C, RIDEOUT W. Midlatitude TEC enhancements during the October2003superstorm [J]. Geophys Res Lett,2005,32, L12S04.
    [150] FOSTER J C, COSTER AJ, ERICKSON P J, et al. Multiradar observations of thepolar tongue of ionization [J]. J Geophys Res,2005,110,A09S31.
    [151] HOSOKAWA K, TSUGAWA T, SHIOKAWA K, et al. Dynamic temporalevolution of polar cap tongue of ionization during magnetic storm [J]. J GeophysRes,2010,115,A12333.
    [152] PEDATELLA N M, LEI J, LARSON K M, et al. Observations of the ionosphericresponse to the15December2006geomagnetic storm: Long-duration positivestorm effect [J]. J Geophys Res,2009,114, A12313.
    [153] JESUSA R D, SAHAI Y, GUARNIERI F L, et al. Effects observed in theionospheric F-region in the South American sector during the intense geomagneticstorm of14December2006[J].Adv Space Res,2010,46(7):909-920.
    [154] HOSOKAWA K, TSUGAWA T, SHIOKAWA K, et al. Unusually elongated,bright airglow plume in the polar cap F region: Is it a tongue of ionization?[J].Geophys Res Lett,2009,36, L07103.
    [155] WU S, ZHANG K, YUAN Y, et al. Spatio-temporal Characteristics of theIonospheric TEC Variation for GPSnet-based Real-time Positioning in Victoria [J].Journal of Global Positioning Systems,2006,5(1-2):52-57.
    [156] YU T, WAN W X, LIU L B. Using IGS data to analysis the global TEC annualand semiannual variation [J]. Chinese J Geophys,2006,49(4):943-949.
    [157] HAJRA R, CHAKRABORTY S K, DASGUPTA A. Ionospheric effects near themagnetic equator and the anomaly crest of the Indian longitude zone during a largenumber of intense geomagnetic storms [J]. J Atmos Solar-Terr Phys,2010,72:1299-1308.
    [158] RIDEOUT W, COSTER A. Automated GPS processing for global total electroncontent data [J]. GPS Solut,2006,10:219-228.
    [159] HAJJ G A. Ionospheric electron density profiles obtained with the GlobalPositioning System: Results from the GPS/MET experiment [J]. Radio Sci,1998,33:175-190.
    [160] KULIKOV I, MANNUCCI A J, PI X, et al. Electron density retrieval fromocculting GNSS signals using a gradient-aided inversion technique [J]. Adv SpaceRes,2011,47(2):289-295.
    [161] LEI J, SYNDERGAARD S, BURNS A G. Comparison of COSMIC ionosphericmeasurements with groundbased observations and model predictions: Preliminaryresults [J]. J Geophys Res,2007,112,A07038.
    [162] JAKOWSKI N, MAYER C, WILKEN V. Ionosphere Monitoring by Ground andSpace Based on GNSS technique [J]. Presenation at the FORMOSAT-3/COSMICWorkshop2006,28Nov-1Dec,2006, National Taiwa University, Taipei, Taiwan.
    [163] F. HONARY, S. R. MARPLE, K. BARRATT, et al. Digital Beam-formingImaging Riometer Systems [J]. Review of Scientific Instruments,2011,82(3):1-15.
    [164] BROWNE S, HARGREAVES J K, HONARY B. An imaging riometer forionospheric studies [J].1995,7(5):209-217.
    [165] DETRICK D L, ROSENBERG T J. A phased-array radiowave imager for studiesof cosmic noise absorption [J]. Radio Sci,1990,25:325-338.
    [166] HARGREAVES J K, CHIVERS H J A, NIELSEN E. Properties of spike events inauroral radio absorption [J]. J Geophys Res,1979,84:4245-4250.
    [167] DEL POZO C F, HARGREAVES J K, AYLWARD A D. Ion composition andeffective ion recombination rate in the nighttime auroral lower ionosphere [J]. JAtmos Solar-Terr Phys,1997,59:1919-1943.
    [168]蔡红涛,马淑英.由非相干散射雷达数据重建极光沉降粒子能谱[J].地球物理学报,2007,50(1):10-17.
    [169] KITAMURA K, KAWANO H, OHTANI S, et al. Local time distribution of lowand middle latitude ground magnetic disturbances at sawtooth injections of18-19April2002[J]. J Geophys Res,2005,110, A07208.
    [170] WATSON C, JAYACHANDRAN P T, E. SPANSWICK, et al. GPS TECtechnique for observation of the evolution of substorm particle precipitation [J]. JGeophys Res,2011,116, A00I90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700