一种基于低温等离子体的流动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以速度边界层流动控制为背景,以空气大气压条件下沿面放电低温等离子体流动控制为研究对象,以提高控制效果降低功耗为目的,以实验研究为主要手段,研究了各放电参数与低温等离子体以及低温等离子体流动控制效果间的关系。
     为了优化了等离子体激活板,获得功耗最小的激活板结构,本文进行了大气压条件下沿面放电的低温等离子体进行的放电特性研究、发射光谱研究以及其诱导的近壁面速度分布研究等三项单项实验研究。认为电极间隙d=0 mm时控制效果最理想。同样为了减小功耗,本文通过适当的理论分析,讨论了进一步降低功耗的技术途径。在国内首次提出运用多路移相电源提高等离子体流动控制效率并进行了实验研究,将优化的等离子体激活板贴敷于NACA 0015翼型表面,测量了8路移相驱动电源激活的等离子体在翼型表面诱导的速度分布,在大量实验数据的基础上获得了速度分布的经验公式,为进一步数值分析提供了模型。
     在以上单项研究的基础上,搭建了200 mmx300 mm低速风洞,将贴敷了等离子体激活板的NACA 0015翼型置于其中进行了吹风试验,获得了边界层分离后重新附着的流场显示,并测量了翼型阻力,分析了等离子体驱动电源参数对阻力减小效果的影响规律。吹风试验分别运用单路和八路移相电源激活等离子体激活板,实验结果证明八路电源能够以较低的电压较小的功耗获得与单路电源相同的效果。最后将速度分布表达式加入Fluent软件中进行了数值模拟,可以发现其结果与实验结果基本一致。
This paper sets Velocity Boundary Layer Flow Control as its study field, and particularly focuses on the flow control mechanism via the one atmosphere low temperature surface discharge plasma. On the approach of acquiring a higher control efficiency at a lower power expense, experiment results play the most important role in revealing the relationship between respective discharging parameters and the low-temperature plasma's actuated volume, as well as the latter's flow-control performance.
     In order to optimize the plasma-actuating panel's physical structure for minimizing the power consumption, the researchers started with three experiments respectively on plasma's discharging characteristics, its emission spectrum, and the induced surface velocity profile. These experiments suggested electrodes gap, d, be set at 0 mm for the best flow control performance. In the next step, technical possibilities for minimizing power consumption were discussed from a theoretical perspective. After that, the researchers proposed, for the first time in China, applying multi-phased power source to enhance the plasma flow control efficiency and actualized it in experiment. The optimized actuating panel, driven by an eight-phased power source, was mounted on a NACA 0015 air foil, and the induced surface velocity profile was assessed. At last, an empirical formula on velocity profile was made from large quantities of experimental data and might act as a model for further numerical analysis.
     Based on results of the aforementioned experiments, the researchers set up a 200 mm×300 mm low-speed wind tunnel in which the plasma-actuating panel was mounted on a NACA 0015 air foil. In the subsequent wind-blowing experiments, the profile of the re-attached boundary layer flows was depicted, the drag force upon the air foil was detected, and the impact of the driving power's parameters upon the plasma's drag-reducing performance was analyzed. One-phased and eight-phased power sources were respectively applied to the actuating panel, and comparative data demonstrated that the eight-phased power excelled the other in cost of voltage and power when giving out the same actuating performance. The velocity profile expression was incorporated in numerical stimulation by Fluent, and the computed results were in accordance to the data collected in experiments.
引文
1 D' Alembert.Essai d'un nouvellethéorie de la resistance des fluids.1752
    2 Ludwig Prandtl.(U|¨)ber Fl(u|¨)ssigkeitsbewegung bei sehr kleiner Reibung.Ptoc.Verh.Ⅲ.Intern.Math.Kongr.,Heidelberg,1904,pp.484-491
    3 Reynolds O.,An experimental investigation of the circumstance which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels,Phil.Trans.Roy.Soc.174,1883.pp.935-982
    4 是勋刚.湍流.天津大学出版社,1994
    5 胡非.湍流、间歇性与大气边界层.科学出版社,1995
    6 章梓雄,董曾南.粘性流体力学.清华大学出版社,1998
    7 Lachmann,G V.(ed.),Boundary layer and flow control,Ⅰ and Ⅱ.Pergamon Press,London,1961
    8 Chang,P.K.Control of flow separation,Hemisphere Publishing Corporation,Washington DC,1976
    9 Roth J.R.,Tsai P P.,Liu C.,Laroussi M.and Spence P.D.,One Atmosphere Uniform Glow Discharge Plasma,U.S.Patent #5,414,324,Issued May 9,1995.
    10 Baron J.R.,and Scott P.E.:Some mass transfer results with external flow pressure gradients,JASS 27,625-626(1960).
    11 Rheinboldt W.Zur Berechnung station(?)rer Grenzschichten bei kontinuierlicher Absaugung mit unstetig ver(?)nderlicher Absaugegeschwindigkeit.J.Rat,Mech.Analysis 5,539-596(1956).
    12 Rubesin M.W.An analytical estimation of the effect of transpiration cooling on the heat-transfer and skin-friction characteristics of a compressible,turbulent boundary layer.NACA TN 3341(1954).
    13 Malik M,Weinstein L and Hussaini M Y.Ion wind drag reduction.21 st AIAA Aerospace Sciences Meeting and Exhibit(Reno,NV).AIAA Paper 83-0231.
    14 El-Khabiry S and Colver G Phys.Fluids.1997 9587-99.
    15 Artana G;D'Adamo J,Leger L,Moreau E and Touchard G.AIAA J.2002 40 1773-9.
    16 Moreau E,Leger L and Touchard G J.Electrostat.2006 64 215-25.
    17 Roth J R,Sherman D M and Wilkinson S P.AIAA J.2000 38 1166-72
    18 Goksel B,Greenblatt D,Rechenberg I,Nayeri C N and Paschereit C O.Steady and unsteady plasma wall jets for separation and circulation control 3rd AIAA Flow Control Conf.(San Francisco,CA)AIAA Paper 2006-3686
    19 Sosa R and Artana G.J.Electrostat.2006 64 604-10
    20 Corke T C,Jumper E J,Post M,Orlov D and McLaughlin T E.Application of weakly-ionized plasmas as wing flow-control devices 40th AIAA Aerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2002-0350
    21 Corke T C,Mertz B and Patel M P.Plasma flow control optimized airfoil.44th AIAA Aerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-1208
    22 Corke T C,He C and Patel M P.Plasma flaps and slats:An application of weakly ionized plasma actuators.2nd AIAA Flow Control Conf.(Portland,OR)AIAA Paper 2004-2127
    23 List J,Byerley A,McLaughlin T and Dyken R V.Using a plasma actuator to control laminar separation on a linear cascade turbine blade.41st AIAA Aerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2003-1026.
    24 Hultgren L and Ashpis D.Demonstration of separation delay with glow-discharge plasma actuators.41 st AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2003-1025.
    25 Huang J,Corke T C and Thomas F O.AIAA J.2006 44 1477-87
    26 Ramakumar K.Active flow control of low pressure turbine blade separation using plasma actuators.Master's Thesis.University of Kentucky Lexington,Kentucky.2006
    27 Artana G;Sosa R,Moreau E and Touchard G.Exp.Fluids.2003 35 580-8
    28 Asghar A and Jumper E J.Phase syncrhonization of vortex shedding from multiple cylinders using plasma actuators.41 st AIAA Aerospace Sciences Meeting and Exhibit (Reno,NV)AIAA Paper 2003-1028
    29 McLaughlin T E,Munska M D,Vaeth J P,Dauwalter T E,Goode J R and Siegel S G.Plasma-based actuators for cylinder wake vortex control.2nd AIAA Flow Control Conf.(Portland,OR)AIAA Paper 2004-2129
    30 Thomas F O,Kozlov A and Corke T C.Plasma actuators for landing gear noise reduction.11th AIAA/CEAS Aeroacoustics Conf.(Monterey,CA)AIAA Paper 2005-3010
    31 Siegenthaler J,Jumper E J and Asghar A.A preliminary study in regularizing the coherent structures in a planar,weakly compressible,free shear layer.41st AIAA Aerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2003-0680
    32 Samimy M,Adamovich I,Kim J,Webb B,Keshav S and Utkin Y.Active control of high speed jets using localized arc filament plasma actuators.2nd AIAA Flow Control Conf.(Portland,OR)AIAA Paper 2004-2130
    33 Enloe C L,McLaughlin T E,VanDyken R D,Kachner K D,Jumper E J and Corke T C. AIAA J.2004 42 589-94.
    34 Enloe C L,McLaughlin T E,VanDyken R D,Kachner K D,Jumper E J,Corke T C,Post M and Haddad O.AIAA J.2004 42 595-604
    35 Forte M,Leger L,Pons J,Moreau E and Touchard G.J.Electrostat.2005 63 929-36
    36 Baughn J W,Porter C O,Peterson B L,McLaughlin T E,Enloe C L,Font G I and Baird C.Momentum transfer for an aerodynamic plasma actuator with an imposed boundary layer.44th AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-168
    37 Porter C O,Baughn J W,McLaughlin T E,Enloe C L and Font G I.Temporal force measurements on an aerodynamic plasma actuator.44th AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-104
    38 Balcer B E,Franke M E and Rivir R B.Effects of plasma induced velocity on boundary layer flow.44th AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-875
    39 Roth J R and Dai X 2006 Optimization of the aerodynamic plasma actuator as an electrohydrodynamic(ehd)electrical device.44th AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-1203
    40 VanDyken R D,McLaughlin T E and Enloe C L.Parametric investigations of a single dielectric barrier plasma actuator.42nd AIAAAerospace Sciences Meeting and Exhibit (Reno,NV)AIAA Paper 2004-846
    41 Enloe C L,McLaughlin T E,VanDyken R D and Fischer J C.Plasma structure in the aerodynamic plasma actuator.42nd AIAAAerospace Sciences Meeting and Exhibit (Reno,NV)AIAA Paper 2004-844
    42 Anderson R and Roy S.Preliminary experiments of barrier discharge plasma actuators using dry and humid air.44th AIAA Aerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-369
    43 Shyy W,Jayaraman B and Andersson A.J.Appl.Phys.2002 92 6434-43
    44 Visbal M and Gaitonde D V.Control of vortical flows using simulated plasma actuators.44th AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-505
    45 Hall K D,Jumper E J,Corke T C and McLaughlin T E.Potential flow model ofaplasma actuator as a lift enhancement device.43rd AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2005-783
    46 Orlov D M and Corke T C.Numerical simulation of aerodynamic plasma actuator effects.43rd AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2005-1083
    47 Orlov D M,Corke T C and Patel M P.Electric circuit model for aerodynamic plasma actuator.44th AIAA Aerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-1206
    48 Boeuf J P and Pitchford L C.J.Appl.Phys.2005 97 103307
    49 Roth J R.Industrial Plasma Engineering,Volume Ⅱ-Applications to Non-Thermal Plasma Processing.Bristol:Institute of Physics Publishing
    50 Suzen Y B,Huang P G,Jacob J D and Ashpis D E.Numerical simulations of plasma based flow control applications.35th AIAA Fluid Dynamics Conf.and Exhibit(Toronto,Ontario)AIAA Paper 2005-4633
    51 Suzen Y B and Huang P G.Simulations of flow separation control using plasma actuators.44th AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-877
    52 Font G I.Boundary layer control with atmospheric plasma discharges.40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.and Exhibit(Fort Lauderdale,FL)AIAA Paper 2004-3574
    53 Font G I and Morgan W L.Plasma discharges in atmospheric pressure oxygen for boundary layer separation control.35th Fluid Dynamics Conf.and Exhibit(Toronto,Ontario)AIAA Paper 2005-4632
    54 54Font G I,Jung S,Enloe C L,McLaughlin T E,Morgan W L and Baughn J W.Simulation of the effects of force and heat produced by a plasma actuator on neutral flow evolution.44th AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-167
    55 Roy S,Singh K,Kumar H,Gaitonde D V and Visbal M.Effective discharge dynamics for plasma actuators.44th AIAAAerospace Sciences Meeting and Exhibit(Reno,NV)AIAA Paper 2006-374
    56 Shang J S.Electromagnetic field of dielectric barrier discharge.36th AIAA Plasmadynamics and Lasers Conf.(Toronto,Ontario)AIAA Paper 2005-5182
    57 宋慧敏,李应红,吴云,张朴.等离子体流动控制实验系统的电特性仿真.核聚变与等离子体物理,2006,26(2):156-160.
    58 宋慧敏,李应红,魏沣亭,张朴.等离子体电流体动力激励器的建模与仿真.高电压技术,2006,32(3):72-74.
    59 宋慧敏,李应红,苏长兵,吴云,张朴.激励参数对等离子体EHD加速效应影响的试验研究.高压电器,2006,42(6):435-441
    60 李应红,吴云,宋慧敏,张朴,魏沣亭.大气压等离子体流动控制实验.空军工程 大学学报(自然科学版),2006,7(3):1-3
    61 苏长兵,宋慧敏,李应红,张朴,吴云,梁华.基于等离子体激励的圆柱绕流控制实验研究.实验流体力学,2006,20(4):45-48
    62 安治永,李益文,李应红,宋慧敏.非对称等离子体激励器的电场仿真.军工程大学学报(自然科学版).2007,8(2):49-56
    63 毛枚良,邓小刚,向大平,陈坚强.辉光放电等离子体对边界层流动控制的机理研究.空气动力学学报.2006,24(3):269-274
    64 王江南,钟诚文,高超,刘锋.基于等离子体激励器简化模型的流动分离控制.航空计算技术.2007,37(2):30-34
    65 刘万刚,李一滨.应用等离子体实现主动流动控制的实验研究.导弹与制导学报.2006,110-111
    66 王辉,方志,邱毓昌.多针平板电极介质阻挡放电特性研究.高压电器,2004,40(5):321-323.
    67 王辉,方志,邱毓昌,李登云,刘菲.多针平板电极介质阻挡放电的特性及影响因素研究[J].绝缘材料,2004,5:30-34.
    68 唐晓亮,邱高,任忠夫,冯贤平,闫永辉,严治仁,王良.常压介质阻挡放电的部分电学参量研究[J].高电压技术,2004,30(9):55-57.
    69 史庆军,顾彪,邓祥.常压辉光放电的建立及其特性实验研究.佳木斯大学学报:自然科学版,2001,19(2):125-129.
    70 方志,邱毓昌,王辉,孙岩洲.介质阻挡放电的电荷传输特性研究.高压电器,2004,40(6):401-403.
    71 赵艳辉,周建刚,吴晓东,董克兵.不同结构介质阻挡放电的放电特性.大连海事大学学报,2004,30(3):59-61.
    72 罗毅,方志,邱毓昌,王辉.介质阻挡放电影响因素分析.高压电器,2004,40(2):81-83.
    73 吴晓东,周建刚,张芝涛,董克兵,赵艳辉.介质阻挡放电过程中相关参量的变化.大连海事大学学报,2004,30(2):68-71.
    74 孙岩洲,邱毓昌,谢建民.大气压下辉光放电的产生.高压电器,2003,39(6):41-46.
    75 张芝涛,鲜于泽,白敏冬,赵艳辉,董克兵.电荷电压法测量DBD等离子体的放电参数.实验技术,2003,32(7):458-463.
    76 罗毅,方志,邱毓昌.材料性质对介质阻挡放电特性的影响.绝缘材料,2003,4:45-47.
    77 周建刚,严立,杨虹,何华彬,王文双.介质阻挡放电中的位移电流.大连海事大 学学报,2003,29(2):104-106.
    78 江中和,胡希伟,刘明海,辜承林,潘垣,孙承志.梳妆电极沿面放电装置的电场计算.高电压技术,2003,29(1):48-49.
    79 高树香,陈宗柱.气体导电[M].南京:南京工学院出版社,1988.
    80 徐学基,诸定昌.气体放电物力[M].上海:复旦大学出版社,1996.
    81 董丽芳,李雪辰,尹增谦.大气压介质阻挡放电中的自组织斑图机构[J].物理学报,2002,51(10):2296-2301.
    82 Sherman D.M.,Wilkinson S.P.,and Roth J.R.Paraelectric Gas Flow Accelerator.U.S.Patent # 6,200,539 B1,Issued March 13,2001.
    83 吴望一.流体力学(下册).北京大学出版社,1983.
    84 Roth J.R.Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic(EHD)effects of a One Atmosphere Uniform Glow Discharge Plasma(OAUGDP~(TM).Physics of Plasmas.10(5).2003
    85 Chen,Zhiyu.Impedance Matching for One Atmosphere Uniform Glow Discharge Plasma(OAUGDP)Reactors.IEEE Trans.Plasma Sci.2002,30(5):1922-1930.
    86 Chen,Zhiyu.PSPICE Simulation of One Atmospheric Uniform Glow Discharge Plasma (OAUGDP)Reactor Systems.IEEE Trans.Plasma Sci.2003,31(4):511-520.
    87[美]罗思(Roth.J.R)著,吴坚强等译.工业等离子体工程第Ⅰ卷:基本原理.科学出版社,1998.
    88 Man.B.Y.Particle velocity,electron temperature,and density profiles of pulsed laser-induced plasma in air at different ambient pressures.Appl.Phys.B.,1998,67:241-245
    89 Dong lifang,Ran Junxie,Mao Zhiguo.Direct measurement of electron density in microdischarge at atmospheric pressure glows in helium.J Phys D:Appl Phys,2004,37(7):1021-1030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700