轴向磁场控制的旋转电弧开关及其电弧运动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开关是脉冲功率技术中的关键元件之一,开关的特性直接决定了脉冲功率系统的性能。气体放电开关作为大电流闭合开关的一种,在脉冲功率系统中得到了广泛的应用。此类开关一般在高电压、大电流条件下工作,在开关导通过程中会产生高温电弧,电弧与电极之间的相互作用直接影响到开关的特性和使用寿命。本文针对开关在大电流、高库仑量工作条件下电极烧蚀小、长寿命的要求,设计研究了一种轴向磁场控制的旋转电弧开关,并对其中的电弧运动特性进行研究。
     首先介绍了该轴向磁场控制的旋转电弧开关的原理及结构设计,此开关通过使电弧运动,增大电极与电弧的接触面积,减小电弧输入到电极表面的热流密度,从而达到减小电极烧蚀,延长开关使用寿命的目的。开关的结构设计具有以下几个特点:开关电极采用同轴圆柱结构,电极形状经过优化,使得间隙中的电场分布均匀,保证电弧的起弧点分散在电极表面;电流流经内电极时从上下两路分流,保证这两个电流对电弧的作用力平衡:在开关上下分别设置一组线圈,当开关通过电流时,该线圈产生类似磁镜位形的磁场结构,在开关间隙处磁场的轴向分量占主要部分,电弧在该轴向磁场的作用下围绕电极作旋转运动,而径向分量使得电弧向电极中部即磁场最弱处运动。利用时序放电实验平台进行了开关的大电流实验,目前开关通流能力达到峰值电流250kA,单次转移电荷量745C,开关电极烧蚀轻微。
     为研究开关中电弧的旋转运动,采用B-dot探针法进行测量。分析了在三种测试方式下探针的信号波形,通过比较,选择了其中两种测试方式进行测速实验。对影响探针信号的各因素如电弧方向、电弧直径和电流密度分布等进行了分析,结果表明,电弧方向对探针信号波形的影响最大,分析了由此对判断电弧位置及计算电弧速度带来的测量准确性的问题,证明采用B-dot探针来研究电弧运动速度是可行的。
     在时序放电实验平台上进行了电弧测速实验,电流波形采用近似梯形波。根据测速实验结果,在单次放电过程中,在不同条件下,存在电弧运动速度的变化滞后于电流的变化及电弧运动存在低速-高速-低速的转变过程这两个现象;对不同电流、不同线圈匝数下多次测速实验的结果数据进行拟合得到了适用于此开关的电弧运动速度公式,即电弧运动速度可以由间隙中的轴向磁感应强度唯一确定,且为指数关系;当线圈匝数为2匝时,电弧在起始阶段出现停滞现象。
     借鉴链式模型对开关中的电弧运动过程进行了建模和仿真。该模型将电弧视为若干小电流元链接而成,每个电流元都看作圆柱体,其位置、方向和长度等遵循一定的原则进行设置和计算,所有电流元的运动就构成了整个电弧的运动。考虑弧根特性,引入电极表面阻力系数和弧根跳跃规则,对一般的链式模型进行了改进。通过该模型分析了电弧运动速度特性及电弧在运动过程中的形态变化,主要研究了电极表面阻力对电弧运动速度及形态的影响,当电极表面阻力大小不同时,电弧的运动速度和形态分别由内电极弧根和弧柱决定。结合实测速度结果,在一定条件下推测了电弧直径的大小,并得到了电弧直径与轴向磁感应强度之间关系的拟合结果。
Switch is one of the most important parts of the pulsed power technology. It determines the output performance of the pulsed power systems. Gas discharge switch is a popular application in pulsed power system among closing switches. It usually works at high voltage and high current. The interaction between the arc and electrode material is complicate and it determines the performance and lifetime of the switch. A rotating arc gap switch controlled by axial magnetic field is designed and built in this paper to meet the requirements of high voltage, high current, large transfers, slight electrode erosion and long lifetime. The arc motion characteristics are studied.
     The rotating arc gap switch makes the arc move between the electrodes; therefore, the area contacting with the arc is much larger than that in the static arc condition. It makes the arcing time on unit area much shorter and then less heat is conducted into. Therefore, the electrode erosion is slighter and switch lifetime is longer. The electrodes are coaxial cylinder configuration and its shape is optimized to make the electric field uniformly distributed in the gap. This makes the arc starts random in the gap when triggered. The current flow in inner electrode are symmetrical and opposite in direction. So their force on the arc is balanced and will not lead the arc moving in axial direction. The coils which connected to the inner electrode are placed both at the top and bottom of the switch. The resultant magnetic field is in axial direction and forms a mirror-like configuration. It makes the arc stabilized rotate in the middle of the switch where the magnetic field is weakest. The switch operation characteristics are studied by experiments. Its specifications of current and coulomb per shot can reach 250kA and about 745 Coulomb respectively.
     The B-dot probes are installed to measure the arc velocity. The probe voltage signal is calculated in three different measurement ways and two of them are adopted in experiments. The factors that influence the probe signal are analyzed, such as the direction of the arc, the arc column diameter and the arc current distribution. The accuracy in arc velocity calculation is discussed. The results show that the method is believable.
     A power supply system consist several independent modules discharging in sequence provides a trapezoidal pulse of current on the switch. The arc velocity variation is lagging behind the current variation and there is abnormally high-speed motion during the arc acceleration in one shot in some experimental conditions. The arc velocity in different amplitude of current and magnetic flux density are studied. The expression that describes the relationship between arc velocity and axial magnetic flux density is found. When the coil number is 2, the arc is stationary in the ignition place for a few microseconds, it results severely damage to the electrode.
     A chain model is employed to describe the arc motion in this rotating arc gap switch. The arc is assumed to be a chain of small cylindrical current elements like a string of beads, and they are linked by a certain rules. Each element moves individually which determines the behavior of the whole arc. The chain model is improvement by considering the arc root motion and surface drag force. The arc velocity and shape variation during the movement are studied based on this model. The results showed that the surface drag force is an important factor that influences the arc velocity and shape. The arc column diameter is calculated and the relationship between it and axial magnetic flux density is obtained.
引文
[1]J. W. Jung, S. H. Kim, K. S. Yang. Overview of ETC research in Korea[J]. IEEE Trans on Magnetics,2003,39(1):22-23
    [2]D. Bhasavanich, D. F. Strachan, R. Ford.4.5MJ modular pulse power supply for ET gun applications[C].9th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, USA,1993,2:772-775
    [3]D. L. Smith, J. M. Wilson, H. C. Harjec, et al. FANTM:The first article NIF test module for the laser conditioning system[C].12th IEEE international Pulsed Power Conference, California, USA,1999,2:921-924
    [4]M. A. Newton, R.E. Kamm, E. S. Fulkerson, et al. Initial activation and operation of the power conditioning system for the National Ignition Facility[C].14th IEEE international Pulsed Power Conference, Dallas, Texas, USA,2003,1:93-96
    [5]E. I. Moses. The National Ignition Facility:the world's largest laser[C].20th IEEE/NPSS Symposium on Fusion Engineering, San Diego, California,2003:413-418
    [6]P. Benin, P. Mathieu, S. Sierra, et al. Pulsed power conditioning system for the megajoule laser[J]. IEEE Trans on Pulsed Power Plasma Science,2001,1:401-404
    [7]J. M Mexmain, D Rubin de Cevens, J. P. Marret, et al. Pulsed power conditioning system for the megajoule laser[C].14th IEEE international Pulsed Power Conference, Dallas, Texas, USA, 2003,1:90-92
    [8]林福昌,李劲,潘垣等.神光Ⅲ能源模块总体设计[J].高电压技术,2002,28(z1):26-29
    [9]周丕璋,郭良福,陈德怀等.激光聚变主放大器能源系统述评[J].强激光与粒子束,2003,15(4):346-351
    [10]郭良福,何孟兵,周圣等.强激光能源系统用气体开关的研究[J].高电压技术,2007,33(2):66-70
    [11]R. Kihara, D. B. Cummings, K. S. Leighton, et al. Commercial high current ignitron development[C].7th IEEE international Pulsed Power Conference, Monterey, CA,1989,1:18-21
    [12]T. Warren, J. Dickens, A. Neuber, et al. Development of improved triggered vacuum switches[C]. 12th IEEE international Pulsed Power Conference, California, USA,1999,2:1264-1267
    [13]何俊佳,邹积岩,王海,等.高性能大功率触发真空开关的研究[J].电工电能新技术,1997,(2):28-32
    [14]廖敏夫,邹积岩,等.高性能真空触发开关技术的研究综述[J].高压电器,2006,42(1):51-54
    [15]K. Frank, E. Dewald, C. Bickes, et al. Scientific and technological progress of pseudospark devices[J]. IEEE Trans on Plasma Science,1999,27(4):1008-1020.
    [16]K. Frank, J. Christiansen, S. Dollinger, et al. Characteristics of pseudospark switches for pulsed
    power modulators[C].22th International Power Modulator Symposium,1996:129-132
    [17]赖贵友,郭良福,力一峥,等.大电流两电极气体开关研究[J].强激光与粒子束.2006,18(6):1037-1040
    [18]王贵吉,吴刚,赵剑衡,等.平面火花隙三电极开关研制及性能测试[J].强激光与粒子束.2006,18(2):349-352
    [19]D. Bhasavanich, D. F. Strachan, P. Careely, et al. Compact high current, high energy closing switches for Electric gun applications[C].9th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, USA,1993,2:772-775
    [20]Y. I. Isaenkov, N. P. Bublik, P. G. Makeev. Triggered spark gap switches and their erosion characteristic[C].25th International Power Modulator Symposium and High-Voltage Workshop, 2002:487-490
    [21]李焕炀,余岳辉,胡乾,等.RSD开关在脉冲电源中的应用研究[J].中国电机工程学报,2003,23(11):23-28
    [22]V. G. Bezuglov, I. V. Galakhov, S. N. Gudov, et al. On the possible use of semiconductor RSD-based switch for flash lamps drive circuits in a Nd-glass laser amplifier of LMJ facility[C]. 12th IEEE international Pulsed Power Conference, Monterey, CA, USA,1999,2:914-918
    [23]I. V. Galakhov, S. N. Gudov, G. A. Kirillov, et al. Switching of high-power current pulses up to 250kA and submilisecond duration using new silicon devices-reverse switched dinistors[C].10th IEEE International Pulsed Power Conference,1995,2:1103-1108
    [24]M. Jung, W. Mayerhofer, M. Edele, et al. Test of fast SCRs as spark gap replacement[C].10th IEEE International Pulsed Power conference,1995,1:729-732
    [25]D. F. Alferov, V. P. Ivanov, V. A. Sidorov. High-current vacuum triggered switching devices[J]. IEEE Trans on Magnetics,2003,39(1):406-409
    [26]D. F. Alferov, V. P. Ivanov, V. A. Sidorov. High-current vacuum switching devices for power energy storages[J]. IEEE trans on-Magnetics,1999,35(1):323-327
    [27]M. A. Newton, E. S. Fulkerson, S. D. Hulsey, et al. Overview and status of the power conditioning system for the National Ignition Facility[C]. Pulsed power plasma science,2001,1: 450-408
    [28]D. Bhasavanich, D. F. Strachan, P. Careely, et al. Development of a compact, high-energy spark gap switch and trigger generator system [C].8th IEEE International Pulsed Power conference, California,1991,1:343-345.
    [29]A. Watson, A. L. Donaldson, K. Ikuta, et al. Mechanism of electrode surface damage and material removal in high current discharges[J]. IEEE trans on Magnetics,1986,22(6):1799-1803
    [30]罗敏,江金生等.高功率气体火花开关电极烧蚀机理研究[J].强激光与粒子束,2004,16(6):781-786
    [31]F. A. Soldera, F. T. Mucklich, K. Hrastnik, et al. Description of the discharge process in spark plugs and its correlation with the electrode erosion patterns[J]. IEEE trans on Vehicular Technology,2004,53(4):1257-1265
    [32]M. E. Savage. Final results from the high-current, high-action closing switch test program at Sandia National Laboratories[C].12th IEEE international Pulsed Power Conference, California, USA,1999,2:1238-1241
    [33]C. P. Kumar, A. Pramanik. Analytical Estimation of Magnetic Field and Arc Velocity in a Walkie Edgar Spark Gap Device[J]. IEEE Trans on Magnetics.1995,31(1):837-843
    [34]G. H. Rim, C. H. Cho. Design and testing of a rotary arc gap-switch for pulsed power[J]. IEEE Trans on Plasma Science,2000,28(5):1491-1496
    [35]G. H. Rim, C. H. Cho, H. S. Lee, et al. Experimental analysis of rotating arc behaviors in a rotary arc gap switch for a 500 kJ capacitor bank[J]. IEEE Trans on Magnetics,2001,37(1):358-361
    [36]G. H. Rim, C. H. Cho, H. S. Lee, et al. Development of the pulse RAG switch[C].25th Anniversary IEEE Conference,1998:228
    [37]K. S. Seo, T. H. Lee, L. H. Hwang, et al. A high power vacuum rotary arc gap closing switch for pulsed power applications[C].25th IEEE International Power Modulator Symposium, Hollywood, CA, USA,2002:366-369
    [38]M. E. Savage, W. W. Simpson, R.A. Sharpe, et al. Switch evaluation test system for the National Ignition Facility[C].11th IEEE international Pulsed Power Conference, Maryland, USA,1997,2: 948-953
    [39]M. Newton, D. Smith, B. Moore, et al. Main amplifier power conditioning for the NIF[R]. Report No. UCRL-LR-105821,1999-1:15-20
    [40]N. C. Jaitly, R. White, et al. Long life rotating arc gap coaxial switch for mega-amp, kilo-coulomb, high action switching of multi-MJ capacitor banks[C].15th Pulsed Power Conference, IEEE,2005:643-646
    [41]何孟兵.脉冲大电流长寿命开关的研究[D].华中科技大学,2003
    [42]何孟兵,李劲,姚宗干.环形开关电极优化设计的实验研究[J].高电压技术,2002,28(4):40-41
    [43]王清玲,郭良福,湛锋.环形开关电极的自动优化设计方法[J].强激光与粒子束,2006,18(2):333-336
    [44]何孟兵,李劲,姚宗干.旋转电弧间隙开关的电极烧蚀[J].高电压技术,2002,28(120):30-34
    [45]何孟兵,王清玲等.旋转电弧对火花间隙开关电极烧蚀的影响[J].强激光与粒子束,2004,16(11):1468-1472
    [46]王清玲,郭良福,何孟兵等.轴向磁场控制的旋转电弧开关的研制[J].中国电机工程学报,2006,26(3):102-105
    [47]王清玲.轴向磁场控制的旋转电弧开关的研制[D].华中科技大学,2006
    [48]何孟兵,王清玲,潘垣.高库仑量大电流脉冲闭合开关的研制[J].中国电机工程学报,2008,28(27):131-136
    [49]J. M. Lafferty. Vacuum arcs:Theory and applications[M]. New York:John wiley & Sons,1980.
    [50]E. Dullin. Motion of high current arcs on spiral-type contacts[J]. IEEE Trans on Plasma Science, 1989,17(5):875-879
    [51]E. Hantzsche, B. Juttner. Current density in arc spots[J]. IEEE Trans on Plasma Science,1985, 13(5):230-234
    [52]X. Li, D. Chen, R. Dai, et al. Study of the Influence of Arc Ignition Position on Arc Motion in Low-Voltage Circuit Breaker [J]. IEEE Trans on Plasma Science,2007,35(2):491-497
    [53]R. N. Szente, R. J. Munz, M. G. Drouet. The influence of the cathode surface on the movement of magnetically driven electric arcs[J]. J. Phys. D:Appl Phys,1990,23:1193-1200
    [54]B. J. Evans, L. M. Smith. Cross-correlation-based method for determining the position and velocity of a rail gun plasma armature from B-dot probe signals[J]. IEEE trans on Plasma Science,1991,19(5):926-934
    [55]M. C. Baker, B. D. Barrett, W. C. Nunnally. Experimental observations of plasma armature properties and characteristics[J]. IEEE trans on Magnetics,1991,27(1):299-303
    [56]B. Harden, J. R. Howell. Experimental investigation of a hydrogen plasma railgun[J]. IEEE Trans on Plasma Science,1991,19(5):935-941
    [57]B. J. Evans, L. M. Smith. Determining railgun plasma current distribution using Jansson's method to deconvolve B-dot probe signals[J]. IEEE Trans on Plasma Science,1992,20(4): 432-438
    [58]B. U. Brigitte. A Deconvolution Technique for B-Dot Signals From a Plasma-Driven Electromagnetic Launcher[J]. IEEE Trans on Plasma Science,1989,17(3):516-519
    [59]K. K. Cobb, R. Villecco. A more general model for determination of current distribution from B-dot voltage by method of least squares [J]. IEEE trans on Magnetics,1991,27(1):189-194
    [60]A. M. Essiptchouk, A. Marotta, L. I. Sharakhovshy. The effect of arc velocity on cold electrode erosion[J]. Physics of Plasmas,2004,11(3):1214-1219
    [61]A. E. Guile, K. A. Naylor. Further correlation of experimental data for electric arcs in transverse magnetic fields[J]. Proc. IEE,1968,155(9):1349-1353
    [62]A. E. Guile, V. W. Adams, W.T. Lord, et al. High-current arcs in transverse magnetic fields in atmospheric pressure[J]. Proc.IEE,1969,116(4):645-652
    [63]A. E. Guile, J. G. J. Sloot. Magnetically driven arcs with combined column and electrode interactions[J]. Proc. IEE,1975,122(6):669-671
    [64]R. N. Szente, R. J. Munz, M. G. Drouet. Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen[J]. J. Phys. D:Appl Phys,1988,21:1193-1200
    [65]R. N. Szente, R. J. Munz, M. G. Drouet. Effect of the arc velocity on the cathode erosion rate in argon-nitrogen mixtures [J]. J. Phys. D:Appl Phys,1987,20:754-756
    [66]L. Cheng, J. Xie. Motion of magnetically driven arcs on oxidized electrodes[J]. IEEE Trans on Components, Hybrids, and Manufacturing Technology,1982, CHMT-5(1):86-89
    [67]S. W. Chou, K. L. Hsu, D. L. Lin, et al. Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air[J]. J. Phys. D:Appl Phys,2007,40:1944-1952
    [68]A. E. Guile, A H Hitchcock. The effect of rotating arc velocity on copper cathode erosion[J]. J. Phys. D:Appl Phys,1974,7:597-606
    [69]A. Marotta, L. I. Sharakhovshy, et al. The Best Arc Heater Regime for Minimum Copper Cathode [C].11th International Congress on Plasma Physics,2002:22-25
    [70]A. M. Essiptchouk, L. I. Sharakhovshy, A. Marotta. Working conditions of a copper cathode with minimum erosion[J]. Plasma Sources Sci. Technol.2003, (12):501-507
    [71]O. I. Yasko. Correlation of the characteristics of electric arcs moving in transverse magnetic fields[J]. Proc.IEE,116(3):453-456
    [72]L. I. Sharakhovsky. Experimental investigation of an electric arc motion in annular ventilated gap under the action of electromagnetic force[J]. J. Eng. Phys.20:306-313
    [73]A. M. Essiptchouk, L. I. Sharakhovsky, A. Marotta. A new formula for the rotational velocity of magnetically driven arcs[J]. J.Phys.D:Appl.Phys,2000,33:2591-2597
    [74]T. J. Lewis, P. E. Secker. Influence of the cathode surface on arc velocity[J]. Journal of Applied Physics,1961,32(1):54-64
    [75]J. P. Chabrerie, J. Devautour. Contribution to the study of interactions between an atmospheric pressure arc root and Cu, Ag, or Ag MO electrodes[C]. Proceedings of the 36th IEEE Holm Conference on Electrical Contacts and the Fifteenth International Conference on Electrical Contacts,1990:25-32
    [76]李兴文,陈德桂.空气开关电弧的数学模型及其特性的研究综述[J].高压电器,2007,43(4):269-273
    [77]Y. Wu, M. Rong, Z. Sun, et al. Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device[J]. J. Phys. D:Appl. Phys.2007,40:795-802
    [78]X. Li, D. Chen, Y. Wu, et al. A comparison of the effects of different mixture plasma properties on arc motion[J]. J. Phys. D:Appl. Phys.2007,40:6982-6988
    [79]F. Karetta, M. Lindmayer. Simulation of the gasdynamic and electromagnetic processes in low voltage switching arcs[C].42nd IEEE Holm Conference on Electrical Contacts,1996:35-44
    [80]M. Lindmayer, M. Springstubbe. Three-dimensional Simulation of Arc Motion between Arc Runners Including the Influence of Ferromagnetic Material [J].TEEE Trans Compon Packag Maunf Technol.2002,25(3):406-414
    [81]M. Lindmayer, E. Marzahn, A. Mutzke, et al. The Process of Arc-splitting between Metal Plates in Low Voltage Arc Chutes [C].50th IEEE Holm Conference on Electrical Contacts,2004:28-34
    [82]K. P. Guruprased, C. S. Sarma, M. Ramamoorty. Investigation of the characteristics of an SF6 rotating arc by a mathematical model[J]. IEEE Trans on Power Delivery,7(2):478-484
    [83]K. HORINOUCHI, Y. NAKAYAMA, M. HIDAKA, et al. A Method of Simulating Magnetically Driven Arcs[J]. IEEE Trans on Power Delivery.1997,12(1):213-218
    [84]张晋,陈德桂,付军.低压断路器灭弧室中磁驱电弧的数学模型[J].中国电机工程学报,1999,19(10):22-26
    [85]S. Gu, J. He. Movement simulation of long electric arc along the surface of insulator string in free air[J]. IEEE Trans on magnetics,2006,42(4):1359-1362a
    [86]赵纯.重复频率脉冲功率技术开关的研究[R].华中科技大学,2009
    [87]李正瀛.脉冲功率技术[M].北京:水利电力出版社,1992
    [88]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005
    [89]Bluhm. Pulsed power systems:principles and applications[M]. 北京:清华大学出版社,2008
    [90]Smith. Pulsed Power in the United States[C].8th IEEE international Pulsed Power Conference, San Diego, California, USA,1991:15-22
    [91]T. R. Burkes, J. P. Craig, M. O. Hagler, et al. A review of high-power switch technology[J]. IEEE trans on Electron Devices,1979, ED-26(10):1401-1411
    [92]何孟兵,李劲,姚宗干.高功率脉冲放电间隙开关综述[J].高电压技术,2000,26(4):33-35
    [93]G. Schaefer. Gas discharge closing switches[M]. New York:Plenum,1990:1-14
    [94]I. Vitkovitsky. High power switch[M]. New York:VNR,1987:1-11
    [95]L. C. Campbel. Design Considerations for High Charge Transfer Closing Switches[J]. IEE Symposium Pulsed Power,1998:7/1-7/5
    [96]唐兴祚.高电压技术[M].重庆大学出版社,1991
    [97]王其平.电器电弧理论[M].机械工业出版社,1982
    [98]夏天伟.电器学[M].北京:机械工业出版社,1999:26-27
    [99]常云龙,陈德善,肖纪云.磁控等离子体弧的基本特性[J].焊接设备与材料,2001,30(4):29-30
    [100]过增元,赵文化.电弧和热等离子体[M].北京:科学出版社,1986:158
    [101]解广润.高压静电场[M].上海:上海科学技术出版社,1987:48
    [102]唐兴伦,范群波,张朝晖等ANSYS工程应用教程-热与电磁学篇[M].北京:中国铁道出版社,2003:265-271
    [103]李玉柱,苑明顺.流体力学[M].北京:高等教育出版社,1998.
    [104]徐金明.MATLAB实用教程[M].北京:清华大学出版社,2005
    [105]朱衡君MATLAB语言及实践教程[M].北京:清华大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700