管筒内壁自激射频放电等离子体浸没离子注入方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高管筒状零部件的性能和使用寿命,人们常采用表面改性技术。离子注入做为一种有效的表面改性手段一直受到人们的重视,但对于细管筒内表面的处理均匀性无能为力。本文以管筒内部等离子体产生与内壁离子注入为目标,提出了管筒内壁自激射频放电离子注入技术。利用管筒自身激励等离子体,随后在管筒上施加高压脉冲,实现管筒内壁离子注入的方法。本文从电源系统研制、射频激励管内等离子体均匀性、管筒内等离子体注入鞘层动力学、管筒内壁自激射频辉光放电PIII实验和改性层均匀性等方面展开研究,以其揭示自激射频放电用于管筒工件内表面改性的等离子体激励特性、物理过程以及注入动力学,从而为实际的管筒内表面离子注入技术提供理论和实验依据。
     高压与射频同时连接到管筒上是本文研究硬件设计的重中之重,为此本文研制了高压与射频耦合电源系统,解决的核心问题是高压电路系统中不允许串入射频,击穿器件和伤人;同时射频电路中也不能串入高压,引起器件击穿、失效。通过调节高压和射频脉冲的时序关系,可以获得高压自辉光放电离子注入和PIII过程。该系统可以实现单射频脉冲/高压注入和多射频脉冲/高压注入多种输出模式。
     管筒自源等离子体激励(没有耦合高压脉冲,仅连续或脉冲射频输入)放电规律的研究表明:管筒内部能够获得高密度且相对均匀(轴向±75mm范围内不均匀度低于15﹪)的等离子体。提高射频功率,可以增加等离子体密度,但其分布均匀性下降;改变工作气压,等离子体密度的变化不明显,分布均匀性略有提高;管筒两端采用挡板后,管内等离子体密度急剧下降,且分布均匀性也会大大降低;管径的增加会提高其均匀性,但管长变化对其均匀性影响较小。等离子体离子密度在管内径向分布为中心地电极处密度高,而管壁处密度低。高频RF脉冲模式下的管内等离子体I-V特性与连续RF模式相似,而频率较低时,管内密度值较低,且呈现出与所加RF脉冲同步的周期性变化。
     针对具有一定非均匀度的等离子体,利用二维等离子体粒子模型系统研究了管筒内表面离子注入的动力学行为,主要研究了非均匀等离子体对等离子体鞘层在管筒内的时空演化过程,以及实验参数对注入剂量均匀性的影响规律和物理机制。离子的运动轨迹表明管口处的离子大部分集中注入到管筒内表面的端部,管内离子运动轨迹基本为垂直管壁注入。通过对非均匀等离子体鞘层电位和鞘层内等离子体密度时空演化规律的研究发现:注入剂量的分布均呈中间均匀,管口上部出现峰值,而在管口端部最低的趋势。增加管筒直径或增加等离子体密度以及降低注入电压均有利于提高剂量均匀性。而管筒长度的增加对剂量分布没有影响。
     采用高压/射频直接耦合工作模式,对不锈钢管筒内表面成功实现了氮离子注入。注氮处理后试样的XPS谱显示试样中含有氮元素,表明在不锈钢管筒内表面实现了氮离子注入。管筒轴向位置氮元素的含量和深度分布表明轴向位置仅管口两端附近氮含量高,其余位置的含量相差不大,且不同位置氮注入深度基本相同,综合起来氮注入的轴向均匀性较好。注氮处理有效提高了管筒中心点的耐摩擦磨损性能和耐腐蚀性能。获得的管筒试样耐摩擦磨损和耐腐蚀性能的轴向均匀性也较好。成功实现了Ф30mm×200mm管筒内壁注入处理。
Surface modification has frequently been performed to improve the surface properties and lifetime of tube-like components. Ion implantation has been receiving much interest as an effective surface processing tool. However it is relatively difficult to implant the inner wall of cylindrical bore using this technique due to effect of line-of-sight. This desire presents a new approach based on self-excited radio-frequency (RF) glow discharge in the tube for purpose of ion implantation of the interior surface. The tube itself acts as a plasma source to generate required plasma within the tube and then biased negatively to achieve plasma ion implantation (PII) effect. In this thesis, the topics on development of power supply, uniformity of plasma density, dynamics of plasma sheath and ion implantation of inner wall of cylindrical bore have been focused on. The aim is to disclose the physical mechanism of ion implantation of cylindrical bore and provide a guide to treat the inner wall of tube-like components.
     The design and operation performance of this novel hybrid system coupling pulsed radio-frequency and pulsed high-voltage (HV) are very critical to achieve better ion implantation effect. The key problem is to protect the radio-frequency power supply from high-voltage damage and prevent the high-voltage pulser from the interference of radio-frequency system. The hard-ware system may run with multiple modes including high-voltage self-discharge PII and conventional PII depending on the time interval between the radio-frequency pulse and high-voltage pulse. The system may also operate with single RF/single HV and multiple RF/single HV.
     Steady discharge and plasma may be induced in the tube powered by RF system (non-uniformity is lower than 15﹪at the axial range from +75mm to -75 mm). With increasing RF power, the plasma density increases, however the uniformity firstly increases then decreases with the increasing of RF power. The working pressure has a slight influence on magnitude and uniformity of plasma density. The baffling plates near tow ends of the tube not only can not improve the uniformity of plasma density but also weaken substantially the glow discharge leading to a lower plasma density in the tube. A large tube diameter is helpful for better uniformity of plasma density. In contrast the tube length has a slight effect on the uniformity in the middle region. The plasma density near the central line of the tube is higher than that near the wall. The I-V curve of plasma density generated at high-frequency (e.g., 3kHz) pulse RF are similar to those at continue RF mode. In contrast at lower frequency pulsed RF case the plasma density is lower and varies with pulse configuration.
     Tow-dimensional particle-in-cell (PIC) model has been utilized to simulate the dymanics of ion implantation in the bore with non-uniform plasma. The expansion of plasma sheath and effect of instrumental parameters on ion dose and distribution have been investigated. The plasma sheath rapidly collides and the ions in the bore are mostly implanted with a perpendicular angle and the ions outside the tube possess a glancing injection angle. The incident dose is uniform in the middle region of the tube despite two peaks near two ends of the tube. With interest the dose right at the corner is very lower due to the focus effect of plasma sheath. The uniformity of incident dose may be improves with a large tube diameter, higher plasma density and lower tube bias.
     The stainless steel cylindrical bore has been implanted using this novel technique with the tube itself applied to RF power and high-voltage pulse. The XPS results demonstrate that there exists nitrogen element with injection range of 40nm in the inner wall at central sites of the tube. The nitrogen concentration in the middle section is relatively uniform except near two ends of the tube. The injection range of incident ions is similar no matter where they are implanted. Nitrogen implantation has improved substantially corrosion resistance and wear resistance of stainless steel tube. The results also show the uniform improvement along the tube axial. The tube with 30mm in diameter and 200mm in length has been successfully implanted leading to better surface properties.
引文
1.黄汝宏,张伟红,缪德伟.薄壁不锈钢管材及管件的应用研究.给水排水. 2002, 28 (11): 69-72
    2.奚兵.枪管镀铬的发展与实践.腐蚀与防护. 2000, 21 (3): 131-139
    3. K. M. Yin, C. M. Wang. A study on the deposit uniformity of hard chromium plating on the interior of small-diameter tubes. Surface and Coatings Technology. 1999, 114: 213-223
    4. J. F. Thompson, S. K. Pan.U.S. Army ARDEC Tech. Rep. ARCCB-TR-90028, 1990
    5. P. D. Aalto, G. P. O. Hara, G. D. Andrea. Bene′t Weapons Lab. Internal Tech. Rep. BWL 83-2,1983
    6. C. Cabral, L. A. Clevenger, R. G. Schad. Repeated compressive stress increase with 400°C thermal cycling in tantalum thin films due to increases in the oxygen content. Journal of Vacuum Science and Technology B. 1994, 12 (4): 2818-2821
    7.姚振强, Y. Y. Lawrence,王飞,刘刚.先进激光制造技术研究新进展.机械工程学报. 2003, 39 (12): 57-61
    8.肖爱红,邱长军,李学兵.激光表面改性技术及其应用综述.机械制造. 2006,44(499):59-60
    9.于子平.火炮身管内表面激光强化处理技术研究.弹道学报. 2001, 13 (3): 53-57
    10.王茹,安世民.激光处理不镀铬枪炮管提高抗烧蚀寿命的研究.大连理工大学学报. 1997, 37 (2): 222-225
    11.王扬,邓宗全,齐立涛.火炮身管内表面激光硬化处理的实验研究.兵工学报. 2003, 24 (4): 476-478
    12. G. Duffet, P. Sallamand, A. B. Vannes. Improvement in friction by cw Nd:YAG laser surface treatment on cast iron cylinder bore. Applied Surface Science. 2003, 205: 289-296
    13.王扬,邓宗全,曲存景.抽油泵整体泵筒激光表面淬火.哈尔滨工业大学学报. 1999, 31 (4): 40-42
    14. R. A. Ganeev. Low-power laser hardening of steels. J. Mater.Process.Technol. 2002, 121: 414-419
    15. G. Musa, Z. Mustata,.G. Dinesca. Evaporation Source for Deposition of Protective Layers inside Tubes. Japanese Journal of Applied Physics Part 1. 1992, 31 (9): 2869-2871
    16. Lensch, T. Kraus, C. Sundermann. Protection of cylinders by ion-beam sputter deposition: corrosion of carbon-coated aluminium tubes. Surface and Coatings Technology. 2002, 158-159: 599-603
    17. W. Ensinger, O. Lensch, T. Kraus. Coating the inner walls of metal tubes with carbon films by physical vapor Deposition at low temperature. Surface and Coatings Technology. 2002, 150: 227-231
    18. T. Kraus, R. Kern, B. Stritzker. An advanced apparatus for ion beam assisted sputter coating of the inner walls of tubes. Nuclear Instruments and Methods in Physics Research B. 1999, 148: 912-916
    19. W. Ensinger, O. Lensch, T. Matsutani, M. Kiuchi. Corrosion performance of thin amorphous carbon films on aluminum formed by ion beam-based coating techniques. Surface and Coatings Technology. 2005, 196: 231-235
    20. D. W. Matsona, E. D. M. Clanahana, J. P. Ricea. Effect of sputtering parameters on Ta coatings for gun bore applications. Surface and Coatings Technology. 2000, 133-134: 411-416
    21. L. Lee, D. Windover. Phase, residual stress, and texture in triode-sputtered tantalum coatings on steel. Surface and Coatings Technology. 1998, 108-109: 65-72
    22. C. Cabral, L. A. Clevenger, R. G. Schad. Variation of internal stresses in sputtered Ta films. Journal of Vacuum Science and Technology A. 2002, 68-73: 35-38
    23. Y. Uchikawa, S. Sugimoto, K. Kuwahara. Titanium coating of the inner of a 1 m long narrow tube by double-ended anode coaxial magnetron-pulsed plasma. Surface and Coatings Technology. 1999, 112: 185-188
    24. H. Fujiyama. Inner coating of long-narrow tube by plasma sputtering. Surface and Coatings Technology. 2001, 131: 278-283
    25. J. R. Conrad, S. Baumann, R. Fleming, G. P. Meeker. Plasma source ion implantation dose uniformity of a 2×2 array of spherical targets. Journal of Applied Physics. 1989, 65 (4): 1707-1712
    26. K. Baba, R. Hatada. Ion implantation into inner wall surface of millimeter size diameter steel tube by plasma source ion implantation. Surface and Coatings Technology. 2002, 158-159: 741-743
    27. S. Masamune, K. Yukimura. Ion implantation to inner surface of a cylinder. Nuclear Instruments and Methods in Physics Research B. 2003, 206: 682- 686
    28.王静,刘贵昌,汲大鹏.通过制备Ti/TiC和Si/SixNy过渡层在铜基体上沉积类金刚石膜的研究.真空科学与技术学报. 2006, 9: 397-403
    29.甘霖,陶凤和,卢兴华.火炮身管延寿研究.火炮发射与控制学报. 2006, (3): 10-14
    30.仝健民,李继红.铝热-自蔓延高温合成钢管内表面陶瓷涂层的工艺研究.表面工程. 2004, (2): 7-11
    31.王双喜,李俊寿,王建江.铝热离心法重熔球墨铸铁管内表面的研究.金属热处理. 1999, (6): 10-13
    32.符寒光,邢建东,张立.自蔓延高温合成陶瓷内衬复合铜管的研究.有色金属. 2002, 54 (3): 15-18
    33. W. C. Gu, G. H. Lv, H. Chen. Preparation of ceramic coatings on inner surface of steel tubes using a combined technique of hot-dipping and plasma electrolytic oxidation. Journal of Alloys and Compounds. xxx(2008) xxx-xxx
    34. Z. L. Zhan, Y. D. He, D. R. Wang. Cladding inner surface of steel tubes with Al foils by ball attrition and heat treatment. Surface and Coatings Technology. 2006, 201: 2684-2689
    35. T. E. Sheridan. Ion-matrix sheath in a cylindrical bore. Journal of Applied Physics. 1993, 74 (8): 4903-4906
    36. S. M. Malik, R. P. Fetheraton, J. R. Conrad. Development of an energetic in assisted mixing and deposition process for TiNx and diamond like carbon films, using a co-axial geometry in plasma source ion implantation. Journal of Vacuum Science and Technology A. 1997, 15: 2875-2878
    37. A. G. Liu, X. F. Wang, B.Y. Tang, P. K. Chu. Dose and energy uniformity over inner surface in plasma immersion ion implantation. Journal of Applied Physics. 1998, 84 (4): 1-4
    38. A. G. Liu, X. F. Wang, Q. C. Chen, B.Y. Tang, P. K. Chu. Inner surface ionimplantation using deflecting electric field. Nuclear Instruments and Methods in Physics Research B. 1998, (143): 306-310
    39.刘爱国,陆显文,王小峰,汤宝寅.脉冲宽度对偏转电场法内表面等离子体浸没离子注入的影响.材料科学与工艺. 1999, 7: 121-123
    40. X. C. Zeng, B. Y. Tang, P. K. Chu. Improving the plasma immersion ion implantation impact energy inside a cylindrical bore by using an auxiliary electrode. Applied Physics Letters. 1996, 69: 3815-3817
    41. D. K. Kwok, X. C. Zeng, Q. C. Chen. Effects of tube length and radius for inner surface plasma immersion ion implantation using an auxiliary electrode. IEEE Plasma Scicence. 1999, 27 (1): 225-228
    42. M. Sun, S. Z. Yang, B. Li. New method of tubular material inner surface modification by plasma source ion implantation. Journal of Vacuum Science and Technology A. 1996, 14: 367-369
    43. C. S. Liu, D. Z. Wang. Monte carlo simulation of ions inside a cylindrical bore for plasma source ion implantation. Journal of Applied Physics. 2002, 91 (1): 32-35
    44.刘成森,王德真.空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化.物理学报. 2003, 52 (1): 109-114
    45. S. Miyagawa, S. Nakao, M. Ikeyama. Deposition of DLC films using palsam based ion implantation with bipolar pulses. Surface and Coatings Technology. 2002, 156: 322-326
    46. Y. Miyagawa, H. Nakadae, M. Tanaka, et al. PIC/MC simulation for PBII processing of a trench shaped target and cylindrical target. Surface and Coatings Technology. 2004, 186: 2-5
    47. S. Masamune, K. Yukimura. Ion implantation to inner surface of a cylinder. Nuclear Instruments and Methods B. 2003, 206: 682-685
    48.田修波, D. Kowk,童洪辉, P. K. Chu.等离子体浸没离子注入圆筒内表面的时空尺度.核技术. 2002, 25 (9): 709 -713
    49. M. Sun, S. Z. Yang, B. Li. Measurement of spatial and temporal evolution inside tubular material for inner surface ion implantation. Journal of Vacuum Science and Technology A. 1996, 14: 3071-3074
    50. J. R. Conrad, R. P. Fetherston, M. M. Shamim. Ion Implantation and deposition onto cylindrical surfaces by generating ion plasma betweenelectrode cylinder and target cylinder, then applying pulsed voltage to one of the surfaces, Pat. Number:US5693376-A, Appl. Date:23 Jun.(1995)
    51. K. Yukimura, E. Kuze, M. Kumagai, M. Kohata, K. Numata, H. Saito, T. Maruyama, X. X. Ma. Coating and ion implantation to the inner surface of a pipe by metal plasma-based ion implantation and deposition. Surface and Coatings Technology. 2003, 169-170: 411-414
    52. K. Yukimura, X. X. Ma, M. Kumagai, M. Kohata, H. Saito. Preparation of TiN film on the inner surface of a pipe by plasma-based ion implantation and deposition. Surface and Coatings Technology. 2003, 174-175: 694-697
    53. G. L. Zhang, X. F. Wu, J. L. Wang. Inner surface modification of a tube by magnetic glow-arc plasma source ion implantation. Chinese Physics Letters. 2006, 23 (5): 1241-1244
    54. K. Baba, R. Hatada. Ion implantation into the interior surface of a steel tube by plasma source ion implantation. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms. 1999, 148 (1-4): 69-73
    55. K. Baba, R. Hatada. Ion implantation into inner wall surface of a 1-m-long steel tube by plasma source ion implantation. Surface and Coatings Technology. 2000, 128: 112-115
    56. H. Fujiyama, Y. Tokitu, Y. Uchikawa. Ceramics inner coating of narrow tubes by a coaxial magnetron pulsed plasma. Surface and Coatings Technology. 1998, 98: 1467-1470
    57. H. Fujiyama. Inner coating of long-narrow tube by plasma sputtering. Surface and Coatings Technology. 2000, 131: 278-283
    58. R. Wei, C. Rincon, T. L. Booker. Magnetic field enhanced plasma (MFEP) deposition of inner surfaces of tubes. Surface and Coatings Technology. 2004, 188/189: 691-694
    59. B. Liu, C. Z. Liu, S. Z. Yang. A new method for inner surface modification by plasma source ion implantation (PSII). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2001, 184 (4): 644- 648
    60. J. L. Wang, G. L. Zhang. Pulsed ion sheath dynamics in a cylindrical bore for inner surface grid-enhanced plasma source ion implantation. ChinesePhysics Letters. 2002, 19 (10): 1473-1475
    61. J. L. Wang, G. L. Zhang, S. H. Fan. Influence of grid and target radius and ion-neutral collisions on grid-enhanced plasma source ion implantation process. Journal of Physics D: Applied Physics. 2003, 36: 1192-1197
    62. J. L. Wang, G. L. Zhang, S. H. Fan. Influence of ion species ratio on grid-enhanced plasma source ion implantation. Chinese Physics. 2004, 13 (1): 65-70
    63. G. L. Zhang, J. L. Wang. TiN coating for inner surface modification by grid enhanced plasma source ion implantation. Acta Physica Sinica. 2003, 52 (9): 2213-2218
    64. G. L. Zhang, J. L. Wang, Y. F. Liu. Properties of TiN coating on 45# steel for inner surface modification by grid-enhanced plasma source ion implantation method. Chinese Physics. 2004, 13 (8): 1309-1314
    65. G. L. Zhang, J. L. Wang. Shadow effect and its revisal in grid-enhanced plasa source with ion implantation method. Chinese Physics Letters. 2004, 21 (6): 1114-1116
    66. J. L. Wang, G. L. Zhang, Y. N. Wang. Grid-shadow effect in grid-enhanced plasma source ion implantation. Surface and Coatings Technology. 2005, 192: 101-105
    67.张谷令.等离子体源离子注入材料内表面改性的研究.中国科学院物理研究所博士学位论文, 2004
    68. B. Liu, G. L. Zhang, D. J. Cheng. Inner surface coating of TiN by the grid-enhanced plasma source ion implantation technique. Journal of Vacuum Science and Technology A. 2001, 19 (6): 2958-2962
    69.张谷令,吴杏芳,顾伟超,陈光良,冯文然,牛二武,李立,吕国华,陈晥,范松华,刘赤子,杨思泽.等离子体方法实现金属管件内表面改性研究进展.自然科学进展. 2006, 16 (11): 1371-1378
    70. T. E. Sheridan. Pulsed sheath dynamics in a small cylindrical bore. Physics Plasmas. 1994, 1 (10): 3485-3489
    71. T. E. Sheridan. Sheath expansion into a large bore. Journal of Applied Physics. 1996, 80 (1): 66-69
    72. T. E. Sheridan. Analytic theory of sheath expansion into a cylindrical bore. Physics Plasmas. 1996, 3 (9): 3507-3512
    73. X. C. Zeng, T. K. Kwok, A. G. Liu, P. K. Chu, B. Y. Tang. Plasma immersion ion implantation of the interior surface of a large cylindrical bore using an auxiliary electrode. Journal of Applied Physics. 1998, 83 (1): 44-49
    74. X. C. Zeng, T. K. Kwok, A. G. Liu, P. K. Chu, B. Y. Tang, T. E. Sheridan. Plasma-Immersion Ion Implantation of the Interior Surface of a Small Cylindrical Bore Using an Auxiliary Electrode for Finite Rise-Time Voltage Pulses. IEEE Transactions on Plasma Science. 1998, 26 (2): 175-180
    75. X. C. Zeng, T. K. Kwok, A. G. Liu. Effects of the auxiliary electrode radius during plasma immersion ion implantation of a small cylindrical bore. Applied Physics Letters. 1997, 71: 1035-1037
    76. X. C. Zeng, A. G. Liu, T. K. Kwok, P. K. Chu, B. Y. Tang. Pulsed sheath dynamics in a small cylindrical bore with an auxiliary electrode for plasma immersion ion implantation. Physics Plasmas. 1997, 4 (12): 4431-4434
    77. X. C. Zeng, T. K. Kwok, A. G. Liu, P. K. Chu, B. Y. Tang, T. E. Sheridan. Effects of the auxiliary electrode radius during plasma immersion ion implantation of a small cylindrical bore. Applied Physics Letters. 1997, 71 (8): 1035-1037
    78. X. C. Zeng, B. Y. Tang, P. K. Chu. Improving the plasma immersion ion implantation impact energy inside a cylindrical bore by using an auxiliary electrode. Applied Physics Letters. 1996, 69 (25): 3815-3817
    79.刘爱国,王小峰,汤宝寅,王松雁,田修波,曾照明,朱剑豪.内表面等离子体浸没离子注入过程的数值模拟.哈尔滨工业大学学报. 2000, 32 (1): 111-115
    80. A. G. Liu, X. F. Wang, B. Y. Tang. Improve retained dose and impact energy of inner surface plasma immersion ion implantation using long pulse duration with deflecting electric field. Surface and Coatings Technology. 2002, 149: 114-118
    81. A. G. Liu, X. F. Wang, S. Y. Wang, B. Y. Tang, P. K. Chu, Z. M. Zeng, X. B. Tian. Simulation of dose uniformity for different pulse durations during inner surface plasma immersion ion implantation. Journal of Vacuum Science and Technology B. 1999, 17 (2): 875-878
    82. T. K. Kwok, X. C. Zeng, Q. C. Chen, P. K. Chu. T. E. Sheridan. Effects of Tube Length and Radius for Inner Surface Plasma Immersion IonImplantation Using an Auxiliary Electrode. IEEE Transactions on Plasma Science. 1999, 27 (1): 225- 238
    83. X. B.Tian, K. Y. F. Ricky, P. K. Chu, A. Anders, C. Z. Gong, S. Q. Yang. Flexible system for multiple plasma immersion ion implantation deposition processes. Review of Scientific Instruments. 2003, 74 (12): 5137-5140
    84. X. B. Tian, C. Z. Gong, S. Q. Yang, R. Fu, P. K. Chu. Versatile Facility for Hybrid Plasma Based Ion Implantation Deposition. Proceedings 8th International Workshop on Plasma-Based Ion Implantation and Deposition. Chengdu, China, Paper T1-3, p. 33, September 18-22, 2005
    85.李亚磊.基于计算机的高信噪比Langmuir探针系统.大连理工大学硕士论文. 2005: 2-3
    86.张治国,陈小锰,刘天伟. Langmuir探针诊断微波ECR非平衡磁控溅射等离子体.真空科学与技术学报. 2005, 25 (2): 110-114
    87.朱晓东,温晓辉,周海洋,等.等离子体化学气相沉积金刚石膜过程中光发射谱和朗谬尔探针原位诊断.真空科学与技术. 2001, 21 (1): 67-70
    88.刘伟,唐伟忠,黑立富,等.工频脉冲激励条件下线形微波H2等离子体的Langmuir探针诊断.真空科学与技术学报. 2007, 27 (4): 312-317
    89.潘阁生,王成,万树德,等.静电离子探针在气体放电磁化等离子体参数测量中的应用.真空科学与技术. 2001, 21 (2): 116-119
    90.张健.射频感应祸合等离子体的Langmuir探针和发射光谱诊断.大连理工大学硕士学位论文. 2006: 12-13
    91.隋振中. AIP脉冲偏压电源及等离子体诊断系统的设计与应用研究.大连理工大学硕士研究生学位论文. 2003: 8-9
    92. G.. K. Muralidhar, G.. M. Rao, A. G. Menon. Plasma diagnostics of the high pressure oxygen-sputtering process. Thin Solid Films. 1993, (224): 137-140
    93.齐燕文,王存池,任兆杏.空间等离子体源与测试系统设计.航天器环境工程. 2006, 23 (5): 253-256
    94.赵青,耿漫.等离子体浸没离子注入(PIII)技术在现代材料表面改性中的应用及发展.真空. 2000, 1: 40-43
    95.周灵平,李绍禄,陈劲松,李德意,陈小华.离子束辅助低能碳离子注入工艺原理.微细加工技术. 2004, 3: 14-18
    96.辛督强,朱民,解延雷,张涛.离子注入对二氧化锡薄膜的改性作用.微细加工技术. 2005, 5: 17-27
    97.刘松,李德军.氮离子注入对有机高分子材料表面电阻率和硬度的影响.微细加工技术. 1999, 2: 1-7
    98.张通和,吴瑜光.钛离子注入硅薄层硅化物结构和特性.微细加工技术. 1999, 4: 14-18.
    99. W, Ensinger, K. Volz, T. Ho¨chbauer. Three-dimensional dose uniformity of plasma immersion ion implantation shown with the example of macro-trenches. Surface and Coatings Technology. 1999, 120-121: 347-352
    100. W, Ensinger, K. Volz, T. Ho¨chbauer, B.Rauschenbach. Treatment uniformity of plasma immersion ion implantation studied with three-dimensional model systems. Surface and Coatings Technology. 1998, 103-104: 218-221
    101. X. B. Tian, P. K. Chu. Multiple ion-focusing effects in plasma immersion ion implantation. Applied Physics Letters. 2002, 81: 3744-3746
    102. M. P. J. Gaudreau. Solid-state modulators for plasma immersion ion implantation applications. The fourth international plasma-based ion implantation workshop, 1999: 888-894
    103. L. M. Redondo, N. Pinhao, E. Margato, J. F. Silva. Progress on high-voltage pulse generators, using low voltage semiconductors (<1kV), designed for plasma immersion ion implantation (PIII). Surface and Coatings Technology. 2002, 156: 61-65
    104. W. Ensihger, J. Klein, P. Usedom, B. Rauschenbach. Characteristic features of an apparatus for plasma immersion ion implantation and physical vapour deposition. Surface and Coatings Technology. 1997, 93: 175-180
    105.巩春志,田修波,曹珍恩,朱宗涛,杨士勤. 10kV等离子体表面改性高压脉冲电源.强激光与粒子束. 2007, 19 (11): 1927-1930
    106. C. Z. Gong, X. B. Tian, S. Q. Yang, R. Fu, P. K. Chu. Hybrid High-Frequency Pulser for Plasma Based Ion Implantation. Proceedings 8th International Workshop on Plasma-Based Ion Implantation and Deposition. Chengdu, China, Paper P11-3, p. 204, September 18-22, 2005
    107. D. Ganuza, J. M. Del Rio, I. Garcia. 130kV 130A high voltage switching mode power supply for neutral beam plasma heating: design issues. Fusion Engineering and Design. 2003, (66-68): 615-620
    108. W. Ensinger. Research and development in plasma-based ion implantation inEurope .I. Apparatus and projects. The fourth international plasma-based ion implantation workshop, 1999: 799-807
    109. F. L. Coeur, Y. Arnal. Ion implantation based on the uniform distributed plasma. Surface and Coatings Technology. 1997, 93: 265-268
    110. M. Ueda, L. A. Bernia, J. O. Rossia, J. J. Barrosoa, G. F. Gomesa, A.F. Belotob, E. Abramof. Plasma immersion ion implantation experiments at the Instituto Nacional de Pesquisas Espaciais INPE, Brazil. Surface and Coatings Technology. 2001, 136: 28-31
    111. J. O. Rossi, M. Ueda, J. J. Barroso. Plasma immersion ion implantation experiments with long and short rise time pulses using high voltage hard tube pulser. Surface and coatings technology. 1997, 136: 43-46
    112. G. A. Collins, R. Hutchings, K. T. Short. Development of a plasma immersion ion implanter for the surface treatment of metal components. Surface and Coatings Technology. 1996, 84: 537-543
    113. S. Han, Y. Lee, Y. W. Kim. Plasma source ion implantation using high-power pulsed RF plasma. Surface and Coatings Technology. 2004, 186: 177-181
    114. Y. Nishimura, A. Chayahara, Y. Horino. A new PBIID processing system supplying RF and HV pulses through a single feed-through. Surface and Coatings Technology. 2002, 156: 50-53
    115. Y. Nishimura, R. Ohkawa, H. Oka, H. Akamatsu, K. Azuma, M. Yatsuzuka. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2003, 206: 696-699
    116. C. Z. Gong, X. B. Tian, S. Q. Yang, R. K. Y. Fu, P. K. Chu. Direct Coupling of Pulsed Radio Frequency and Pulsed High Power in Novel Pulsed Power System for Plasma Immersion Ion Implantation. Review of Scientific Instruments. 2008, 79 (4): 043501-1-043501-5
    117. X. B. Tian, T. Zhang, Z. M. Zeng, B. Y. Tang, P. K. Chu. Dynamic mixing deposition/ implantation in a plasma immersion configuration. Journal of Vacuum Science and Technology A. 1999, 17 (6): 3255-3259
    118. P. Marcus, E. Protopopoff. Potential-pH Diagrams for Adsorbed Species. Journal of the Electrochemical Society. 1990, 137: 2709-2712
    119. R. Sabot, R. Devaux, A. M. D. Becdelivre, C. Duret-Thual. The resistance tolocalized corrosion in neutral chloride medium of an AISI 304l stainless steel implanted with nitrogen and neon ions. Corrosion Science. 1992, 33: 1121-1130
    120. G. L. Zhi, Y. C. Ding. Sheath potential difference studies in low-pressure high-frequency capacitive RF plasma as a fundamental research for ion energy impinging on the material surface. Surface and Coatings Technology. 2006, 200 (18-19): 5655-5662
    121. S. Miyake, Y. Setsuhara, Y. Sakawa, T. Shoji. Development of high-density RF plasma and application to PVD. Surface and Coatings Technology. 2000, 131 (1-3): 171-176
    122. K. Ostrikov, E. L. Tsakadze, Z. L. Tsakadze, S. Xu. Internal oscillating current sustained RF plasmas: Parameters, stability, and potential for surface engineering. Surface and Coatings Technology. 2005, 200 (1-4): 796-799
    123. D. L. Tang, R. K. Y. Fu, X. B. Tian, P. K. Chu. Improved planar radio frequency inductively coupled plasma configuration in plasma immersion ion implantation. Review of Scientific Instruments. 2003, 74: 2704-2706
    124. P. K. Chu, B. Y. Tang, Y. C. Cheng, P. K. Ko. Principles and characteristics of a new generation plasma immersion ion implante. Review of Scientific Instruments. 1997, 68: 1866-1869
    125. S. Han, Y. Lee, Y. W. Kim, Y. Kim, H. Chun, J. Lee. Plasma source ion implantation using high-power pulsed RF plasma. Surface and Coatings Technology. 2004, 186 (1-2): 177-181
    126. Z. M. Zeng, X. B. Tian, T. K. Kwok, B. Y. Tang, M. K. Fung, P. K. Chu. Effects of plasma excitation power, sample bias, and duty cycle on the structure and surface properties of amorphous carbon thin films fabricated on AISI440 steel by plasma immersion ion implantation. Journal of Vacuum Science and Technology A. 2000, 18: 2164-2167
    127. H. Amemiya. Diagnostics of negative ions using probe and laser in plasmas (oxygen discharge). Vacuum. 2000, 58 (2-3): 100-116
    128. S. Watanabe, T. Tanaka, T. Takagi, K. Yukimura. Estimation of plasma density in after-glow region of RF burst plasma based on voltage-current characteristics. Surface and Coatings Technology. 2004, 186 (1-2): 53-56
    129. Y. Ohtsu, T. Shimazoe, T. Misawa, H. Fujita. Influences of oxide material onhigh density plasma production using capacitively coupled discharge. Thin Solid Films. 2006, 506-507: 545-549
    130. R. Ikada, G. Nishimura, K. Kato, S. Iizuka. Production of high density and low electron-temperature plasma by a modified grid-biasing method using inductively coupled RF discharge. Thin Solid Films. 2004, 457 (1): 55-58
    131. M. Dhayal, D. Forder, K. L. Parry, R. D. Short, J. W. Bradley. Using an afterglow plasma to modify polystyrene surfaces in pulsed radio frequency (RF) argon discharges. Surface and Coatings Technology. 2003, 174-175: 872-876
    132. J. H. Kim, Y. H. Shin, K. H. Chung. Study on self-bias voltage induced on the substrate by r.f. bias power in a high density plasma. Thin Solid Films. 2003, 435 (1-2): 288-292
    133. T. Tabuchi, M. Takashiri, H. Mizukami. Hollow electrode enhanced RF glow plasma for the fast deposition of microcrystalline silicon. Surface and Coatings Technology. 2003, 173 (2-3): 243-248
    134. M. Goujon, T. Belmonte, G. Henrion. Characterization of a capacitively coupled RF plasma for SiO2 deposition: numerical and experimental results. Thin Solid Films. 2005, 475 (1-2): 118-123
    135.侯清润,茅卫红,陈宜保.气体放电实验与帕邢定律.物理实验. 2004, 24 (1): 3-8
    136. F. Ghaleb, W. Benstaali, A. Belasri. Calculation of breakdown voltage in plasma display panels. Materials Science and Engineering C. 2008, 28:791-794
    137. Y. Nunes, A. Wemans, P.R. Gordo, M. Ribau Teixeira, M.J.P. Maneira. Breakdown in planar magnetron discharges of argon on copper. Vacuum. 2007, 81:1511-1514
    138. H. Paka, M. J. Kushner. Breakdown characteristics in nonplanar geometries and hollow cathode pseudospark switches. Journal of Applied Physics. 1992, 71 (1): 94-100
    139.姚细林,王新兵,赖建军.微空心阴极放电的Monte Carlo模拟研究.物理学报. 2003, 52 (6): 1450-1454
    140.余建华,赖建军.具有空心阴极放电特征的射频放电的两电子组模型.强激光与粒子束. 2004, 16 (8): 1049-1053
    141. A. Mitsuo, S. Uchida, T. Aizawa. Effect of pulse bias voltage and nitrogen pressure on nitrogen distribution in steel substrate by plasma immersion ion implantation of nitrogen. Surface and Coatings Technology. 2004, 186 (1-2): 196-199
    142. C. Blawert, B. L. Mordike, G. A. Collins, K. T. Short, J. Tendys. Influence of process parameters on the nitriding of steels by plasma immersion ion implantation. Surface and Coatings Technology. 1998, 103-104: 240-247
    143. H. Carrère, A. Arnoult, A. Ricard, E. B. Pereira. RF plasma investigations for plasma-assisted MBE growth of (Ga,In)(As,N) materials. Journal of Crystal Growth. 2002, 243 (2): 295-301
    144. K. Toki, S. Shinohara, T. Tanikawa, K.P. Shamrai. Small helicon plasma source for electric propulsion. Thin Solid Films. 2006, 506-507 (26): 597-600
    145. S. Shinohara, K. P. Shamrai. Effect of electrostatic waves on a rf field penetration into highly collisional helicon plasmas. Thin Solid Films. 2002, 407 (1-2): 215-220
    146. J. T. Cui, X .B. Tian, S. Q. Yang, T. Hu, A. P. Huang, R. K.Y. Fu, P. K. Chu. Plasma distribution in the slender bore excited by coaxial rf electrode. Surface and Coatings Technology. 2007, 201 (15): 6651-6654
    147. Y. Q. Wang, Q. M. Chen, Q. Y. Xu. Numerical modeling of RF-excited plasma in coaxial CO2 lasers. Optics Communications. 1999, 160 (1-3): 86-91
    148. P. McNeely, B. Heineman, W. Kraus, R. Riedl, E. Speth, O. Vollmer. Langmuir probe studies on a RF ion source for NBI. Fusion Engineering and Design. 2001, 56-57: 493-498
    149. S. Mukaigawa, S. Kanno, K. Takaki, T. Fujiwara. Measurements of heat flux distribution toward substrate by means of the LiNbO3 interferometer, and electron density in a capacitively coupled rf discharge plasma. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2003, 206: 777-781
    150. S. A. Voronin, M. R. Alexander, J. W. Bradley. Time-resolved mass and energy spectral investigation of a pulsed polymerising plasma struck in acrylic acid. Surface and Coatings Technology. 2006, 201 (3-4): 768-775
    151. M. Dhayal, J W. Bradley. Time-resolved electric probe measurements in the pulsed-plasma polymerisation of acrylic acid. Surface and Coatings Technology. 2005, 194 (1): 167-174
    152. Z. M. Zeng, T. K. Kwok, X. B. Tian, B. Y. Tang, P. K. Chu. Plasma immersion ion implantation into inner and outer races of industrial bearings. Surface and Coatings Technology. 1999, 120-121: 663-667
    153. W. Ensinger, T. Ho¨chbauer, B. Rauschenbach. Treatment uniformity of plasma immersion ion implantation studied with three-dimensional model systems. Surface and Coatings Technology. 1998, 103-104: 218-221
    154. W. Ensinger, K. Volz, T. Ho¨chbauer. Three-dimensional dose uniformity of plasma immersion ion implantation shown with the example of macro-trenches. Surface and Coatings Technology. 1999, 120-121: 347-352
    155. Z. M. Zeng, R. K.Y. Fu, X. B. Tian, P. K. Chu. Plasma immersion ion implantation of industrial gears. Surface and Coatings Technology. 2004, 186: 260-264
    156. W. Ensinger, U, K. Volz, T. H¨ochbauer. Plasma immersion ion implantation of complex-shaped objects: an experimental study on the treatment homogeneity. Surface and Coatings Technology. 2000, 128-129: 265-269
    157. X. B. Tian, S. Q. Yang, Y. X. Huang, C. Z. Gong, G. C. Xu, R. K.Y. Fu, P. K. Chu. Two-dimensional numerical simulation of non-uniform plasma immersion ion implantation. Surface and Coatings Technology. 2004, 186: 47-52
    158. Y. X. Huang, X. B. Tian, S. Q. Yang, R. K.Y. Fu, P. K. Chu. Particle-in-cell numerical simulation of non-uniform plasma immersion ion implantation. Surface and Coatings Technology. 2007, 201: 5458-546
    159. H. Bender, J. Brutscher, W. Ensinger, R. Günzel, J. Halder, H. Klein, B. Rauschenbach, J. Sch?fer, B. Seiler, R. Thomae. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1996, 113 (1-4): 266-269
    160. R. K. Y. Fu, D. L. Tang, G.. J. Wan, P. K. Chu. Enhancement of corrosion resistance of AISI 420 stainless steels by nitrogen and silicon plasmaimmersion ion implantation. Surface and Coatings Technology. 2007, 201 (9-11): 4879-4883
    161. X. B. Tian, S. C. H. Kwok, L. P. Wang, P. K. Chu. Corrosion resistance of AISI304 stainless steel treated by hybrid elevated-temperature, low-voltage/ high-voltage nitrogen plasma immersion ion implantation. Materials Science and Engineering A. 2002, 326 (2): 348-354
    162. X. B. Tian, Y. X. Leng, T. K. Kwok, L. P. Wang, B. Y. Tang, P. K. Chu. Hybrid elevated-temperature, low/high-voltage plasma immersion ion implantation of AISI304 stainless steel. Surface and Coatings Technolo- gy. 2001, 135 (2-3): 178-183
    163. J. F. Lin, K. W. Chen, C. C. Wei, C. F. Ai. The effects of differing nitrogen implantation conditions on penetration depth, mechanical properties, and tribological behavior of plasma-nitrided AISI 304 stainless steel. Surface and Coatings Technology. 2005, 197 (1): 28-38
    164. C. Anandan, V. K. W. Grips, V. E. Selvi, K. S. Rajam. Electrochemical studies of stainless steel implanted with nitrogen and oxygen by plasma immersion ion implantation. Surface and Coatings Technology. 2007, 201 (18): 7873-7879
    165. P. Saravanan, V. S. Raja, S. Mukherjee. Effect of plasma immersion ion implantation of nitrogen on the wear and corrosion behavior of 316LVM stainless steel. Surface and Coatings Technology. 2007, 201 (19-20): 8131- 8135
    166. A. M. A. El-Rahman, F. M. El-Hossary, N. Z. Negm, F. Prokert, E. Richter, W. M?ller. Influence of gas pressure and substrate temperature on PIII nitrocarburizing process of AISI 304 stainless steel. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2004, 226 (4): 499-506
    167. R. López-Callejas, R. Valencia-Alvarado, S. R. Barocio, A. E. Mu?oz-Castro, A. Mercado-Cabrera, O. G. Godoy-Cabrera, A. de la Piedad-Beneitez. Dependence of nitrogen implantation by the PIII process at low energy on pressure and temperature. Vacuum. 2005, 78 (2-4): 115-118
    168. N. Saklako?lu, ?. E. Saklako?lu, K. T. Short, G.. A. Collins. Tribological behavior of PIII treated AISI 316 L austenitic stainless steel againstUHMWPE counterface. Wear. 2006, 261 (3-4): 264-268
    169. D. Manova, D. Hirsch, E. Richter, S. M?ndl, H. Neumann, B. Rauschenbach. Microstructure of nitrogen implanted stainless steel after wear experiment. Surface and Coatings Technology. 2007, 201 (19-20): 8329-8333
    170. G. Willmann, H. J. Fruh. Wear characteristics of sliding pairs of zirconia (Y-TZP) for hip endop rostheses. Biomaterials. 1996, 17 (2): 2157-2162
    171. S. M?ndl, D. Manova, H. Neumann, M. T. Pham, E. Richter, B. Rauschenbach. Correlation between PIII nitriding parameters and corrosion behaviour of austenitic stainless steels. Surface and Coatings Technolo- gy. 2005, 200 (1-4): 104-108
    172.梁成浩,郭亮,陈婉. Hank’s人工模拟体液中离子注氮对4种植入金属材料腐蚀行为的影响.稀有金属材料与工程. 2002, 31 (4): 274-278
    173. K. R. M. Rao, S. Mukherjee, S. K. Roy, E. Richter, W. M?ller, I. Manna. Plasma immersion ion implantation of nitrogen on austenitic stainless steel at variable energy for enhanced corrosion resistance. Surface and Coatings Technology. 2007, 201 (9-11): 4919-4921
    174. I. E. Saklakoglu, N. Saklakoglu, K. T. Short, G. A. Collins. Characterization of austenitic stainless steel after plasma immersion nitrogen and carbon implantation. Materials and Design. 2007, 28 (5): 1657-1663
    175. A. M. Abd El-Rahman, F. M. El-Hossary, N. Z. Negm, F. Prokert, E. Richter, W. M?ller. Influence of gas pressure and substrate temperature on PIII nitrocarburizing process of AISI 304 stainless steel. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2004, 226 (4): 499-506
    176. S. M?ndl, G. Thorwarth, P. Huber, S. Schoser, B. Rauschenbach. Comparison of trenches treated in PIII-systems. Surface and Coatings Technology. 2001, 139 (1): 81-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700