医用钛表面的电化学构筑及生物性能的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医用金属钛及其合金的表面改性和性能优化一直是生物材料研究领域的焦点之一。虽然钛及其合金具有较好的生物相容性,但缺乏生物活性,亟需通过表面修饰改性使之具备诱导骨组织长入并与植入部位实现骨性结合的能力。医用钛表面涂覆羟基磷灰石(HA)是一种重要的生物活性改性优化技术。商用等离子体喷涂法存在高温相变分解及无法实现复杂形状基体的均匀涂覆等难以克服的技术缺点,电化学沉积技术作为一种温和的非直线涂覆技术,可避免等离子体喷涂技术中HA相变分解等问题,有望发展成为一种重要的替代表面技术。然而,一般电化学沉积的HA涂层结构疏松,与基底结合力较弱,且仍存在由于基体钛或钛合金的热膨胀系数和HA的热膨胀系数差异较大,所导致的界面物理性能突变,应力集中的问题。TiO_2的热膨胀系数8.7×10~(-6)K~(-1),介于Ti(8.2×10~(-6)K~(-1))和HA(15×10~(-6)K~(-1))之间。钛基阳极氧化和水热制备TiO_2,操作简单,条件温和,也可实现在复杂形状基体表面的均匀涂覆,涂层结合强度高,能够阻挡体液对钛基体的生理腐蚀。另一方面,运用阳极氧化法或水热法对钛基体表面进行纳米化处理,构筑有序结构,可为进一步羟基磷灰石的电沉积提供定向成核和生长的模板。
     本论文主要研究内容有:a)通过对医用钛金属的设计和改性,发展阳极氧化和水热处理的方法,在钛基体表面构筑纳米结构的TiO_2膜层;b)基于仿生学的观点,发展电化学沉积方法,在钛基TiO_2膜层表面实现可控制备有序结构、组分和结构确定的HA膜层,制备具有良好力学性能和优异生物性能的仿生骨膜层;c)运用各种物理化学和细胞培养方法对经电化学新技术改性的生物材料的理化性质、力学性能和生物学特性进行考察,探明材料表面的构—性关系。主要研究结果如下:
     1.通过两步电沉积(脉冲—恒流)法,首次实现了在TiO_2纳米管内和纳米管阵列膜表面定向沉积HA纳米晶,研究表明,TiO_2纳米管内有大量纯HA晶体沉积,较低的电流密度下,HA颗粒主要在TiO_2纳米管管间和管内壁定向沉积。控制电化学沉积参数,制备了不同结构形貌的纳米羟基磷灰石膜层,并跟踪观测了电化学沉积过程的纳米羟基磷灰石膜层形貌结构变化。还采用划痕实验对材料力学性能进行了测试,应用Tafel极化曲线和电化学阻抗技术对表面经过电化学改性的医用钛金属在Tyrode's生理溶液中的耐蚀性进行了评价。
     2.采用水热法加后处理,改变反应条件,在医用钛表面制备了两种不同微—纳米形貌的多孔锐钛矿型TiO_2膜层。发展了结构有序HA的电沉积制备技术,在不同水热处理所得的TiO_2膜层表面构筑了HA纳米棒膜层,成功地对医用钛金属表面进行了生物活性修饰,并考察了不同沉积时间对HA膜层性能的影响。细胞实验表明,HA/TiO_2复合膜层可显著增强MG63细胞的粘附和生长,其生物相容性明显优于单一的TiO_2膜层。且随着HA/TiO_2复合膜层中HA含量的增加,其生物相容性和生物活性增强,HA晶粒结构和尺度对细胞伪足的伸展影响明显。
     3.采用乳液聚合法和分散聚合法,通过改变反应参数,制备了0.1~5μm不同粒径的单分散的聚苯乙烯(PS)微球。结合电化学阳极氧化和表面磺化法分别对金属钛和聚合物微球进行表面改性,使微球在钛表面组装成规整的模板。在组装了不同粒径磺化聚苯乙烯(SPS)微球的TiO_2纳米管阵列表面电沉积HA膜层,并通过退火处理,使羟基磷灰石膜层充分陶瓷化,并且进一步增强羟基磷灰石膜层与基底的结合力,同时去除SPS微球,成功获得到了均一致密的微—纳米有序多孔HA膜层。形成的HA膜层一级结构为微米尺度排列有序的孔结构,电化学沉积的HA纳米晶须形成纳米尺度的二级结构。膜层内部孔洞间完全贯通,这种结构一方面能为骨生长因子、成骨细胞等生物活性物质提供几何空间和相对稳定的微环境;另一方面,有利于体液和营养物质在材料内部流动,与体循环连通,增加材料与体液的接触面积,加速材料与组织的融合过程。且HA颗粒在TiO_2纳米管管内和管间沉积,进一步改善界面间的结合强度。细胞培养实验表明,多孔HA膜层可显著增强细胞的黏附与生长,其生物相容性优于直立HA膜层和TiO_2纳米管阵列。这种生物活性的显著差异与多孔HA膜层独特的微—纳米多级结构以及与骨类似的组分密切相关。
Surface modification and functional optimization of medical titanium(Ti) and its alloys are one of the most focal topics in biomaterials.Titanium and its alloys have no sufficient bioactivity themselves,it is necessary to conduct surface modifications to endow them with abilities of induction of bone tissue ingrowth and osseointegration at the implantation site.Preparing hydroxyapatite(HA) coating on titanium substrate is an important technology to improve the bioactivity,and plasma spraying technique has been commercially used to deposit HA coating on Ti surface.However the heat effect during the coating process unavoidably causes decomposition of HA,and the HA can not be uniformly coated on the Ti substrates with complicated shape.As a moderate non line coating technology,the electrodeposition method is proposed as one of the most promising alternatives.However,the HA coating obtained by electrodeposition remains loose structure and poor bonding with the substrate,and a great difference between the coefficients of thermal expansion(CTE) of Ti substrate and HA may result in sudden changes of physical property and stress concentration on their interface.The coefficient of thermal expansion of TiO_2 is 8.7×10~(-6) K~(-1),between Ti(8.2×10~(-6) K~(-1)) and HA(15×10~(-6) K~(-1)).So proper anodic oxidation or hydrothermal treatment for Ti has distinct advantages including simple and moderate preparation conditions,and facile to obtain a uniform coating on the substrates with complicated shape.The bonding strength between Ti substrate and prepared TiO_2 coating is high, ant it is able to resist its physiological corrosion in body fluids.On the other hand,the nano-structured TiO_2 derived form anodic oxidation or hydrothermal method on Ti is possible to provide oriented nucleation and growth template with an ordered structure for electrodeposition of HA.
     The main works in this thesis includes:a) development of anodic oxidation and hydrothermal method to construct nano-structured TiO_2 coatings on titanium substrate; b) controllable electrodeposition to prepare HA coating with ordered structure and definite composition on Ti-based TiO_2 film,and to obtain a biomimetic bone film of HA/TiO_2 with good mechanical properties and excellent biological properties,based on the views of bionics;c) the physicochemical,mechanical and biological characteristics of the coatings prepared by electrochemical methods were studied to learn the relationship of structure and properties of materials.The main findings and progresses are as follows:
     1.The hydroxyapatite nanocrystals were electrochemically-oriented deposited inside and onto the TiO_2 nanotubes by using the two-step electrodeposition for the first time.It is indicated that,thers is a large number of pure HA crystals deposited in TiO_2 nanotubes.At a lower cathodic current density,HA was mainly deposited between and on the walls of the TiO_2 nanotubes. Controlling electrochemical deposition parameters,the nano-HA coatings with different structures were prepared.And the morphology and structural changes of the nano-HA in the electrodeposition process was studied by SEM and XRD observations.The mechanical properties of the prepared materials were tested by the scratch analysis of nanoindentation.Tafel polarization and electrochemical impedance spectroscopy(EIS) were applied to study the electrochemical corrosion behavior of the modified medical titanium in Tyrode's physiological solution.
     2.Two different micro-nano structured anatase TiO_2 on medical titanium surface were prepared by hydrothermal method and post-treatment.The electrodeposition was developed to construct an orderly structured HA coating on the different TiO_2 films prepared by hydrothermal method.The effect of the deposition parameters on HA coating was studied.It is indicated, from in vitro cell culture,that the HA/TiO_2 composite is able to significantly enhance the ability of MG63 cell to adhere and grow on the coating,and its biocompatibility is superior to a single layer of TiO_2.And with increasing of HA in HA/TiO_2 composite coating,the biocompatibility and bioactivity are clearly improved.The HA grains has a significant impact on the extension of pseudopodia of cells.
     3.Using emulsion polymerization and dispersion polymerization,the monodisperse PS microspheres with different sizes of 0.1~5μm in diameter were prepared.Combination of anodic oxidation of titanium and sulfonation of the PS microspheres surface,the PS microspheres were successfully self-assembled on the prepared TiO_2 nanotube arrays surface.The uniform micro-nano structured interconnected porous HA was obtained by electrodepositing HA coating on TiO_2 nanotube arrays,through the templates of self-assembled and sulfonated PS(SPS) microspheres,and then annealing to remove the SPS microspheres and to further increase the bonding strength of the substrate and the coatings.The primary structure of prepared HA coating shows an ordered micron-scale pore structure derived from SPS microspheres,and the secondary structure is the HA nano-whisker formed from the electrodeposition of HA.And the HA coating has a completely interconnective structure,that is able to provide the geometric space and a relatively stable microenvironment for bioactive substances such as bone growth factors and osteoblasts.On the other hand,this structure is conducive to the flow of body fluids and nutrients within the material,and to increase the contact area between the material and the body fluids,which is helpful to accelerate the integration process of materials and organizations.The HA nanoparticles deposited inside and between the TiO_2 nanotubes will not only further improve the bonding strength at the interface,but also enhance the corrosion resistance of materials against the body fluids.In vitro cell culture showed that the prepared porous HA coatings are able to significantly enhance the ability of MG63 cell to adhere and grow on the surface.The biocompatibility and bioactivity of the porous HA coating is superior to the vertically oriented HA coating and TiO_2 nanotube arrays as well.This significant differences of biological activity is closely related to their unique two-level ordered structure of porous HA coating on medical Ti surfaces.
引文
[1]顾汉卿,徐国风,生物医学材料学[M],天津:天津科技翻译出版公司,1993:8.
    [2]李玉宝,生物医学材料[M],北京:化学工业出版,2003:1.
    [3]Hench,L.L.,Splinter,R.J.,Allen,W.C.,Greenlee,T.K.,Bonding mechanisms at the interface of ceramic prosthetic materials[J],J.Biomed.Mater.Res.Symp.,1971,5(6):117-141.
    [4]Dee,K.C.,Puleo,D.A.,Bizios,R.,An introduction to tissue-biomaterial interactions [M],New York:John Wiley & Sons,2002.
    [5]张超武,杨海波.生物材料概论[M].北京:化学工业出版社,2006:68.
    [6]Arnould,C.,Volcke,C.,Lamarque,C.,Thiry,P.A.,Delhalle,J.,Mekhalif,Z.,Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid:A coating for hydroxyapatite growth[J],J.Colloid Interface Sci.,2009,336(2):497-503.
    [7]Schlegel,P.,Hayes,J.S.,Frauchiger,V.M.,Gasser,B.,Wieling,R.,Textor,M.,Richards,R.G.,An In Vivo Evaluation of the Biocompatibility of Anodic Plasma Chemical (APC) Treatment of Titanium With Calcium Phosphate[J],J.Biomed.Mater.Res.B,2009,90B(1):26-34.
    [8]Ni Y.X.,Feng B.,Wang J.X.,Lu X.,Qu S.X.,Weng J.,Decyl bis phosphonate-protein surface modification of Ti-6Al-4V via a layer-by-layer technique[J],J.Mater.Sci.,2009,44(15):4031-4039.
    [9]Ewald,A,Ihde,S.,Salt impregnation of implant materials[J],Oral Surg.Oral Med.Oral Pathol.Oral Radiol.Endod.,2009,10(6):790-795.
    [10]Hauser,J.,Krueger,C.D.,Halfmann,H.,Awakowicz,P.,Koeller,M.,Esenwein,S.A.,Surface modification of metal implant materials by low-pressure plasma treatment[J],BIOMEDIZINISCHE TECHNIK,2009,54(2):98-106.
    [11]Moseke,C.,Braun,W.,Ewald,A.,Electrochemically deposited Ca(OH)_2 coatings as a bactericidal and osteointegrative modification of Ti implants[J],Adv.Eng.Mater.,2009,11(3):B1-B6.
    [12]Geetha,M.,Singh,A.K.,Asokamani,R.,Gogia,A.K.,Ti based biomaterials,the ultimate choice for orthopaedic implants-A review[J],Prog.Mater Sci.,2009,54(3):397-425.
    [13]de Assis,A.F.,Beloti,M.M.,Crippa,G.E.,de Oliveira,P.T.,Morra,M.,Rosa,A.L.,Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type Ⅰ-coated titanium surface[J],Clin.Oral Implants Res.,2009,20(3):240-246.
    [14]Liu H.Y.,Wang X.J.,Wang L.P.,Wang X.F.,Ai H.J.,Influence of Surface Modification of Ti by Fluorine Ion-Implantation on Formation and Expression of Collagen-I on Oseteoblast[J],Acta Metall.,2008,44(12):1485-1490.
    [15]Wang G.X.,Shen Y.,Zhang H.,Quan X.J.,Yu Q.S.,Influence of surface micro-roughness by plasma deposition and chemical erosion followed by TiO_2 coating upon anti-coagulation,hydrophilicity,and corrosion resistance of NiTi alloy stent[J],J.Biomed.Mater.Res.A,2008,85A(4):1096-1102.
    [16]Park,I.S.,Choi,U.J.,Yi,H.K.,Park,B.K.,Lee,M.H.,Bae,T.S.,Biomimetic apatite formation and biocompatibility on chemically treated Ti-6Al-7Nb alloy[J],Surf.Interface Anal.,2008,40(1):37-42.
    [17]Zhao J.M.,Tsuru,K.,Hayakawa,S.,Osaka,A.,Modification of Ti implant surface for cell proliferation and cell alignment[J],J.Biomed.Mater.Res.A,2008,84A(4):988-993.
    [18]Zhu L.,Ye X.,Tang G.X.,Zhao N.M.,Gong Y.D.,Zhao Y.L.,Zhao J.Z.,Zhang X.F.,Biomimetic coating of compound titania and hydroxyapatite on titanium[J],J.Biomed.Mater.Res.A,2007,83A(4):1165-1175.
    [19]Popescu,S.,Demetrescu,I.,Sarantopoulos,C.,Gleizes,A.N.,Iordachescu,D.,The biocompatibility of titanium in a buffer solution:compared effects of a thin film of TiO_2deposited by MOCVD and of collagen deposited from a gel[J],J.Mater.Sci.-Mater.Med.,2007,18(10):2075-2083.
    [20]Hu R.,Lin C.J.,Shi H.Y.,Wang H.,Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system[J],Mater.Chem.Phys.,2009,115(2-3):718-723.
    [21]Wang H.,Lin C.J.,Hu R.,Zhang F.,Lin L.W.,A novel nano-micro structured octacalcium phosphate/protein composite coating on titanium by using an electrochemically induced deposition[J],J.Biomed.Mater.Res.A,2008,87A(3):698-705.
    [22]Hu R.,Lin C.J.,Shi H.Y.,A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate[J],J.Biomed.Mater.Res.A,2007,80A(3):687-692.
    [23]Lopez-Heredia M.A.,Weiss P.,Layrolle P.,An electrodeposition method of calcium phosphate coatings on titanium alloy[J],J.Mater.Sci.:Mater.Med.,2007,18(2):381-390.
    [24]胡仁,时海燕,林理文,庄燕燕,林昌健,电化学沉积羟基磷灰石过程晶体生长行为[J],物理化学学报,2005,21(2):197-201.
    [25]Yousefpour,M.,Afshar,A.,Yang X.D.,Li X.D.,Yang B.C.,Wu Y.,Chen J.Y.,Zhang X.D.,Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium[J],J.Electroanal.Chem.,2006,589(1):96-105.
    [26]刘宣勇,生物医用钛材料及其表面改性[M],北京:化学工业出版社,2009:44.
    [27]梁芳慧,周廉,钛和钛合金生物活化研究现状[J],稀有金属材料与工程,2003,32(4):241-245.
    [28]Henry,P.J.,Comparative surface analysis of two osseointegrated implant systems[J].Int J Oral Maxillofac Implants,1987,2(1):23-27.
    [29]Lausmaa,J.,Kasemo,B.,Mattsson,H.,Surface spectroscopic characterization of titanium implant materials[J],Appl.Surf.Sci.,1990,44:133-146.
    [30]Buser,D.,Nydegger,T.,Oxland,T.,Cochran,D.L.,Schenk,R.K.,Hirt,H.P.,D.Sn(?)tivy,Nolte,L.P.,Interface shear strength of titanium implants with a sandblasted and acid-etched surface:A biomechanical study in the maxilla of miniature pigs[J],J.Biomed.Mater.Res.,1999,45(2):75-83.
    [31]Wennerberg,A.,Albrektsson,T.,Johansson,C.,Andersson,B.,Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography[J],Biomaterials,1996,17(1):15-22.
    [32]Degasne,I.,Basl(?),M.F.,Demais,V.,Hur(?),G.,Lesourd,M.,Grolleau,B.Mercier,L.,Chappard,D.,Effects of roughness,fibronectin and vitronectin on attachment,spreading,and proliferation of human osteoblast-like cells(Saos-2) on titanium surfaces[J].,Calcified.Tissue Int.,1999,64(6):499-507.
    [33]Wang Y.,Li C.G.,Tian W.,Yang Y.,Laser surface remelting of plasma sprayed nanostructured Al_2O_3-13wt%TiO_2 coatings on titanium alloy[J],Appl.Surf.Sci.,2009,255(20):8603-8610.
    [34]赵晓兵,刘宣勇,陈志刚,丁传贤,等离子体喷涂氧化钛涂层的生物活性研究[J].无机材料学报,2008,23(5):1021-1026.
    [35]Guizzardi,S.,Galli,C.,Martini,D.,Belletti,S.,Tinti,A.,Raspanti,M.,Taddei,P.,Ruggeri,A.,Scandroglio,R.,Different titanium surface treatment influences human mandibular osteoblast response[J],J.Periodontol.,2004,75(2):273-282.
    [36]Lu Y.R,Li M.S.,Li S.T.,Wang Z.G.,Zhu R.F.,Plasma-sprayed hydroxyapatite plus titania composite bond coat for hydroxyapatite coating on titanium substrate[J],Biomaterials,2004,25(18):4393-4403.
    [37]Cannillo,V.,Colmenares-Angulo,J.,Lusvarghi,L.,Pierli,F.,Sampath,S.,In vitro characterisation of plasma-sprayed apatite/wollastonite glass-ceramic biocoatings on titanium alloys[J],J.Eur.Ceram.Soc.,2009,29(9):1665-1677.
    [38]Liu X.Y.,Ding C.X.,Plasma sprayed wollastonite/TiO_2 composite coatings on titanium alloys[J],Biomaterials,2002,23(20):4065-4077.
    [39]Lee T.M.,Yang C.Y.,Chang E.,Tsai,R.S.,Comparison of plasma-sprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings:in vivo study[J],J.Biomed.Mater.Res.A,2004,71A(4):652-660.
    [40]Li H.,Li Z.X.,Li H.,Wu Y.Z.,Wei Q.,Characterization of plasma sprayed hydroxyapatite/ZrO_2 graded coating[J],Mater.Design,2009,30(9):3920-3924.
    [41]朱庆霞,冯青,汪和平,羟基磷灰石涂层的制备及其研究进展[J],中国陶瓷,200844(3):34-38.
    [42]任强,武秀兰,钛基羟基磷灰石涂层制备技术的研究进展[J],中国陶瓷,2004,40(1):35-37.
    [43]Lewis,G.,Hydroxyapatite-coated bioalloy surfaces:current status and future challenges [J].,Bio-Med.Mater.Eng.,2000,10(3-4):157-88.
    [44]Yang Y.Z.,Kim,K.H.,Ong,J.L.,A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying[J],Biomaterials,2005,26(3):327-337.
    [45]Shi J.Z.,Chen,C.Z.,Yu,H.J.,Zhang,S.J.,The effect of process conditions on the properties of bioactive films prepared by magnetron sputtering[J],Vacuum,2008,83(2):249-256.
    [46]Wolke,J.G.,de Groot,K.,Jansen,J.A.,In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings[J],J.Biomed.Mater.Res.,1998,39(4):524-530.
    [47]Cooley,D.R.,Van Dellen,A.F.,Burgess,J.O.,Windeler,A.S.,The advantages of coated titanium implants prepared by radiofrequency sputtering from hydroxyapatite[J],J.Prosthet.Dent.,1992,67(1):93-100.
    [48]杨梅,邵忠财,崔作兴,钛基生物陶瓷涂层制备方法评述[J],有色矿冶,2007,23(4):58-61.
    [49]陈惠敏,等离子体浸没离子注入(PⅢ)在材料表面改性中的应用及发展[J],表面技术,2008,37(5):79-81.
    [50]黄楠,肖静,等离子体离子注入钛基植入材料表面改性研究[A],第五届全国生物材料学术会议论文集[C],广州:中国生物医学工程学会,1994:76-79.
    [51]Budzynski,P.,Youssef,A.A.,Sielanko,J.,Surface modification of Ti-6Al-4V alloy by nitrogen ion implantation[J],Wear,2006,261(11-12):1271-1276.
    [52]Krupa,D.,Baszkiewicz,J.,Jezierska,E.,Mizera,J.,Wierzchon,T.,Barcz,A.,Fillit,R.,Effect of nitrogen-ion implantation on the corrosion resistance of OT-4-0 titanium alloy in 0.9%NaCl environment[J],Surf.Coat.Technol.,1999,111(1):86-91.
    [53]Krupa,D.,Baszkiewicz,J.,Kozubowski,J.A.,Barcz,A.,Sobczak,J.W.,Bili(?)iski,A.,Lewandowska-Szumiet,M.D.,Rajchel,B.,Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium[J],Biomaterials,2001(15),22:2139-2151.
    [54]Sobiecki,J.R.,Wierzcho(?),T.,Rudnicki,J.,The influence of glow discharge nitriding,oxynitriding and carbonitriding on surface modification of Ti-1Al-1Mn titanium alloy[J],Vacuum,2001,64(1):41-46.
    [55]Milella,E.,Cosentino,F.,Licciulli,A.,Massaro,C.,Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process[J],Biomaterials,2001,22(11):1425-1431.
    [56]Allen,M.,Myer,B.,Rushton,N.,In vitro and in vivo investigations into the biocompatibility of diamond-like carbon(DLC) coatings for orthopedic applications[J],J.Biomed.Mater.Res.A.,2001,58(3):319-328.
    [57]Jones,M.I.,McColl,I.R.,Grant,D.M.,Parker,K.G.,Parker,T.L.,Protein adsorption and platelet attachment and activation,on TiN,TiC,and DLC coatings on titanium for cardiovascular applications[J],J.Biomed.Mater.Res.A.,2000,52(2):413-421.
    [58]Allen,M.,Law,F.,Rushton,N.,The effects of diamond-like carbon coatings on macrophages,fibroblasts and osteoblast-like cells in vitro[J],Clin Mater.,1994,17(1):1-10.
    [59]Jones,M.I.,McColl,I.R.,Grant,D.M.,Parker,K.G.,Parker,T.L.,Haemocompatibility of DLC and TiC-TiN interlayers on titanium[J],Diamond Relat.Mater.,1999,8(2-5):457-462.
    [60]Ianno,N.J.,Dillon,R.O.,Ahbad,A.,All,A.,Thin Solid Films,1995,270(1-2):275-278.
    [61]蒋滔,程祥荣,王贻宁,童华,胡继明,不同表面处理方法对纯钛表面形貌及成分的影响[J],生物医学工程学杂志,2006,23(4):814-817.
    [62]侯豫,王永,张丽,吴承龙,人牙周膜细胞在双氧水处理后纯钛表面的活性[J],贵阳医学院学报,2008,33(5):453-458.
    [63]王永,陈虹羽,张军梅,贾莹,何建国,经双氧水处理后的纯钛片对成骨细胞表面附着及增殖活性的影响[J],山东医药,2008,48(17):12-13.
    [64]Kim,H.M.,Miyaji,F.,Kokubo,T.,Nakamura,T.,Preparation of bioactive Ti and its alloys via simple chemical surface treatment[J],J.Biomed.Mater.Res.A.,1996,32(3):409-417.
    [65]Tamilselvi,S.,Raghavendran,H.B.,Srinivasan,P.,Rajendran,N.,In vitro and in vivo studies of alkali- and heat-treated Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys for orthopedic implants[J],J.Biomed.Mater.Res.A.,2009,90A(2):380-386.
    [66]Krupa,D.,Baszkiewicz,J.,Mizera,J.,Borowski,T.,Barcz,A.,Sobczak,J.W.,Bili(?)ski,A.,Lewandowska-Szumiel,M.,Wojew(?)dzka,M.,Effect of the heating temperature on the corrosion resistance of alkali-treated titanium[J],J.Biomed.Mater.Res.A.,2009.88A(3):589-598.
    [67]Huang P.,Zhang Y.,Xu K.W.,Han Y.,Surface modification of titanium implant by microarc oxidation and hydrothermal treatment[J],J.Biomed.Mater.Res.A.,2004,70B(2):187-190.
    [68]Ban,S.,Effect of alkaline treatment of pure titanium and its alloys on the bonding strength of dental veneering resins.[J],J.Biomed.Mater.Res.A.,2003,66A(1):138-145.
    [69]Lee,B.H.,Kim,Y.D.,Shin,J.H.,Lee,K.H.,Surface modification by alkali and heat treatments in titanium alloys[J],J.Biomed.Mater.Res.A.,2002,61(3):466-473.
    [70]张悦,夏海斌,碱热处理制备生物活性钛种植体[J],国际口腔医学杂志,2007,34(3):216-219.
    [71]魏建华,刘宝林,付涛,徐可为,王新木,马威,表面形貌及碱热处理对纯钛表面在DMEM培养液中诱导磷灰石沉积的影响[J],中国口腔颌面外科杂志,2003,1(1):47-50.
    [72]Rani,V.V.D.,Manzoor,K.,Menon,D.,Selvamurugan,N.,Nair,S.V.,The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response [J],Nanotechnology,2009,20(19):195101.
    [73]Nishio,K.,Neo,M.,Akiyama,H.,Nishiguchi,S.,Kim,H.M.,Kokubo,T.,Nakamura,T.,The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells[J],J.Biomed.Mater.Res.A.,2000,52(4):652-661.
    [74]Nishiguchi,S.,Kato,H.,Neo,M.,Oka,M.,Kim,H.M.,Kokubo,T.,Nakamura,T.,Alkali-and heat-treated porous titanium for orthopedic implants[J],J.Biomed.Mater.Res.A.,2001,54(2):198-208
    [75]庄燕燕,胡仁,陈菲,时海燕,林昌健,钛植入体表面生物化学改性的研究进展[J],生物医学工程学杂志,2005,22(3):618-621.
    [76]吴倩雯,郑元俐,黄慧,钛种植体表面生物化学改性的研究进展[J],口腔颌面修复学杂志,2009,10(2):116-118.
    [77]Xiao S.J.,Textor,M.,Spencer,N.D.,Covalent attachment of cell-adhesive,(Arg-Gly-Asp)-containing peptides to titanium surfaces[J],Langmuir,1998,14(19):5507-5516.
    [78]Holmlin,R.E.,Chen X.X.,Chapman,R.G.,Takayama,S.,Whitesides,G.M.,Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer[J],Langmuir,2001,17(9):2841-2850.
    [79]Ostuni,E.,Chapman,R.G.,Liang,M.N.,Meluleni,G.,Pier,G.,Ingber,D.E.,Whitesides,G.M.,Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells[J],Langmuir,2001,17(20):6336-5343.
    [80]冯波,翁杰,屈树新,骨植入材料表面生物化改性研究进展,功能材料,2004,35(Suppl.):2321-2324.
    [81]Puleo,D.A.,Kissling,R.A.Sheu,M.S.,A technique to immobilize bioactive proteins,including bone morphogenetic protein-4(BMP-4),on titanium alloy[J],Biomaterials,2002,23(9):2079-2087.
    [82]赖跃坤,孙岚,左娟,林昌健,氧化钛纳米管阵列制备及形成机理[J],物理化学学报,2004,20(9):1063-1066.
    [83]Zhuang H.F.,Lin C.J.,Lai Y.K.,Sun L.,Li J.,Some critical structure factors of titanium oxide manotube array in its photocatalytic activity[J],Environ.Sci.Technol.,2007,41(13):4735-4740.
    [84]Cho,S.J.,Mun,K.S.,Yang D.J.,Park,H.,Park,Y.J.,Kim J.O.,Choi W.Y.,Titanium oxide nanotubes anodized in aqueous and non-aqueous electrolytes[J],J.Ceram.Process.Res.,2008,9(5):449-451.
    [85]Kar,A.,Raja,K.S.,Misra,M.,Electrodeposition of hydroxyapatite onto nanotubular TiO_2 for implant applications[J],Surf.Coat.Technol.,2006,201(6):3723-3731.
    [86]Neupane,M.P.,Kim,Y.K.,Park,I.S.,Lee,S.J.,Lee,M.H.,Bae,T.S.,Effect of electrolyte pH on the structure and in vitro osteoblasts response to anodic titanium oxide[J],Met.and Mater.Int.,2008,14(5):607-613.
    [87]Lai Y.K.,Lin C.J.,Huang J.Y.,Zhuang H.F.,Sun L.,Nguyen,T.,Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO_2 films[J],Langmuir,2008,24(8):3867-3873.
    [88]Gong D.W.,Grimes,C.A.,Varghese,O.K.,Chen Z.,Hu W.C.,Dickey,E.C.,Titanium oxide nanotube arrays prepared by anodic oxidation[J],J.Mater.Res.,2001,16(12):3331-3334.
    [89]孙岚,宫娇娇,庄惠芳,林昌健,TiO_2纳米管阵列光催化降解苯酚[J],精细化工,2007,24(4):317-320.
    [90]Widu,F.,Drescher,D.,Junker,R.,Bourauel,C.,Corrosion and biocompatibility of orthodontic wires[J],J.Mater.Sci.-Mater.Med.,1999,10(5):275-281.
    [91]Yang C.L.,Chen F.L.,Chen S.W.,Anodization of the dental arch wires[J],Mater.Chem.Phys.,2006,100(2-3):268-274.
    [92]Lai Y.K.,Lin C.J.,Wang H.,Huang H.Y.,Zhuang H.F.,Sun L.,Superhydrophilic-superhydrophobic micropattern on TiO_2 nanotube films by photocatalytic lithography[J],Electrochem.Commun.,2008,10(3):387-391.
    [93]Wong M.H.,Cheng F.T.,Man H.C.,Characteristics,apatite-forming ability and corrosion resistance of NiTi surface modified by AC anodization[J],Appl.Surf.Sci.,2007,253(18):7527-7534.
    [94]Popat,K.C.,Leoni,L.,Grimes,C.A.,Desai,T.A.,Influence of engineered titania nanotubular surfaces on bone cells[J],Biomaterials,2007,28(21):3188-3197.
    [95]Shirkhanzadeh,M.,Bioactive calcium phosphate coatings prepared by electrodeposition [J],J.Mater.Sci.Lett.,1991,10(23):1415-1417.
    [96]憨勇,徐可为,羟基磷灰石生物陶瓷涂层制备方法评述[J],硅酸盐通报,1997,(5):47-50.
    [97]韩会娟,张帆,张亚菲,林昌健,电泳沉积羟基磷灰石/碳纳米管复合涂层[J],厦门大学学报(自然科学版),2006,45(5):593-595.
    [98]Lin C.J.,Han H.J.,Zhang F.,Li A.M.,Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications[J],J.Mater.Sci.-Mater.Med.,2008,19(7):2569-2574.
    [99]Redepenning,J.,Mclsaac,J.P.,Electrocrystallization of brushite coatings on prosthetic alloys[J],Chem.Mater.,1990,2(6):625-627.
    [100]Shirkhanzadeh,M.,Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes[J],J.Mater.Sci.-Mater.Med.,1998,9(2):67-72.
    [101]Ban,S.,Maruno,S.,Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid[J],Biomaterials,1995,16(13):977-981.
    [102]Ban,S.,Maruno,S.,Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid[J],Biomaterials,1998,19(14):1245-1253.
    [103]Manso,M.,Jimenez,C.,Morant,C.,Herrero,P.,Martinez-Duart,J.M.,Electrodeposition of hydroxyapatite coatings in basic conditions[J],Biomaterials,2000,21(17):1755-1761.
    [104]Hou,X.H.,Liu,X.,Xu,J.M.,Shen,J.,Liu,X.H.,A self-optimizing electrodeposition process for fabrication of calcium phosphate coatings[J],Mater.Lett.,2001,50(2-3):103-107.
    [105]da Silva,M.H.P.,Soares,G.D.A.,Elias,C.N.,Best,S.M.,Gibson,I.R.,Disilvio,L.,Dalby,M.J.,In vitro cellular response to titanium electrochemically coated with hydroxyapatite compared to titanium with three different levels of surface roughness[J],J.Mater.Sci.-Mater.Med.,2003,14(6):511-519.
    [106]Zhang J.M.,Lin C.J.,Feng Z.D.,Tian Z.W.,Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique[J],J.Electroanal.Chem.,1998,452(2):235-240.
    [107]Da Silva,M.H.P.,Lima,J.H.C.,Soares,G.A.,Elias,C.N.,de Andrade,M.C.,Best,S.M.,Gibson,I.R.,Transformation of monetite to hydroxyapatite in bioactive coatings on titanium[J],Surf.Coat.Tech.,2001,137(2-3):270-276.
    [108]Wang J.,Layrolle,P.,Stigter,M.,de Groot,K.,Biomimetic and electrolytic calcium phosphate coatings on titanium alloy:physicochemical characteristics and cell attachment [J],Biomaterials,2004,25(4):585-592.
    [109]Becker,P.,Neumann,H.G.,Nebe,B.Luthen,F.,Rychly,J.,Cellular investigations on electrochemically deposited calcium phosphate composites[J],J.Mater.Sci.-Mater.Med.,2004,15(4):437-440.
    [110]LeGeros,J.P.,Shu J.L.,Mijares,D.,Dimaano,F.,LeGeros,R.Z.,Electrochemically deposited calcium phosphate coating on titanium alloy substrates[J],Key.Eng.Mater.,2005,284(286):247-250.
    [111]Park,J.H.,Lee,D.Y.,Oh,K.T.,Lee,Y.K.,Kim,K.M.,Kim,K.N.,Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid[J],Mater.Lett.,2006,60(21-22):2573-2577.
    [112]胡仁,结构有序纳米HA涂层的电化学构筑及钛/细胞界面原位EIS研究[D],厦门:厦门大学博士学位论文,2005:11.
    [113]王卉,医用钛表面纳微米有序结构仿生膜层的构筑及其生物性能的研究[D],厦门:厦门大学博士学位论文,2008:17.
    [114]徐艳姬,徐明霞,崔春翔,申玉田,戚玉敏,Preparation of K_2Ti_6O_(13) w coating on Ti alloy and its bioactivity[J],功能材料,2005,36(9):1467-1471.
    [115]王迎军.宁成云,陈楷,赵子衷,李尚周,马利泰,冯景伟,黄瑞福,等离子喷涂生物 活性梯度涂层的残余应力与结合强度[J],无机材料学报,1998,13(4):529-533.
    [116]Fan Y.W.,Duan K.,Wang R.Z.,A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization[J],Biomaterials,2005,26(14):1623-1632.
    [117]徐艳丽,林龙翔,耿志旺,林昌健,电化学共沉积HA/胶原复合涂层及其生物性能初探[J],电化学,2007,13(3):238-241.
    [118]胡仁,胡皓冰,林昌健,CaP/壳聚糖复合膜层的电化学共沉积研究[J],高等学校化学学报,2002,23(11):2142-2146.
    [119]胡皓冰,林昌健,冷扬,Ti6Al4V表面HAP/聚乙酸乙烯酯杂化陶瓷膜层的电化学合成[J],厦门大学学报(自然科学版),2002,41(6):773-777.
    [120]胡皓冰,林昌健,冷扬,电化学共沉积制备有机高聚物/钙磷复合陶瓷膜层—Ⅰ XRD、SEM表征及生物活性研究[J],生物医学工程学杂志,2003,20(1):4-7.
    [121]胡皓冰,林昌健,冷扬,电化学共沉积制备有机高聚物/钙磷复合陶瓷膜层—Ⅱ XPS、SMS表征及力学性能研究[J],生物医学工程学杂志,2003,20(2):202-204.
    [122]肖秀峰,刘榕芳,左友松,林岚云,许道旋,电沉积羟基磷灰石/TiO_2复合涂层[J],应用化学,2004,21(7):687-691.
    [123]肖秀峰,刘榕芳,郑炀,水热电化学法制备HA/ZrO_2复合涂层[J],稀有金属材料与工程,2005,34(11):1798-1801.
    [124]吴振军,何莉萍,陈宗璋,两步电化学法制备羟基磷灰石/氧化铝复合生物涂层的研究硅酸盐学 2005,33(2):230-234.
    [125]Xiao X.F.,Liu R.F.,Zheng Y.Z.,Hydoxyapatite/titanium composite coating prepared by hydrothermal-electrochemical technique[J],Mater.Lett.,2005,59(13):1660-1664.
    [126]周智华,阮建明,邹俭鹏,周忠诚,申雄军,生物玻璃及其复合材料的研究进展[J],化学通报,2005,68(11):w127(10).
    [127]Pompe,W.,Worch,H.,Epple,M.,Friess,W.,Gelinsky,M.,Greil,P.,Hempel,U.,Scharnweber,D.,Schulte,K.,Functionally graded materials for biomedical applications [J],Mater.Sci.Eng.,A,2003,362(1-2):40-60.
    [128]Lehuec,J.C.,Schaeverbeke,T.,Clement,D.,Faber,J.,Lerebeller,A.,Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress [J],Biomaterials,1995,16(2):113-118.
    [129]Sopyan,I.,Mel,M.,Ramesh,S.,Khalid,K.A.,Porous hydroxyapatite for artificial bone applications[J],Sci.Technol.Adv.Mater.,2007,8(12):116-123.
    [130]Afshar,A.,Ghorbani,M.,Ehsani,N.,Saeri,M.R.,Sorrell,C.C.,Some important factors in the wet precipitation n process of hydroxyapatite[J],Mater.Des.,2003,24(3):197-202.
    [131]韩艳君.姜庆辉,李木森.多孔羟基磷灰石的研究现状与发展,材料科学与工程学 报,2004,22(6):929-933.
    [132]Tsuruga,E.,Takita,H.,Itoh,H.,Wakisaka,Y.,Kuboki,Y.,Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis[J],J.Biochem.,1997,121(2):317-324.
    [133]Kuboki,Y.,Yamaguchi,H,Yokoyama,A,Murata,M,Takita,H,Tazaki,M,Mizuno,M,Hasegawa,T,Iida,S,Shigenobu,K,Fujisawa,R,Kawamura,T,Matumoto,A,Kato,H,Zhou H.Y.,Ono,I,Takeshita,N,NaGai,N.Osteogenesis induced by BMP-coated biomaterials:Biochemical principles of bone reconstruction in dentistry.In:Davies JE,editor.The bone-biomaterial interface.Toronto:University of Toronto Press,1991:127-138.
    [134]张超武,杨海波.生物材料概论[M].北京:化学工业出版社,2006:123.
    [135]夏琳,陈德敏,钙磷类生物陶瓷结构对骨缺损治疗中生物学性能的影响[J],口腔材料器械杂志,2004,13(3):152-155.
    [136]Liu D.M.,Porous Hydroxyapatite Bioceramics[J],Key Eng.Mater.1996,115:209-232.
    [137]Lu J.X.,Flautre,B.,Anselme,K.,Hardouin,P.,Gallur,A.,Descamps,M.,Thierry,B.,Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo [J],J.Mater.Sci.-Mater.Med.,1999,10(2):111-120.
    [138]赵俊亮,付涛,徐可为,有机泡沫浸渍法制备多孔轻基磷灰石复相陶瓷[J],中国陶瓷,2003,39(1):4-7.
    [139]肖素岗,周振君,童昀,吴学倩,凝胶注模法制备多孔羟基磷灰石陶瓷[J],应用化工,2009,38(1):73-76.
    [140]管大为,李慕勤,吕忠华,HA-TC/壳聚糖多孔生物材料的凝胶注模研究[J],佳木斯大学学报(自然科学版),2007,25(5):631-633.
    [141]叶金凤,韩长菊,陈庆华,有机浆料发泡法制备多孔羟基磷灰石,佛山陶瓷,2006,16(6):6-9.
    [142]Tadic,D.,Beckmann,F.,Schwarz,K.,Epple,M.,A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering[J],Biomaterials,2004,25(16):3335-3340.
    [143]Tampieri,A.,Celotti,G.,Sprio,S.,Delcogliano,A.,Franzese,S.,Porosity-graded hydroxyapatite ceramics to replace natural bone[J],Biomaterials,2001,22(11):1365-1370.
    [144]姚秀敏,谭寿洪,江东亮,孔径可控的多孔羟基磷灰石的制备工艺研究[J],功能材料与器件学报,2001,7(2):152-156.
    [145]Trommer,R.M.,Santos,L.A.,Bergmann,C.P.,Alternative technique for hydroxyapatite coatings[J],Surf.Coat.Technol.,2007,201(24):9587-9593.
    [1]Masuda,H.,Fukuda,K.,Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J],Science,1995,268(5216):1466-1468.
    [2]Sieber,I.,Kannan,B.,Schmuki,P.,Self-assembled porous tantalum oxide prepared in H_2SO_4/HF electrolytes[J],Electrochem.Solid-State Lett.,2005,8(3):J10-J12.
    [3]Tsuchiya,H.,Macak,J.M.,Sieber,I.,Taveira,L.,Ghicov,A.,Sirotna,K.,Schmuki,P.,Self-organized porous WO_3 formed in NaF electrolytes[J],Electrochem.Commun.,2005,7(3):295-298.
    [4]Tsuchiya,H.,Schmuki,P.,Thick self-organized porous zirconium oxide formed in H_2SO_4/NH_4F electrolytes[J],Electrochem.Commun.2004,6(11):1131-1134.
    [5]Tsuchiya,H.,Schmuki,P.,Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization[J],Electrochem.Commun.,2005,7(1):49-52.
    [6]Gong D.W.,Grimes,C.A.,Varghese,O.K.,Chen Z.,Hu W.C.,Dickey,E.C.,Titanium oxide nanotube arrays prepared by anodic oxidation[J],J.Mater.Res.,2001,16(12):3331-3334.
    [7]Kar,A.,Raja,K.S.,Misra,M.,Electrodeposition of hydroxyapatite onto nanotubular TiO_2 for implant applications[J],Surf.Coat.Technol.,2006,201(6):3723-3731.
    [8]Kasuga,T.,Hiramatsu,M.,Hoson,A.,Sekino,T.,Niihara,K.,Formation of titanium oxide nanotube,Langmuir,1998,14(12):3160-3163.
    [9]胡仁,结构有序纳米HA涂层的电化学构筑及钛/细胞界面原位EIS研究[D],厦门:厦门大学博士学位论文,2005:11.
    [10]朱祖福,沈锦德,许志义等,电子显微镜[M],北京:机械工业出版社,1984.
    [11]熊兆贤等,无机材料研究方法-合成制备、分析表征与性能检测[M],厦门:厦门大学出版社,2001.
    [12]Gu Y.W.,Tay,B.Y.,Lim,C.S.,Yong,M.S.,Nanocrystallite apatite formation and its growth kinetics on chemically treated porous NiTi[J],Nanotechnology,2006,17(9):2212-2218.
    [13]陈允魁,红外吸收光谱法及其应用[M],上海:上海交通大学出版社,1985.
    [14]解景田,赵静,生理学实验[M],北京:高等教育出版社,2002:210.
    [15]Stern,M.,Greary,A.L.,Electrochemical polarization:I.A theoretical analysis of the shape of polarization curves[J],J.Electrochem.Sco.,1957,104(1):56-63.
    [16]王凤平,康万利,敬和民等,腐蚀电化学原理、方法及应用[M],北京:化学工业出版社,2008:63-64.
    [17]史美伦,交流阻抗谱原理及应用[M],北京:国防工业出版社,2001.
    [18]曹楚南,张鉴清,电化学阻抗谱导论[M],北京:科学出版社,2002.
    [19]Kokubo,T.,Bioactive glass ceramics:properties and applications[J],Biomaterials,1991,12(2):155-163.
    [20]司徒镇强,吴军正,细胞培养[M],西安:世界图书出版公司,2004.
    [21]Ecarot-Charrier,B.,Glorieux,F.H.,van der Rest,M.,Pereira,G.,Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture[J],J.Cell.Biol.,1983,96(3):639-643.
    [22]凌诒萍,俞彰,细胞超微结构与电镜技术[M],上海:上海医科大学出版社,2000.
    [1]Geetha,M.,Singh,A.K.,Asokamani,R.,Gogia,A.K.,Ti based biomaterials,the ultimate choice for orthopaedic implants-A review[J],Prog.Mater Sci.,2009,54(3):397-425.
    [2]冯波,翁杰,屈树新,鲁雄,汪建新,医用钛表面纳米结构化改性[J],稀有金属材料与工程,2007,36(10):1693-1697.
    [3]Lu Y.P.,Li M.S.,Li S.T.,Wang Z.G.,Zhu R.F.,Plasma-sprayed hydroxyapatite plus titania composite bond coat for hydroxyapatite coating on titanium substrate[J],Biomaterials,2004,25(18):4393-4403.
    [4]Shirkhanzadeh,M.J.,Bioactive calcium phosphate coatings prepared by electrodeposition [J],Mater.Sci.Lett.,1991,10(23):1415-1417.
    [5]胡仁,时海燕,林理文,庄燕燕,林昌健,电化学沉积羟基磷灰石过程晶体生长行为[J],物理化学学报,2005,21(2):197-201.
    [6]Gong D.W.,Grimes,C.A.,Varghese,O.K.,Chen Z.,Hu W.C.,Dickey,E.C.,Titanium oxide nanotube arrays prepared by anodic oxidation[J],J.Mater.Res.,2001,16(12):3331-3334.
    [7]Wang C.L.,Sun L,Yun H.,Li J.,Lai Y.K.,Lin C.J.,Sonoelectrochemical synthesis of highly photoelectrochemically active TiO_2 nanotubes by incorporating CdS nanoparticles [J],Nanotechnology,2009,20(29):295601.
    [8]Zhuang H.F.,Lin C.J.,Lai Y.K.,Sun L.,Li J.,Some critical structure factors of titanium oxide manotube array in its photocatalytic activity[J],Environ.Sci.Technol.,2007,41(13):4735-4740.
    [9]Mor,G.K.,Varghese,O.K.,Paulose,M.,Shankar,K.,Grimes,C.A.,A review on highly ordered,vertically oriented TiO_2 nanotube arrays:Fabrication,material properties,and solar energy applications[J],Sol.Energy Mater.Sol.Cells,2006,90(14):2011-2075.
    [10]Ghicov,A.,Macak,J.M.,Tsuchiya,H.,Kunze,J.,Haeublein,V.,Frey,L.,Schmuki,P.,Ion implantation and annealing for an efficient N-doping of TiO_2 nanotubes[J],Nano Lett.,2006,6(5):1080-1082.
    [11]Shankar,K.,Mor,G.K.,Prakasam,H.E.,Yoriya,S.,Paulose,M.,Varghese,O.K.,Grimes,C.A.,Highly-ordered TiO_2 nanotube arrays up to 220 mum in length:use in water photoelectrolysis and dye-sensitized solar cells[J],Nanotechnology,2007,18(6):065707.
    [12]Lai Y.K.,Lin C.J.,Wang H.,Huang H.Y.,Zhuang H.F.,Sun L.,Superhydrophilic-superhydrophobic micropattern on TiO_2 nanotube films by photocatalytic lithography[J],Electrochem.Commun.,2008,10(3):387-391.
    [13]Yu B.Y.,Tsai,A.,Tsai,S.P.,Wong K.T.,Yang Y.,Chu C.W.,Shyue,J.J.,Efficient inverted solar cells using TiO_2 nanotube arrays[J],Nanotechnology,2008,19(25):255202.
    [14]Mor,G.K.,Shankar,K.,Paulose,M.,Varghese,O.K.,Grimes,C.A.,Enhanced photocleavage of water using titania nanotube arrays[J],Nano Lett.,2005,5(1):191-195.
    [15]Macak,J.M.,Zlamal,M.,Krysa,J.,Schmuki,P.,Self-organized TiO_2 nanotube layers as highly efficient photocatalysts[J],Small,2007,3(2):300-304.
    [16]Park,J.,Bauer,S.,von der Mark,K.,Schmuki,P.,Nanosize and vitality:TiO_2 nanotube diameter directs cell fate[J],Nano Lett.,2007,7(6):1686-1691.
    [17]Oh,S.,Brammer,K.S.,Li,Y.S.J.,Teng,D.,Engler,A.J.,Chien,S.,Jin,S.,Stem cell fate dictated solely by altered nanotube dimension[J],Proc.Natl.Acad.Sci.U.S.A.,2009,106(7):2130-2135.
    [18]Park,I.S.,Lee,M.H.,Bae,T.S.,Seol,K.W.J.,Effects of anodic oxidation parameters on a modified titanium surface[J],Biomed.Mater.Res.B.,2008,84B(2):422-429.
    [19]Tsuchiya,H.,Macak,J.M.,Muller,L.,Kunze,J.,Muller,F.,Greil,P.,Virtanen,S.,Schmuki,P.,Hydroxyapatite growth on anodic TiO_2 nanotubes[J],J.Biomed.Mater.Res.A.,2006,77A(3):534-541.
    [20]王月勤,陶杰,王玲,何娉婷,汪涛,HA coating on titanium with nanotubular anodized TiO_2 intermediate layer via electrochemical deposition[J],中国有色金属学会会刊(英文版),2008,18(3):631-635.
    [21]徐艳姬,徐明霞,崔春翔,申玉田,戚玉敏,Preparation of K_2Ti_6O_(13) w coating on Ti alloy and its bioactivity[J],功能材料,2005,36(9):1467-1471.
    [22]Nielsch,K.,Muller,F.,Li A.P.,Gosele,U.,Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition[J],Adv.Mater.,2000,12(8):582-586.
    [23]Macak,,J.M.,Gong B.G.,Hueppe,M.,Schmuki,P.,Filling of TiO_2 nanotubes by self-doping and electrodeposition[J],Adv.Mater.,2007,19(19):3027-3031.
    [24]Kar,A.,Raja,K.S.,Misra,M.,Electrodeposition of hydroxyapatite onto nanotubular TiO_2 for implant applications[J],Surf.Coat.Technol.,2006,201(6):3723-3731.
    [25]赖跃坤,孙岚,左娟,林昌健,氧化钛纳米管阵列制备及形成机理[J],物理化学学报,2004,20(9):1063-1066.
    [26]Zhang H.,Quan X.,Chen S.,Yu H.T.,Ma,N.,"Mulberry-like" CdSe nanoclusters anchored on TiO_2 nanotube arrays:A novel architecture with remarkable photoelectrochemical performance[J],Chem.Mater.,2009,21(14),3090-3095.
    [27]Elmoula,M.A.,Panaitescu,E.,Phan,M.,Yin,D.,Richter,C.,Lewis,L.H.,Menon,L.,Controlled attachment of gold nanoparticles on ordered titania nanotube arrays[J],J.Mater.Chem.,2009,19(26),4483-4487.
    [28]Bauer,S.,Kleber,S.,Schmuki,P.,TiO_2 nanotubes:Tailoring the geometry in H_3PO_4/HF electrolytes[J],Electrochem.Commun.,2006,8(8):1321-1325.
    [29]胡仁,时海燕,林理文,庄燕燕,林昌健,电化学沉积羟基磷灰石过程晶体生长行为[J],物胛化学学报,2005,21(2):197-201.
    [30]Wang H.,Lin C.J.,Hu R.,Effects of structure and composition of the CaP composite coatings on apatite formation and bioactivity in simulated body fluid[J],Appl.Surf.Sci.2009,255(7):4074-4081.
    [31]Gu Y.W.,Tay,B.Y.,Lim,C.S.,Yong,M.S.,Nanocrystallite apatite formation and its growth kinetics on chemically treated porous NiTi[J],Nanotechnology,2006,17(9):2212-2218.
    [32]Yu H.G.,Zhang H.L.,Wang X.M.,Gu Z.W.,Li X.D.,Deng F.,Local structure of hydroxy-peroxy apatite A combined XRD,FT-IR,Raman,SEM,and solid-state NMR study[J],J.Phys.Chem.Solids,2007,68(10),1863-1871.
    [33]Lu X.,Zhao Z.F.,Leng Y.,Calcium phosphate crystal growth under controlled atmosphere in electrochemical deposition[J],J.Cryst.Growth,2005,284(3):506-516.
    [34]Thair,L.,Mudali,U.K.,Bhuvaneswaran,N.,Nair,K.G.M.,Asokamani.R.,Raj,B.,Nitrogen ion implantation and in vitro corrosion behavior of as-cast Ti-6Al-7Nb alloy[J],Corros.Sci.,2002,44(11):2439-2457.
    [35]Coelho,P.G.,de Assis,S.L.,Costa,I.,Thompson,V.P.,Corrosion resistance evaluation of a Ca- and P-based bioceramic thin coating in Ti-6Al-4V[J],J.Mater.Sci.-Mater.Med.,2009,20(1):215-222.
    [36]Pan,J.,Leygraf,C.,Thierry,D.,Ektessabi,A.M.,Corrosion resistance for biomaterial applications of TiO_2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering[J],J.Biomed.Mater.Res.,1997,35(3):309-318.
    [37]Aparicio,C.,Gil,F.J.,Fonseca,C.,Barbosa,M.,Planell,J.A.,Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications[J],Biomaterials,2003,24(2):263-273.
    [38]Fadl-Allah,S.A.,El-Sherief,R.M.,Badawy,W.A.,Electrochemical formation and characterization of porous titania(TiO_2) fihns on Ti[J],J.Appl.Electrochem.,2008,38(10):1459-1466.
    [39]Hoche,H.,Scheerer,H.,Probst,D.,Broszeit,E.,Berger,C.,Development of a plasma surface treatment for magnesium alloys to ensure sufficient wear and corrosion resistance [J],Surf.Coat.Technol.,2003,174:1018-1023.
    [40]Yildiz,F.,Yetim,A.F.,Alsaran,A.,Efeoglu,I.,Wear and corrosion behaviour of various surface treated medical grade titanium alloy in bio-simulated environment[J],Wear,2009,267(5-8):695-701.
    [41]Nie,X,Leyland,A,Matthews,A.Deposition of layered bioceramic hydroxyapatite/TiO_2coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis[J],Surf.Coat.Technol.,2000,125(1-3):407-414.
    [42]Kim,H.W.,Koh,Y.H.,Li,L.H.,Lee,S.,Kim,H.E.,Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method[J],Biomaterials,2004,25(13):2533-2538.
    [43]解景田,赵静,生理学实验[M],北京:高等教育出版社,2002:210.
    [44]Cheng K.,Ren C.B.,Weng W.J.,Du P.Y.,Shen G.,Han G.R.,Zhang S.,Bonding strength of fluoridated hydroxyapatite coatings-A comparative study on pull-out and scratch analysis[J],Thin Solid Films,2009,517(17),5361-5364.
    [1]Kim,H.M.,Miyaji,F.,Kokubo,T.,Nakamura,T.,Preparation of bioactive Ti and its alloys via simple chemical surface treatment[J],J.Biomed.Mater.Res.A.,1996,32(3):409-417.
    [2]Tamilselvi,S.,Raghavendran,H.B.,Srinivasan,P.,Rajendran,N.,In vitro and in vivo studies of alkali-and heat-treated Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys for orthopedic implants[J],J.Biomed.Mater.Res.A.,2009,90A(2):380-386.
    [3]Krupa,D.,Baszkiewicz,J.,Mizera,J.,Borowski,T.,Barcz,A.,Sobczak,J.W.,Bili(?)ski,A.,Lewandowska-Szumiel,M.,Wojew(?)dzka,M.,Effect of the heating temperature on the corrosion resistance of alkali-treated titanium[J],J.Biomed.Mater.Res.A.,2009,88A(3):589-598.
    [4]Huang P.,Zhang Y.,Xu K.W.,Han Y.,Surface modification of titanium implant by microarc oxidation and hydrothermal treatment[J],J.Biomed.Mater.Res.A.,2004,70B(2):187-190.
    [5]Ban,S.,Effect of alkaline treatment of pure titanium and its alloys on the bonding strength of dental veneering resins.[J],J.Biomed.Mater.Res.A.,2003,66a(1):138-145.
    [6]Lee,B.H.,Kim,Y.D.,Shin,J.H.,Lee,K.H.,Surface modification by alkali and heat treatments in titanium alloys[J],J.Biomed.Mater.Res.A.,2002,61(3):466-473.
    [7]张悦,夏海斌,碱热处理制备生物活性钛种植体[J],国际口腔医学杂志,2007,34(3):216-219.
    [8]魏建华,刘宝林,付涛,徐可为,王新木,马威,表面形貌及碱热处理对纯钛表面在DMEM培养液中诱导磷灰石沉积的影响[J],中国口腔颌面外科杂志,2003,1(1):47-50.
    [9]Rani,V.V.D.,Manzoor,K.,Menon,D.,Selvamurugan,N.,Nair,S.V.,The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response [J],Nanotechnology,2009,20(19):195101.
    [10]Dong W.,Zhang T.,Epstein,J.,Cooney,L.,Wang H.,Li Y.,Jiang Y.B.,CogbilI,A.,Varadan,V.,Tian Z.R.,Multifunctional nanowire bioscaffolds on titanium[J],Chem.Mater.,2007,19(18):4454-4459.
    [11]Nishio,K.,Neo,M.,Akiyama,H.,Nishiguchi,S.,Kim,H.M.,Kokubo,T.,Nakamura,T.,The effect of alkali-and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells[J],J.Biomed.Mater.Res.A.,2000,52(4):652-661.
    [12]Nishiguchi.S.,Kato.H.,Neo,M.,Oka,M.,Kim,H.M.,Kokubo,T.,Nakamura.T.. Alkali-and heat-treated porous titanium for orthopedic implants[J],J.Biomed.Mater.Res.A.,2001,54(2):198-208.
    [13]Kubo,T.,Kato,W.,Yamasaki,Y.,Nakahira,A.,Synthesis of nanotubular titanate from titanium using hydrothermal treatment[J],Key.Eng.Mater.,2006,317-318:247-250.
    [14]Guo Y.,Lee,N.H.,Oh,H.J.,Yoon,C.R.,Park,K.S.,Lee,H.G.,Lee,K.S.,Kim,S.J.,Structure-tunable synthesis of titanate nanotube thin films via a simple hydrothermal process[J],Nanotechnology,2007,18(29):295608.
    [15]Peng X.,Chen A.,Large-scale synthesis and characterization of TiO_2-based nanostructures on Ti substrates[J],Adv.Funct.Mater.,2006,16(10):1355-1362.
    [16]Chi,B.,Victorio,E.S.,Jin,T.,Synthesis of TiO_2-based nanotube on Ti substrate by hydrothermal treatment[J],J.Nanoscience Nanotechnology,2007,7(2):668-672.
    [17]Kong X.Y.,Ding Y.,Yang R.S.,Wang Z.L.,Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J],Science,2004,303(5662):1348-1351.
    [18]王芹,翁履谦,徐国跃,王秀华,胡永芳,台国安,TiO_2纳米管的合成机理研究[J],功能材料,增刊(35):2873-2877.
    [19]王竹梅,李月明,杨小静,张玉平,廖润华,钛酸盐纳米管的水热合成及晶型研究[J],无机化学学报,2007,23(2):225-230.
    [20]周艺,黄可龙,朱志平,马儒,TiO_2纳米管的水热法合成研究[J],长沙理工大学学报(自然科学版),2007,4(4):86-90.
    [21]Kolen'ko,Y.V.,Kovnir,K.A.,Gavrilov,A.I.,Garshev,A.V.,Frantti,J.,Lebedev,O.I.,Churagulov,B.R.,Van Tendeloo,G.,Yoshimura,M.,Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide[J],J.Phys.Chem.B,2006,110(9):4030-4038.
    [22]Qamar,M.,Yoon,C.R.,Oh,H.J.,Kim,D.H.,Jho,J.H.,Lee,K.S.,Lee,W.J.,Lee,H.G.,Kim,S.J.,Effect of post treatments on the structure and thermal stability of titanate nanotubes[J],Nanotechnology,2006,17(24):5922-5929.
    [23]Papp,S.,Korosi,L.,Meynen,V.,Cool,P.,Vansant,E.F.,Dekany,I.,The influence of temperature on the structural behaviour of sodium tri- and hexa-titanates and their protonated forms[J],J.Solid State Chem.,2005,178(5):1614-1619.
    [24]李颖,段玉然,李维华,纳米锐钛矿的拉曼光谱特征[J],光谱学与光谱分析,2000,120(15):699-701.
    [25]Bunker,B.C.,Peden,C.H..F.,Tallant,D.R.,Martinez,S.L.,Turner,G.L.,Raman and NMR studies of hydrous sodium titanates[J].Mater.Res.Soc.Symp.Proc.,1990,121(24):105-109.
    [26]Sun X.M.,Li Y.D.,Synthesis and characterization of ion-exchangeable titanate nanotubes[J],Chem.Eur.J.,2003,9(10):2229-2238.
    [1]Ogawa,T.,Takahashi,Y.,Yang H.Y.,Kimura,K.,Sakurai,M.,Takahashi,M.,Fabrication of Fe_3O_4 nanoparticle arrays via patterned template assisted self-assembly[J],Nanotechnology,2006,17(22):5539-5543.
    [2]辛颖,刘志锋,雅菁,用聚苯乙烯微球模板组装有序多孔氧化锌薄膜[J],硅酸盐学报,2007,35(4):410-415.
    [3]Bartlett,P.N.,Baumberg,J.J.,Birkin,P.R.,Ghanem,M.A.,Netti,M.C.,Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres [J],Chem.Mater.,2002,14(5):2199-2208.
    [4]Meng Q.B.,Fu C.H.,Einaga,Y.,Gu Z.Z.,Fujishima,A.,Sato,O.,Assembly of highly ordered three-dimensional porous structure with nanocrystalline TiO_2 semiconductors[J],Chem.Mater.,2002,14(1):83-88.
    [5]杨卫亚,郑经堂,张艳姝,谭树成,模板法制备三维有序大孔CeO_2,中国稀土学报,2006,24(Suppl):128-131.
    [6]齐凯,杨振忠,刘正平,王利军,赵得禄,聚苯乙烯模板制备SiO_2三维有序孔材料,科学通报,2000,45(3):267-269.
    [7]于晓辉,董相廷,王进贤,杨晓峰,王慧茹,于伟利,崔启征,乳液聚合法制备聚苯乙烯微球[J],长春理工大学学报,2006,29(4):94-96.
    [8]张凯,王宇光,需毅,江璐霞,微米级单分散聚苯乙烯微球的研究[J],化工进展,2002,21(10):738-740.
    [9]张巍巍,张俊英,平梁良,潘峰,王天民,陈子瑜,分散聚合法制备聚苯乙烯微球及其机理研究[J],功能材料,2008,39(8):1402-1405.
    [10]Kar,A.,Raja,K.S.,Misra,M.,Electrodeposition of hydroxyapatite onto nanotubular TiO_2 for implant applications[J],Surf.Coat.Technol.,2006,201(6):3723-3731.
    [11]Lai Y.K.,Lin C.J.,Wang H.,Huang H.Y.,Zhuang H.F.,Sun L.,Superhydrophilic-superhydrophobic micropattern on TiO_2 nanotube films by photocatalytic lithography[J],Electrochem.Commun.,2008,10(3):387-391.
    [12]赖跃坤,孙岚,左娟,林昌健,氧化钛纳米管阵列制备及形成机理[J],物理化学学报,2004,20(9):1063-1066.
    [13]Mor,G.K.Varghese,O.K.,Paulose,M.,Shankar,K.,Grimes,C.A.,A review on highly ordered,vertically oriented TiO_2 nanotube arrays:Fabrication,material properties,and solar energy applications[J],Sol.Energy Mater.Sol.Cells,2006,90(14):2011-2075
    [14]曹同玉.胡金生.聚合物乳液合成原理、性能及应用[M].北京:化学工业出版社, 1997,258-334.
    [15]曹同玉,戴兵,戴俊燕,王艳君,袁才登,单分散、大粒径聚苯乙烯微球的制备[J],高分子学报,1997,(2):158-165.
    [16]王为,郭鹤桐,高建平,于九皋,单分散聚苯乙烯微球的制备[J],材料研究学报,1998,12(6):628-631.
    [17]Li K.,St(o|¨)ver H.D.H.,Highly crosslinked micron-range polymer microspheres by dispersion polymerization of divinylbenzene[J],J.Polym.Sci.Part A,1993,31(10):2473-2479.
    [18]张冰杰,杨文彬,雷刚,聚苯乙烯微球的研究进展[J],材料导报网刊,2006(4):37-39.
    [19]张凯,傅强,江璐霞,分散聚合反应中影响聚苯乙烯微球粒径的因素[J],材料研究学报,2003,17(1):107-112.
    [20]任秀峰,王芬,单分散聚合法制备微米级聚苯乙烯微球[J],江苏化工,2007,35(6):26-28.
    [21]张凯,傅强,黄渝鸿,周德惠,江璐霞.聚苯乙烯单分散微球粒径可控性探讨[J],离子交换与吸附,2006,22(2):140-145.
    [22]Chao C.Y.,Li X.F.,Christopher,K.O.,Directing Self-assembly in Macromolecular Systems:Hydrogen Bonding in Ordered Polymers[J],Pure Appl.Chem.,2004,76(7-8):1337-1343.
    [23]Carretta,N.,Tricoli,V.,Picchioni,F.,Ionomeric membranes based on partially sulfonated poly(styrene):synthesis,proton conduction and methanol permeation[J],J.Membr.Sci.,2000,166(2):189-197.
    [24]刘改花,浦鸿汀,磺化间规聚苯乙烯的合成及质子导电性能[J],高分子材料科学与工程,2004,20(4):73-76.
    [25]黎华明,沈志刚,王进,祝方明,林尚安,红外光谱法研究磺化间规聚苯乙烯离聚物离子间相互作用[J],高分子学报,2001,(5):599-603.
    [26]刘琨,杨景辉,陈雪梅,单分散微米级PMMA微球的制备[J],塑料工业,2006,34(10):4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700