降低奥氏体不锈钢离子氮化过程中铬的沉积
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题针对AISI 304奥氏体不锈钢进行辉光离子渗氮和离子氮碳共渗研究。目的在于提高奥氏体不锈钢硬度与耐磨性的同时,不显著减低其耐腐蚀性能。奥氏体不锈钢具有良好的耐腐蚀性能,广泛应用于化工、石油、食品和医疗器械等行业,但是其硬度低、耐磨性差。为了进一步扩大奥氏体不锈钢的应用范围,作者试图采用脉冲电流辉光离子渗氮的方法对其进行表面处理,提高其硬度及耐磨性。辉光离子氮化具有渗速快、工件变形小、节能等优点,广泛应用于各种金属材料,特别是不锈钢零部件,因为离子渗氮前不需要预先去钝化处理,离子氮化的阴极溅射效应,可以清除不锈钢表面的钝化膜。但是离子渗氮提高奥氏体不锈钢表面硬度和耐磨性的同时,使其耐腐蚀性能下降。
     本文研究了在氨气气氛中渗氮温度、时间、气压和电压,以及氨气与丙酮混合气氛中丙酮含量和共渗温度对渗层质量的影响,利用光学显微镜、扫描电子显微镜、X射线衍射仪、显微硬度计、电位仪等检测方法对渗层金相组织、渗层厚度、渗层相组成、表面显微硬度、极化曲线等进行研究,试验结果表明:
     离子渗氮与离子氮碳共渗渗层组织相似,均由扩散层构成,扩散层表面的白亮层不明显。渗氮温度对渗氮层和氮碳共渗层质量影响最大,随着处理温度增加,CrN的含量增加,渗层厚度增加,表面显微硬度先增加后减少,渗层硬度梯度逐渐平缓。渗氮时间主要影响渗层厚度,随着渗氮时间延长,渗层厚度显著增加。渗氮气压对渗层厚度和表面显微硬度影响较大,随着渗氮气压升高,渗层厚度增大,渗层表面显微硬度先增加后减小,渗层表面显微硬度梯度趋于平缓。渗氮电压影响渗层表面CrN含量和表面显微硬度,随着渗氮电压升高,渗层表面CrN含量减少,表面显微硬度增加。离子氮碳共渗气氛中丙酮含量影响渗层表面CrN的含量、渗层厚度、表面腐蚀速度及渗层硬度梯度,渗氮气氛中加入丙酮有利于降低CrN的含量,随着氮碳共渗气氛中丙酮含量的增加,渗层厚度先增加后减小。
     降低奥氏体不锈钢离子氮化过程中铬的沉积方法包括:降低渗氮温度,缩短渗氮时间,控制渗氮气压适中,控制渗氮电压偏高,渗氮气氛中添加丙酮。从综合的角度考虑,奥氏体不锈钢离子渗氮的工艺参数为:渗氮温度500℃、渗氮时间2h、气压350Pa、电压900V。离子氮碳共渗时,丙酮含量为2.5%。AISI304奥氏体不锈钢经上述工艺条件处理后,获得的渗层既具有高的硬度,又具有良好的耐腐蚀性。
Glow discharge nitriding and nitrocarburising in AISI 304 austenitic stainless steel were approached in this paper. The aim of this paper was to improve the hardness and wear resistance of AISI 304 austenitic stainless steel and retain the corrosion resistance. The austenitic stainless steels are widely used in many fields such as chemical industry, oil industry, food processing and medical apparatus and instruments due to their well corrosion resistance, but they have low hardness and bad wear resistance. For further expanding the application of austenitic stainless steels, pulse current ionitriding was employed to improve their hardness and wear resistance. Because of the advantages of fast nitriding, small workpiece deformation and energy saving, ionitriding are widely used in different kinds of metal materials, especially the parts of stainless steel. The cathode sputtering effect of ionitriding can remove the passivating film on the surface of stainless steels, so it needn't do previously depassivation processing before ionitriding. But ionitriding can improve the surface hardness and wear resistance of austenitic stainless steel as well as decrease its corrosion resistance.
     The effects of nitriding temperature, time, pressure, voltage in ammonia gas and content of acetone, nitrocarburising temperature in ammonia and acetone mixture on the quality of nitrided layers were studied in this paper. Some measurements were used such as an optical microscope, a scanning electron microscope, an X-ray diffractometer, a Vickers microhardness tester and an electrochemical testing technique to study the metallurgical structure, thickness, phase composition, surface microhardness and polarization curves of the nitrided layers. The results were shown:
     The nitrided layers after ionitriding and the nitrocarburized layers after ionitrocarburising were similar; they all exhibit a diffusion layer with an obscure "white" appearance on it. The most influence on the quality of nitrided layers and nitrocarburized layers is nitriding temperature. As treatment temperature increasing, the content of CrN and the thickness of nitrided layers increase; the surface microhardness of the nitrided layers increases at first and then decreases; and the microhardness gradients are gradually gentle. The nitriding time mainly affects the thickness of the nitrided layers. As the nitriding time extending, the thickness of the nitrided layers apparently increases. The nitriding pressure affects the thickness and the surface microhardness of the nitrided layers. As the nitriding pressure increasing, the thickness of the nitrided layers increases; the surface microhardness of the nitrided layer increases at first and then decreases; and the microhardness gradients are gradually gentle. The nitriding voltage affects the content of CrN and surface microhardness of the nitrided layers. As the nitriding voltage increasing, the content of CrN on the surface of the nitrided layers decreases; and the surface microhardness of the nitrided layers increases. The content of acetone in ammonia and acetone mixture during ionitrocarburising affects the content of CrN on the surface of the nitrocarburized layers, the thickness of the nitrocarburized layers, rate of corrosion on the surface of the nitrocarburized layers and the microhardness gradient. The addition of acetone in the nitriding gas helps to decrease the content of CrN. As the content of acetone in the nitrocarburising gas increasing, the thickness of the nitrocarburized layers increases at first and then decreases.
     The methods to decrease chromium precipitation in austenitic stainless steel during the ionitriding process include decreasing the nitriding temperature, shortening the nitriding time, making the nitriding pressure moderately, controling the nitriding voltage a bit higher and addition acetone in the nitriding gas. Comprehensive analysis, the processing parameters of austenitic stainless steel during ionitriding are nitriding at the temperature of 500℃, at the pressure of 350 Pa, with the voltage of 900 V for 2 h, and nitrocarburising with the content of acetone at 2.5 %. AISI 304 austenitic stainless steel treated in the condition of those processing parameters can obtain the nitrided layer with both high hardness and well corrosion resistance.
引文
[1]黄建中,左禹.材料的耐蚀性和腐蚀数据[M].北京:化学工业出版社,2003:148
    [2]捷忠.金属材料及热处理[M].北京:机械工业出版社,1998:156
    [3]Markus O Speidel,Hannes J Speidel.韩俭译.含氮奥氏体不锈钢的开发[J].世界钢铁,2007,2:22-25
    [4]邹贤富,徐子清.中低压工业管道安装[M].北京:中国建筑工业出版社,1984:208
    [5]杜存臣.奥氏体不锈钢在工业中的应用[J].化工设备与管道,2003,40(2):54-57
    [6]王非,林英.化工设备用钢[M].北京:化学工业出版社,2004:375-376
    [7]T Bell,X.Y Li,Y Sun.刘家竣,张秋英译.对于提高奥氏体不锈钢离子氮化表面腐蚀性能的措施[J].中国表面工程,1998,(4):40-48v8]林义民,徐洮,梁爱民等.离子氮化1Crl8Ni9Ti钢扩渗层的结构研究[A].第五界全国表面工程学术会议论文集:386-388
    [9]B.Berghaus.German patent,No 375235
    [10]潘邻.我国离子化学热处理技术的现状与展望[J].机械工人,2005,(11):8-11
    [11]韩立民.等离子热处理[M].天津:天津大学出版社,1997:52-53,99,118-119,122
    [12]李德元,赵文珍,董晓强等.等离子技术在材料加工中的应用[M].北京:机械工业出版社,2005:208
    [13]徐滨士,刘世参.中国材料工程大典(16卷)材料表面工程(上)[M].北京:化学工业出版社,2006:645,647,649,657
    [14]黄守伦.实用化学热处理与表面强化新技术[M].北京:机械工业出版社,2002:236-237
    [15]安正昆.钢铁热处理[M],北京:机械工业出版社,1985:282
    [16]中国机械工程学会中国模具设计大典编委会.现代模具设计基础[M].南昌:江西科学技术出版社,2003:875-877
    [17]夏立芳,高彩桥.钢的渗氮[M].北京:机械工业出版社,1989:7-8
    [18]J.K(o|¨)lbel.The formation ofnitrided layers in glow discharge nitriding.German,Ibid,1965,1555
    [19]M.Hudis.Study of ion-nitriding[J].J Appl Phys,1973,44(4):1489-1496
    [20]Gary.G.Tibbetts.Role of nitrogen atoms in ion-nitriding[J].J Appl Phys,1974,45(11):5072-5073
    [21]徐冰仲,张颖智.离子氮化的碰撞离解模型[J].中国铁道科学,1986,7(2):1-13
    [22]彭其凤,丁洪太.热处理工艺及设计[M].上海:上海交通大学出版社,1994:128-129
    [23]张元昌,徐在峰.离子氮化技术的历史、发展及展望[J].山西机械,1994,(2):7-9
    [24]马贵成.离子氮化技术及应用[J].煤矿机械,2004,(7):69-70
    [25]李艳秋,韩云杰.Kolsterising-不损失耐蚀性的奥氏体不锈钢和双相不锈钢表面硬化[J].国外金属热处理,2002,23(6):28-30
    [26]鲍崇高,邢建东,高义民等.碳钢奥氏体不锈钢材料在水电工程中应用的局限性[J].机械工程学报,2004,40(12):86-89
    [27]张金芝.奥氏体不锈钢的一种新型表面硬化技术简介[J].国外金属热处理,2004,25(3):41
    [28]张宁,强颖怀,张春红等.氮离子注入生物医用金属材料的表面改性研究[J].材料热处理,2007,36(4)-52-57
    [29]曾耀新.离子化学热处理及其发展[J]..中国表面工程,2000,(1):15-18
    [30]蒙联光.节能显著的离子辉光氮化炉脉冲电源[J].广西节能,2004,(3):33-35
    [31]徐冰仲,葛建功.离子氮化及等离子表面处理用脉冲电源及其应用[J].中国铁道科学,1994,15(4):35-40
    [32]高丁丁.离子渗氮热处理用大功率脉冲电源的研究与设计[D].西北工业大学,2003:2
    [33]赵程.活性屏离子渗氮技术的研究[J].金属热处理,2004,29(3):1-4
    [34]赵慧丽,赵程,孙定国.纯氮气氛活性屏离子渗氮的研究[J].金属热处理,2005,30(3):10-12
    [35]C.X.Li,J.Georqes,X.Y.Li.Active screen plasma nitriding ofaustenitic stainless steel[J].SurfEng,2002,18(6):453-458
    [36]Z.L.Zhang,T.Bell.Structure and corrosion resistance of plasma nitrided stainless steel[J].Surf Eng,1985,1(2):131-136
    [37]市井一男,藤村候夫,高濑孝夫.王伟兰译.离子氮化之18-8不锈钢的表层组织耐蚀 性及硬度[J].国外金属热处理,1986,7(3):16-20
    [38]王亮,徐晓磊,于志伟等.等离子体弧源奥氏体不锈钢低温离子渗扩氮研究[J].表面技术,1999,28(6):17-19
    [39]S.Thaiwatthana,X.Y.Li,T.Bell.Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel[J].Surf Eng,2002,18(6):433-437
    [40]刘福春,石玉敏,韩恩厚.不锈钢表面处理方法进展[J].沈阳工业大学学报,2001,23(1):7-11
    [41]陈秋龙,蔡亦炜,彭辉等.奥氏体不锈钢氮离子注入层的研究[J].上海交通大学学报,1995,29(3):129-134
    [42]柴阜桐,张光胜.离子注入1Crl8Ni9Ti不锈钢的耐磨性及耐蚀性研究[J].热加工工艺,1998,(3):26-27
    [43]白彬,张鹏程,邹觉生等.316L不锈钢氮离子注入层的高温摩擦磨损特性[J].摩擦学学报,2001,21(2):94-97
    [44]陈惠敏.等离子体浸没离子注入(PⅢ)在材料表面改性中的应用及发展[J].表面技术,2008.37(5):79-81
    [45]S.M(a|¨)ndl,R.G(u|¨)nzel,E.Richter,et al.Nitriding ofaustenitic stainless steels using plasma immersion ion implantation[J].Surf and Coat Technol,1998,100-101:372-376
    [46]蔡红.实用钢铁热处理手册[M].上海:上海科技教育出版社,1998:117
    [47]付青峰,周哲,曾卫军.离子软氮化技术在1Crl8Ni9Ti钢制零件上的应用[J].国外金属热处理,2004,25(6):16-18
    [48]张曦.对氮化层反应扩散机理的探讨[J].机车车辆工艺,1998,(2):41-45
    [49]L.C.Gontijo,R.Machado,S.E.Kuri,et al.Corrosion resistance of the layers formed on the surface of plasma-nitrided AISI 304L steel[J].Thin Solid Films,2006,515:1093-1096
    [50]M.J.Baldwin,S.Kumar,J.M.Priest,et al.Plasma-nitrided AISI-316 stainless steel examined by scanning electron microscopy and secondary ion mass spectrometry[J].Thin Solid Films,1999,345(1):108-112
    [51]王亮,许晓磊,徐彬等.奥氏体不锈钢低温渗氮层的组织与耐磨性[J].摩擦学学报,2000,20(1):67-69
    [52]谢飞.奥氏体不锈钢离子渗氮层相结构与性能研究[M].江苏工业学院学报,2004,16(3):1-4
    [53]段国炎,李根水,谢仕芳.不锈钢离子氮碳共渗处理工艺与渗层厚度硬度的关系[J].江西科学,2001,19(1):46-48
    [54]潘邻.表面改性热处理技术与应用[M].北京:机械工业出版社,2006:12-13
    [55]韩立影,王亚男,苗露等.离子渗氮温度对不锈钢组织及性能的影响[J].金属热处理,2008,33(9):41-45
    [56]A.Fossati,F.Borgioli,E.Galvanetto,et al.Glow discharge nitriding of AISI316L austenitic stainless steel:Influence of treatment time[J].Sur Coat Tech,2006,200:3511-3517
    [57]Jargelius-Pettersson R.F.A..Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels[J].Corros Sci,1999,41(8):1639-1661
    [58]周祎,龙发进,康光宇等.低温离子渗氮时间对304不锈钢渗层的影响[J].金属热处理,2007,32(11):56-59
    [59]齐宝森,陈路宾,王忠诚等.化学热处理技术[M].北京:化学工业出版社,2006:131
    [60]吕学飞,杨瑞成,林义民等.1Cr18Ni9Ti钢等离子渗氮中的黑层及边缘效应[J].金属热处理,2005,30(7):68-70
    [61]F.Borgioli,A.Fossati,E.Galvanetto,et al.Glow discharge nitriding of AISI316L austenitic stainless steel:Influence of treatment pressure[J].Sur Coat Tech,2006,200:5505-5513
    [62]马欣新.等离子体淹没离子注入氮对GCr15钢尺寸精度的影响[J].航天工艺,1997,(3):17-19
    [63]火树鹏著.钢的气体氮化[M].北京:机械工业出版社,1984:4
    [64]山中久彦.李贻锦,朱雅年译.离子渗氮[J].北京:机械工业出版社,1985:111
    [65]孙定国,赵程,韩莉.甲烷在离子氮碳共渗中的作用[J].青岛科技大学学报,2004,25(1):48-50
    [66]张德元,彭文屹,傅青峰等.离子氮碳共渗中碳的作用及机理初探[J].金属热处理,1998,(10):26-27
    [67]胡明娟,潘健生,毛立忠.碳在铁素体氮碳共渗中的作用--兼论用短时渗氮取代氮碳共渗的可行性[J].热加工工艺,1996,(2):13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700