钛氧薄膜表面氨等离子体浸没离子注入以及生物化修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用非平衡磁控溅射沉积技术在硅基底上制备了钛氧(Ti-O)薄膜,并对其进行氨等离子体浸没离子注入处理,在Ti-O薄膜表面引入氨基基团。采用原子力显微镜(AFM)和X射线光电子能谱(XPS)技术对注入前后的样品进行表面形貌和化学成分的分析,用酸性橙Ⅱ染色法计算注入后Ti-O薄膜表面氨基密度。在此基础上,分别固定以及联合固定细胞外基质成分中的重要生物分子层粘连蛋白(Ln)和纤连蛋白(Fn)。最后通过体外人脐静脉血管内皮细胞(HUVEC)原代培养实验评价未处理的Ti-O薄膜、注入后的Ti-O薄膜以及固定生物分子后的Ti-O薄膜表面的内皮细胞相容性,采用光学显微镜观察细胞形态。
     接触角结果显示,注入后的Ti-O薄膜较之未处理的Ti-O薄膜接触角减小,亲水性增加。酸性橙Ⅱ染色法及XPS结果显示经过注入处理后可在Ti-O薄膜表面产生亲水性基团-NH_2。SEM及AFM结果显示注入后的Ti-O薄膜表面粗糙度增加。免疫荧光染色结果显示在经过注入处理的Ti-O薄膜表面成功地分别固定了Ln、Fn,并且Ln和Fn联合固定成功。
     体外人脐静脉内皮细胞培养实验结果表明,Ti-O薄膜本身具有一定的内皮细胞亲和性,经过氨等离子注入后的Ti-O薄膜对细胞生长有良好的促进作用,在经过注入处理的Ti-O薄膜表面固定Ln和Fn能进一步促进内皮细胞的生长,且在经过注入处理的Ti-O薄膜表面联合固定层粘连蛋白和纤连蛋白促内皮化效果显著,优于表面固定单种蛋白的方法。
     以上试验结果表明,离子注入可以在Ti-O表面引入功能基团氨基,并且同时可以改变薄膜表面的亲水性、粗糙度等性质,可在一定程度上促进内皮细胞的黏附。在具有氨基基团的Ti-O薄膜表面固定Ln和Fn对内皮细胞的生长有良好的促进作用,且在具有氨基基团的Ti-O薄膜表面联合固定层粘连蛋白和纤连蛋白促内皮化效果更为显著。因此,在Ti-O薄膜表面固定多种蛋白是促其表面内皮化的有效方法。
In this work,Ti-O films were synthesized by Unbalance Magnetron Sputtering on silicon substrates,and then treated by plasma immersion ion implantation(PⅢ) using ammonia gases in order to introduce amino group to Ti-O film's surface.The structure and the chemical composition of the surface were analysed by atomic force microscopy(AFM) and X-ray photoelectron spectroscopy(XPS).The density of amino group on the surface of treated Ti-O films can be rationed by Acid OrangeⅡ.After that,laminin(Ln) and fibronectin (Fn) were immobilized to the surface based on the amido group.The morphology of endothelial cells was observed by optical microscopy.In the end,human umbilical vein endothelial cells(HUVEC) primary culture experiments were adopted in vitro to evaluate the compatibility of the endothelial cells on the surface of the untreated Ti-O films、PⅢ-treated Ti-O films and the Ti-O films immobilized by biomolecules.The morphology of endothelial cells was observed by optical microscopy.
     The contact angle of PⅢ-treated Ti-O films surface was lower than that of the untreated Ti-O films.It indicates that the wettability of PⅢ-treated Ti-O films is a little higher than the untreated Ti-O films.The Acid OrangeⅡand XPS results show that the functional group of amido has been introduced to the surface of Ti-O film by plasma immersion ion implantation.The results of SEM and AFM suggest that the roughness of the PⅢ-treated Ti-O films surface has been increased.The result of immunofluorescence indicates that laminin and fibronectin has been immobilized to the PⅢ-treated Ti-O film surface.
     Endothelial cell culture experiment suggests that,the amino groups are helpful for the adhesion and proliferation of HUVEC.The Laminin and Fibronectin can further enhance HUVEC's adhesion,proliferation,and growth. According to the endothelial cell culture experiment,compared to the PⅢ-treated Ti-O films immobilized with Laminin or Fibronectin only,the PⅢtreated Ti-O films immobilized with both laminin and fibronectin can promote the adhesion and growth of endothelial.
     All these results indicated that the ion implantation can introduce functional group onto the surface of Ti-O film to change its properties like wettability and roughness,so it can increase the cell's adhesion.Laminin and fibronectin can be immobilized onto the surface of Ti-O film by amino group.Laminin and fibronectin can promote the adhesion and growth of endothelial cells.This work provide a good way for surface endothelialization by immobilizing laminin and fibronectin onto the surface of PⅢ-treated Ti-O film.
引文
[1]顾其胜,侯春林等.实用生物医用材料学[M].上海科学技术出版社,2005:3.
    [2]俞耀庭.生物医用材料[M].天津大学出版社,2000:1.
    [3]奚炎斐.生物医用材料现状和发展趋势[J].中国医疗器械信息.2006,12(5):1-5.
    [4]李世普.生物医用材料导论[M].武汉理工大学出版社,2000:1.
    [5]郇春艳,胡平.组织工程用生物材料的表面修饰技术[J].化工进展.2003,22(1):13-17.
    [6]吴志宏,蒋波.辐射技术在生物材料领域的研究及应用进展[J].材料导报.2005,19(2):27-30.
    [7]田继文,陈敏.低温等离子体对生物材料表面改性固定生物分子的研究进展[J].材料导报.2005,19(3):10-12.
    [8]黄永刚,陈敏等.低温等离子体技术在生物材料表面改性中的应用[J].材料导报.2004,18(2):72-74.
    [9]Xiao S J,Marcus T,et al,Covalent Attachment of Cell-Adhesive,(Arg-Gly-Asp)-Containing Peptides to Titanium Surfaces,Langmuir 1998,14,5507-5516.
    [10]Ganapathy R,Manolache S,et al.J Biomater Sci Polymer Edn.2001,12(9):1027-1032.
    [11]赵治国,万怡灶.生物材料的离子注入表面改性[J].金属热处理.2006,31(8):4-7.
    [12]Shirkhanzaden M.J Mater Sci Mater Med[J].1995,6:90.
    [13]Ishizawa H,Ogino M.Formation and characterization of anodic titanium oxide films containing Ca and P[J].J Biomed Mater Res.1995,29:65-72.
    [14]李建波,许群.层-层自组装技术的发展与应用[J].世界科技研究与发展.2007,29(3):31-38.
    [15]舒瑶,欧国敏.钛种植体表面生物化修饰方法研究进展[J].实用医院临床杂志.2008,5(3):115-117.
    [16]Tan Q G,Ji J,et al.Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant.Biomaterials.2003,24(25):4699-4705.
    [17]王贻华,胡正琼.离子注入与分析基础[M].航空工业出版社.1992,7:1.
    [18]杨征,黄承敏等.等离子浸没注入对纯钛及钛合金表面耐腐蚀性能影响的研究[J].华西医学.2008,23(3):473-474.
    [19]刘瑶,万怡灶.碳离子注入纯钛表面改性的研究[J].材料热处理,2007,36(12):11-15.
    [20]San J,Zhu B,Liu J.Surface and Coatings Technology[J],2001,138:242-249.
    [21]陈放,吴洪才.离子注入对聚合物材料表面改性的研究与应用进展[J].高分子材料与工程,2005,21(3):50-53.
    [22]Xie Y T,Liu X Y,et al.Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation[J].Biomaterials.2005,26:6129-6135.
    [23]Zhao X B,Liu X Y,et al.Effects of plasma treatment on bioactivity of TiO2 coatings[J].Surface & Coatings Technology.2007,201:6878-6881.
    [24]黄楠等.生物材料用Ti合金的PSⅡ表面改性的初步研究[C].第三届全国青年生物医学工程学术大会论文集,1993.
    [25]黄楠,杨萍等.生物材料表面工程的进展.中国科学基金.1999,(2):69-72.
    [26]景凤娟,黄楠.与血液接触材料表面活化的研究进展.材料导报.2003,17(9):187-190.
    [27]何天白.功能高分子与新技术[M].化学工业出版社,2001,01:96-97.
    [28]俞耀庭.生物医用材料[M].天津大学出版社,2000,12:227.
    [29]张安兄,吕德龙.生物材料的血液相容性[J].上海生物医学工程.2004,25(3):53-59..
    [30]罗兰,窦宏仪.抗凝血生物医用聚氨酯材料研究进展[J].热固性树脂,2005,20(3):42-46.
    [31]Kazuhiko Ishihara,Hisuko Hanyuda,et al.Antithrombotics and antiplatelet agent in vitro blood compatibility of modified polyurethanes[J].Biomaterials,1995,16(11):873-79.
    [32]Kazukiko Ishihara,Kikuko Fukumoto,et al.Antibacterial and antithrombogenic materials in polyurethanes[J].Artificial Organs,1994,18:559-564.
    [33]殷红英.小口径人工血管及其内皮化研究进展[J].重庆医学.2007,36(22):2337-2340.
    [34]张京川.人工血管表面内皮细胞种植研究[J].国外医学生物医学工程分册,1993.16(5):264-267.
    [37]Anselme K.Osteoblast adhension on biomaterials[J].Biomaterials.2000,21:667-681.
    [36]Lau K W,Johan A,et al.A stent is not just a stent:Stent construction and design do matter in its clinical performance[J].Singapore Med J.2004,45(7):305.
    [37]顾汉卿,徐国风.生物医学材料学[M].天津:天津科技翻译出版社.1993.40-45;
    [38]刘录山,王贵学.心血管移植物体外内皮化研究进展[J].中国医疗器械信息.2006.12(7):28-31.
    [39]Rosenman J E,Kempczinski R F,et al.Kinetics of endothelial cell seeding [J].J Vasc Surg,1985,2(6):778.-784.
    [40]武忠,赁可.人脐静脉内皮细胞在RGD肽聚酯材料表面的黏附稳定性研究[J].生物医学工程杂志.2005,22(3):456-458.
    [41]Shelton R M,Rasmussen A C.Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts[J].Bomaterials.1998,9:24-29.
    [42].Suzuki Y,Kusakabe M,et al.Endothelial cell adhesion to ion implanted polymers[J].Nuclear Instruments and Methods in Physics Research Section B,1992,65(1-4):142-147.
    [43]Masaya Iwaki.Ion surface treatments on organic materials[J].Nuclear Instruments and Methods in Physics Research B,2001,175-177:368-374.
    [44]Shi Q,Bhattacharya V,et al.Utilizing granulocyte colony-stimulating factor to enhance vascular graft endothelialization from circulating blood cells[J].Ann Vasc Surg.2002,16(3):314-320.
    [45]He W,Yong T,et al.Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers:potential vascular graft for blood vessel tissue engineering.Tissue Eng.2005.11(9-10):1574-1588.
    [46]林全愧,计剑等.层层自组装技术在生物医用材料领域中的应用研究进展[J].高分子通报.2006,8:58-63.
    [47]杨荣,孔祥清等.urocortin促进心血管内植入材料表面内皮细胞生长的研究[J].南京医科大学学报(自然科学版).2009,26(9):803-806.
    [48]武忠,石应康等RGD肽对内皮细胞在聚酯材料表面粘附、增殖的影响[J].北京生物医学工程.2003,22(4):278-280.
    [49]蔡开勇,姚康德.组织工程生物材料的表面修饰[J].中国康复理论与实践.2002,8(5):263-267.
    [50]苏葆辉,冉均国,陈治清.低温等离子体处理聚羟基磷酸钙钠提高生物活性的研究[J].航天医学与医学工程,2003,16(1):689.
    [51]陈治清.低温等离子体活化处理骨修复材料的组织学研究[J].中华口腔医学杂志.1998,33(5):294-296.
    [52]Inagaki N,Narushima K,et al.Implantation of amino functionality into amorphous carbon sheet surfaces by NH_3 plasma[J].Carbon,2007,45:797-804.
    [53]Sipehia R.The enhanced attachment and growth of endothelial cells on anhydrous ammonia gaseous plasma modified sur faces of polystyrene and poly(tetrafluoroethylene)[J].Biomat Art Cells Org.1990,18:437-446.
    [54]白薇,陈治清等.氨基注入钛表面及其微观分析[J].华西口腔医学杂志,2003,21(1):22-24.
    [55]Tomasini R.On the identity of vitronectin and S-Protein:Immunological crossreactivity and functional studies[J].Blood.1986,68:737.
    [56]Pierchbacher M D,Rouslahti E.Cell attachment activity of fibronect in can be duplicated by small synthetic fragments of the molecule[J].Nature,1984,309:30-33.
    [57]Rouslahti E,Pierschbacher M D.New perspectives in cell adhesion:RGD and integrins[J].Science,1987,238:49-497.
    [58]周序珑,邓漪平.细胞外基质对内皮细胞粘附功能的影响及意义[J].蚌埠医学院学报,1998,23(1):1-3.
    [59]贝建中,屈雪等.生物材料与细胞的相互作用[J].北京生物医学工程.2005,24(1):64-70.
    [60]赵振国.接触角及其在表面化学研究中的应用[M].化学研究与应用.2000,12(4):370-374.
    [61]Moulder J E,Stickle W F,et al.Handbook of X-ray ohotoelectron spectroscopy.Perkin- Elmer Corporation,(1992);
    [62]Conrad J R,Radtke J L.Plasma source ion implantation technique for surface modification of materials[J].Appl Phys,1987,62(11):4591-4596.
    [63]Ensinger W.Plasma immersion ion implantation Ti-O for metallurgical and semiconductor research and development[J].Nuclear Instruments and Methods in Physics Research B.1996,120:270-281.
    [64]赵青.等离子体浸没离子注入(PⅢ)技术在现代材料表面改性中的应用及发展[J].真空,2000,2(1):40-43.
    [65]汤宝寅.等离子体源离子注入_Ⅰ_原理和技术[J].表面技术1994,1:41-46.
    [66]Kim J,Jung D,et al.Quantitative analysis of surface amine groups on plasma-polymerized ethylenediamine films using UV-visible spectroscopy compared to chemical derivatization with FT-IR spectroscopy,XPS and TOF-SIMS[J].Applied Surface Science.2007,253:4112-4118.
    [67]Laksono E,Galtayries A,et al.Adsorption of NH_3 on oxygen pre-treated Ni(1 1 1)[J].Surface Science.2003,530(1-2):37-54.
    [68]Isabelle Louis Rose,Christophe Me'thivier,et al..Reduction of N_2O by NH_3 on polycrystalline copper and Cu(1 1 0):A combined XPS,FT-IRRAS and kinetics investigation[J].Applied Catalysis B:Environmental.2005,62(1-2):1-11.
    [69]Wang G J,Liu Y W,et al.Surface modification and characterizations of basalt fibers with non-thermal plasma[J].Surface & Coatings Technology.2007,201(15):6565-6568.
    [70]Toth A,Bell T,et al.Surface modification of polyethylene by low keV ion beams[J].Nucl.Instr.and Meth.in Phys Res B.1999,148(1-4):1131- 1135.
    [71]Md.Nizam Uddin,Hirofumi Notomi,et al.Finding a promising precursor for chemical vapor deposition of carbon nitride thin films[J].Thin Solid Films.2004,(464-465):70 -174.
    [72]蔡谨,王文序.染色法定量检测氨气等离子体改性膜表面的氨基[J].浙江大学学报,1999,33(1):56-58.
    [73]Richey T,Iwata H,et al.Surface modification of polyethylene balloon catheters for local drug delivery[J].Biomaterials.2000,21:1057-1065.
    [74]Jing X Y,Chen S D.Guide of infrared spectroscopy.Tianjing Sci and Technol Press.1992:1-120.
    [75]许屏.荧光和免疫荧光染色技术及应用[M].人民卫生出版社.1983第1版:24.
    [76]田仁来.Ti-O薄膜表面内皮细胞化研究.西南交通大学硕士论文.2004.
    [77]王露.钛氧膜表面纤连蛋白的固定及内皮细胞生长行为研究.西南交通大学硕士论文.2006.
    [78]葛胜男.钛氧薄膜表面层粘连蛋白修饰以及内皮化研究.西南交通大学硕士论文.2007.
    [79]樊珊.钛氧薄膜材料表面层粘连蛋白与纤连蛋白联合固定以及内皮化研究.西南交通大学硕士论文.2007.
    [80]岳喜成.离子注入聚醚砜薄膜的介电频谱分析[J].半导体技术.2005,30(5):24-27..
    [81]尹光福,周大利等.P Ⅲ逐级能量注入制备生物梯度材料的组成分布[J].生物医学工程学杂志,2003,20(1):104-106.
    [82]牛继南,强颖怀.氮离子多级注入钛膜的性能初步研究[J].中国科技论文在线.
    [83]Kuo S M,Tsai S W,et al.Plasma-modified nylon meshes as supports for cell culturing[J].Art Cell Blood Subs and Immo Biotech,1997,25:551-562.
    [84]Jagielski J.Ion implantation for surface modification of biomaterials[J].Surface & Coatings Technology,2006,200:6355-6361.
    [85]陈俊英,冷永祥等.Ti(Ta)O_2薄膜的表面形貌对血管内皮细胞生长量影响的研究[J].功能材料.2004,35:2487-2489.
    [86]Tze Wen Chung,et al.Enhancement of the growth of human endothelial cell by surface roughness at nanometere scale.Biomatenials.2003,24:4655- 4661.
    [87]梁迎春,宋代平等.钛系生物医用材料表面粗糙度影响细胞黏附的新进展[J].机械工程学报,2008,44(7):6-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700