钛合金微弧氧化电参数对成膜特性及表面性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有优异的比强度,良好的耐腐蚀性能、生物相容性等性能,但是,钛合金极差的摩擦磨损性能制约了其在工程中的应用。微弧氧化处理是改善钛合金耐摩擦磨损性能的有效方法。本文在Na_2SiO_3-(NaPO_3)_(6-)Na_2MoO_4溶液中,使用恒定脉冲电流和恒定脉冲电压两种控制模式制备Ti_6Al_4V合金的微弧氧化陶瓷层,分析了微弧氧化处理的电参数特性。使用扫描电子显微镜、X射线衍射、涡流测厚、超显微硬度、动态极化曲线、球-盘摩擦等方法分别研究电参数对陶瓷层形貌、相结构、厚度、显微硬度、耐腐蚀及摩擦学性能的影响,研究了陶瓷层的抗变形能力、拉伸强度以及电绝缘性能。
     研究结果表明,钛合金微弧氧化过程存在三个阶段:第一阶段合金表面迅速生成一层厚约10μm的陶瓷层;第二阶段微弧放电区域不断扩展,陶瓷层厚度缓慢增长;放电区域扩展到整个表面后为第三阶段,陶瓷层厚度随时间快速增长。
     钛合金微弧氧化陶瓷层主要由锐钛矿相和金红石相的TiO_2组成,含有少量无定形相和Ti的不饱和氧化物。随着处理时间延长或者脉冲能量升高,金红石相含量增加。溶液中的成分参与成膜的化学反应,陶瓷层中含有Si、P等元素,Si元素在靠近外层处含量较高,而P元素则在内层偏聚;加入负向脉冲后,外层的Si元素含量明显升高。
     经过微弧氧化处理后,钛合金表面的摩擦学性能大幅提高,微弧氧化陶瓷层摩擦系数相对于基体显著降低。对动态极化曲线分析表明,存在最佳的处理时间和负向脉冲参数,以获得较好的耐腐蚀性能;较小的占空比和正向脉冲电压条件下获得的陶瓷层耐蚀性能更好。其中处理时间为20min和占空比为4%的陶瓷层腐蚀电流相对于基体降低了4个数量级。
     钛合金微弧氧化陶瓷层具有良好的机械性能,厚度大于30μm的陶瓷层在500kg压力作用下能保持与基体的良好结合。工件承受拉应力变形时,陶瓷层直到断裂破坏时才开始从基体上剥离。在金属表面原位形成陶瓷层后,减少了工件有效承受载荷的面积,拉伸强度降低了约5%。
     电击穿试验结果表明,钛合金微弧氧化陶瓷层具有良好的电绝缘性能,其绝缘电压可达到800V以上。
Titanium alloys have high strength-to-weight, excellent corrosion resistance and biocompatibility. However, the poor tribological behavior has seriously restricted extensive applications of titanium in various industry sectors. As a novel surface modification technique, micro-arc oxidation (MAO) is an effective method for improvement wear resistance of titanium alloys.
     In this work, MAO technology was applied to fabricate ceramic coatings on Ti6Al4V alloys to improve surface properties of Ti alloy in Na_2SiO_(3-)(NaPO_3)_(6-)Na_2MoO_4 solution by constant positive pulse voltage and constant positive pulse current modes, and electrical characteristics of these two different process modes were discussed. Microstructure, phase composition, coating thickness, hardness, corrosion resistance and wear resistance were systematically investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), thickness tester based on eddy principle, dynamic ultra micro hardness tester, electrochemistry tester and ball-on-disk tribometer, respectively. In addition, tensile-strength, anti-deforming capability and electric insulation ability of MAO coatings were also investigated.
     The results show that there exists three stages during micro-arc oxidation processing: at the initial stage, ceramic coating with a thickness of 10μm quickly formed on the surface of titanium alloy. Then, in the second stage, micro-arc discharge zone spreads on the surface, the thickness of coating increased slowly. And the growth rate of ceramic coating become relatively rapid at the last stage in the duration of treatment time.
     The MAO coatings of Ti6Al4V alloy are mainly composed of meta-stable anatase, stable rutile phase, as well as a small quantity of amorphous phase and unsaturated oxide. The content of rutile phase increases with increasing the oxidizing time or pulse energy. The elements in the solution such as Si and P can participate in chemical reaction to form the oxide coatings. High P content can be obtained in the inner layer. In contrast, the outer layer has a high Si content which contributes to higher negative pulsed bias.
     The wear resistance is greatly improved by MAO treatment. The friction coefficient of MAO coatings is significant lower than that of untreated Ti6Al4V alloy. The results of electrochemical corrosion indicate that there exits an optimal treatment time and negative pulse parameters, which give a better corrosion resistance. More important, good corrosion resistance samples can be obtained by low duty cycle and positive pulse voltage. For instance, the corrosion current decreases by about four orders for the sample treated by duty cycle of 4% and processing time of 20min.
     The MAO coatings possess excellent mechanical properties. A coating with the thickness of more than 30μm shows good adhesion to the substrate even at a pressure of 500kg. When the samples are under the tensile deformation, delamination occurs until the rupture of coatings. The tensile strength of the treated samples decreases by about 5% compared with that of titanium alloy substrates due to the decrease of the bearing area resulting from situ-formed coatings.
     The MAO coatings of the titanium alloy possess good electric insulation ability during the breakdown test. The insulation voltage can reach to as high as 800V.
引文
1 R. R. Boyer. An Overview on the Use of Titanium in the Aerospace Industry. Materials Science and Engineering A. 1996, 213:103~114
    2罗国珍,周廉,邓炬.中国钛的研究与发展.稀有金属材料与工程. 1997, 26:1~6
    3于思荣.生物医学钛合金的研究现状及发展趋势.材料科学与工程. 2000, 18(2):131~135
    4姚若浩.关于钛及钛合金的摩擦与润滑.稀有金属材料与工程. 1979, 4(5):80~85
    5 P. Budzynski, A. A. Youssef and J. Sielanko. Surface Modification of Ti6Al4V Alloy by Nitrogen Ion Implantation. Wear. 2006, 261(11-12):1271~1276
    6王浪平,汤宝寅,王小峰等.钇的预注入对Ti6Al4V合金氮等离子体浸没离子注入行为的影响.中国稀土学报. 2000, 18(4):337~340
    7 X. B. Tian, C. Z. Gong and S. Q. Yang, et al. Oxygen Plasma Ion Implantation of Biomaterial Titanium Alloy. IEEE Transactions on Plasma Science. 2006, 34(4):1235~1240
    8 J. S. Selvan, K. Subramanian. Laser Boronising of Ti6Al4V as a Result of Laser Alloying with Pre-placed BN. Materials Science and Engineering A. 1999, 260:178~187
    9 X. W. Wang, J. Y. Wang and P. Wu, et al. The Investigation of Internal Friction and Elastic Modulus in Surface Nanostructured Materials. Materials Science and Engineering A. 2004, 370:158~162
    10 W. P. Tong, N. R. Tao and Z. B. Wang, et al. Nitriding Iron at Lower Temperature. Science. 2003, 299:686~688
    11 T. P. Mollart, J. Haupt. Tribological Behavior of Homogeneous Ti/B/N,Ti/B2N2C and TiN/h-BN/TiB2 Multilayer Coatings. Surface Coatings and Technology. 1996, 86-87:231~236
    12周之骏,宁崇德.钛的性质及其应用.高等教育出版社. 1993:1~8
    13 J. R. Myers.钛及钛合金的腐蚀特性和应用.稀有金属工程与材料. 1986, 5:48~54
    14郭敏,彭乔.钛的应用与腐蚀.全面腐蚀控制. 2000, 14(2):20~24Deposition. Journal of American Ceramic Society. 1977, 56(6):563~566
    41 S. Ikonopisov. Theory of Electrical Breakdown During Formation of Barrier Anodic Films. Electrochimica Acta. 1977, 22(10):1077~1082
    42 S. Ikonopisov, A. Girginov and M. Machkova. Post-Breakdown Anodization of Aluminium. Electrochimica Acta. 1977, 22(11):1283~1286
    43 J. M. Albella, I. Montero and J. M. M. Duart. Electron Injection and Avalanche during the Anodic Oxidation of Tantalum. Journal of the Electrochemical Society. 1984, 131(5):1101~1104
    44 J. M. Albella, I. Montero and J. M. M. Duart. Anodization and Breakdown Model of Ta2O5 Films. Thin Solid Films. 1984, 125(1-2):57~62
    45 M. D. Klapliv. State of An Electrolytic Plasma in the Process of Synthesis of Oxides Based on Aluminum. Material Science. 1995, 31(4):494~499
    46 A. G. Rakoch, V. V. Khokhlov and V. A. Bautin, et al. Model Concepts on the Mechanism of Microarc Oxidation of Metal Materials and the Control Over This Process. Protection of Metals. 2006, 42(2):158–169
    47 W. Krysmann, P. Kurze and K. H. Dittrich. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF). Crys Res and Tech. 1984 19(7):973 ~ 978
    48 F. Patcas, W. Krysmann. Efficient Catalysts with Controlled Porous Structure Obtained by Anodic Oxidation under Spark-Discharge. Applied Catalysis a-General. 2007, 316(2):240~249
    49 P. I. Butyagin, Y. V. Khokhryakov and A. I. Mamaev. Microplasma Systems for Creating Coatings on Aluminium Alloys. Materials Latters. 2003, 57(11):1748~1751
    50 P. Kurze, W. Krysmann and J. Schreckenbach. Colored ANOF Layers on Aluminum. Crrest Research Technology. 1987, 22(1):53~58
    51龙北玉,吴汉华,龙北红等.电解液对铝合金微弧氧化陶瓷膜相组成和元素成分的影响.吉林大学学报(理学版). 2005, 43(1):68~72
    52薛文斌,王超,马辉等. TA2纯钛表面微弧氧化膜的成分和相结构分析.稀有金属材料与工程. 2002, 31(5):345~348
    53 I. V. Lukiyanchuk, V. S. Rudnev and V. G. Kuryavyi, et al. Anodic-Spark Layerson Aluminumand Titanium Alloys in Electrolytes with Sodium Phosphotungstate. Russian Journal of Applied Chemistry. 2004,77(9):1460~1468
    54蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性.稀有金属材料与工程. 2005, 34(3):393~396
    55闫凤英,石玉龙,周璇.微弧氧化电解液配方改良的初步研究.电镀与涂饰. 2003, 22(1):5~7
    56郑宏晔,王永康,曹立等. Na2WO4对铝合金表面微弧氧化陶瓷层性能的影响.浙江大学学报(工学版). 2005, 39(5):742~745
    57 J. Liang, B. Guo and J. Tian, et al. Effect of Potassium Fluoride in Electrolytic Solution on the Structure an Properties of Microarc Oxidation Coatings on Magnesium Alloy. Applied Surface Science. 2005, 252:345~351
    58吕宪义,金曾孙,吴汉华.阴/阳极电流密度对铝合金微弧氧化陶瓷膜特性的影响.吉林大学学报(理学版). 2005, 43(1):64~67
    59吴汉华,金曾孙,龙北红等.阴/阳极电流密度对铝合金微弧氧化陶瓷膜耐蚀性的影响.材料保护. 2004, 37(12):9~10
    60郭洪飞,安茂忠,徐莘等.镁合金微弧氧化工艺条件对陶瓷膜耐蚀性能得影响.材料工程. 2006, 3:29~32
    61辛世刚,宋立昕,赵荣根等.铝基复合材料微弧氧化陶瓷膜的组成与性能.无机材料学报. 2006, 21(2):494~498
    62何宏辉,曾庆圣,王天石等.镁合金等离子体微弧氧化过程负压调控的研究.材料热处理学报. 2006, 27(2):118~121
    63唐光昕,张人佶,颜永年.多孔二氧化钛涂层的表面形貌.清华大学学报(自然科学版). 2004, 44(11):1445~1447
    64薛文斌,邓志威,陈如意等. LY12铝合金微弧氧化陶瓷膜的纳米压入研究.稀有金属材料与工程. 2001, 30(14):281~285
    65 J. Liang, L. Hu and J. C. Hao. Characterization of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Silicate and Phosphate Electrolytes. Applied Surface Science. 2007, 253:4490~4496
    66 F. Chen, H. Zhou and B. Yao, et al. Corrosion Resistance Property of the Ceramic Coating Obtained through Microarc Oxidation on the AZ31 Magnesium Alloy Surfaces. Surface and Coatings Technology. 2006,
    201:4905~4908
    67辛世刚,宋立昕,赵荣根等.微弧氧化Al-Si-O陶瓷涂层的结构与强度.无机材料学报. 2006, 21(2):493~498
    68 L. R. Krishna, K. R. C. Somaraju and G. Sundararajan. The Tribological Performance of Ultra-Hard Ceramic Composite Coatings Obtained Through Microarc Oxidation. Surface and Coatings Technology. 2003, 163-164:484~490
    69蒋百灵,夏天,时惠英等.镁合金微弧氧化陶瓷层的绝缘强度及耐蚀性的研究.材料热处理学报. 2005, 26(2):82~85
    70沈德久,廖波,王玉林等.影响铝微弧氧化陶瓷层电绝缘性的工艺因素探讨.材料开发与应用. 2002, 17(4):22~23
    71 S. H. Awad, H. C. Qian. Deposition of Duplex Al2O3/TiN Coatings on Aluminum Alloys for Tribological Applications Using a Combined Microplasma Oxidation (MPO) and Arc Ion Plating (AIP). Wear. 2006, 260:215~222
    72 X. Nie, A. Leyland and A. Matthews. Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using A Hybrid Technique of Micro-arc Oxidation and Electrophoresis. Surface and Coatings Technology. 2000, 125:407~414
    73童洪辉,金凡亚.微弧氧化与磁控溅射复合处理的钛合金表面耐磨性研究.材料保护. 2005, 38(7):18~20
    74马楚凡,李冬梅,李贺军等.微弧氧化和电泳沉积复合制备羟基磷灰石/TiO2复合涂层及其生物学特性.硅酸盐学报. 2005, 33(3):323~329
    75马楚凡,李冬梅,李贺军等.微弧氧化方法在钛表面注入钙磷离子及对成骨细胞早期附着的影响.第一军医大学学报. 2005, 25(1):62~65
    76付涛,憨勇,黄平等.微弧氧化-水热合成生物活性二氧化钛层的结构与性能.稀有金属材料与工程. 2002, 31(2):115~117
    77高殿奎,沈德久,王玉林.低碳钢热浸镀铝微弧氧化陶瓷厚度研究.材料保护. 2001, 34(3):26~27
    78解世岳,王从曾,寇斌达等.碳钢热浸镀铝及微弧氧化研究.轻合金加工技术. 2003, 31(9):35~38
    79李全军,吴汉华,汪剑波等.脉冲频率对纯钛微弧氧化膜生长特性的影响.无机材料学报. 2006, 21(2):488~492
    80金凡亚,童洪辉,沈丽如等.钛合金微弧氧化陶瓷膜微观特性的分析.材料保护. 2005, 38(8):42~44
    81薛文斌,邓志威,陈如意等.钛合金在硅酸盐溶液中微弧氧化陶瓷膜的组织结构.金属热处理. 2000, (2):5~7
    82朱祖芳.有色金属的耐腐蚀性及其应用.化学工业出版社. 1995:61~131
    83毕冬梅,龙北玉,吴汉华等.钛合金微弧氧化膜形成过程中的特性研究.云南大学学报(自然科学版). 2005, 27(5A):548~551
    84 A. A. Voevodin, A. L. Yerokhin and L. Yunimov. Characterization of Wear Protective Al-Si-O Coatings formed on Al Based Alloys by Micro-Arc Discharge Treatment. Surface and Coatings Technology. 1996, 86-87:516~521
    85 Y. M. Wang, B. L. Jiang and L. X. Guo, et al. Tribological Behavior of Microarc Oxidation Coatings Formed on Titanium Alloys Against Steel in Dry and Solid Lubrication sliding. Applied Surface Science. 2006, 252:2989~2998
    86王亚明,蒋百灵,雷廷权等. Ti6Al4V表面微弧氧化陶瓷涂层的结构和摩擦学特性.摩擦学学报. 2003, 23(5):371~375
    87 P. Molitor, V. Barron and T. Young. Surface Treatment of Titanium for Adhesive Bonding to Polymer Composites: A Review. Internation Journal of Adhesion and Adhesives. 2001, 21:129~136
    88王晓洁,郭天文,张玉梅等.钛表面微弧氧化处理对钛瓷结合强度的影响.实用口腔医学杂志. 2005, 21(2):237~241
    89蒋百灵,张菊梅,时惠英.钛合金微弧氧化膜表面形貌对膜/环氧树脂结合强度的影响.中国有色金属学报. 2004, 14(4):539~542
    90张昱昕,憨勇,黄平等.微弧氧化钛膜的结合强度与生物活性.硅酸盐学报. 2004, 32(2):122~126
    91 L. H. Li, Y. M. Kong and H. W. Kim, et al. Improved Biological Performance of Ti Implants due to Surface Modification by Micro-arc Oxidation. Biomaterials. 2004, 25:2867~2875
    92王桂芹,陈晓东,段玉平等.钛酸钡陶瓷材料的制备及电磁性能研究.无机材料学报. 2007, 2:293~297
    93李文芳,韩冰,彭继华.微弧氧化法制备BaTiO3薄膜的微观结构分析.材料开发与应用. 2007, 22(2):33~36
    94 S. V. Gnedenkov, P. S. Gordienko and O. A. Khrisanfova, et al. Formation of BaTiO3 Coatings on Titanium by Microarc Oxidation Method. Journal of Materials Science and Technology. 2002, 37:2263~2265
    95姜兆华,李文旭,闫久春.微等离子体氧化法制备钛酸钡陶瓷膜.材料工程. 2002, (2):34~37
    96 Y. M. Wang, D. C. Jia and L. X. Guo, et al. Effect of Discharge Pulsating onMicroarc Oxidation Coatings Formed on Ti6Al4V Alloy. Materials Chemistry and Physics. 2005, 90(1):128~133
    97唐光昕,张人佶,颜永年等.电流密度对复合氧化法制备涂层结构的影响.材料研究学报. 2004, 18(4):435~442
    98 Y. M. Wang, T. Q. Lei and B. L. Jiang, et al. Growth, Microstructure and Mechanical Properties of Microarc Oxidation Coatings on Titanium Alloy in Phosphate-Containing Solution. Applied Surface Science. 2004, 233:258~267
    99王亚明,蒋百灵,雷廷权等.电参数对Ti6Al4V合金微弧氧化陶瓷膜结构特性的影响.无机材料学报. 2003, 18(6):1324~1330
    100黄平,徐可为,憨勇.钛合金表面微弧氧化膜的特点及成膜分析.稀有金属材料与工程. 2003, 32(4):272~275
    101 X. T. Sun, Z. H. Jiang and Z. P. Yao, et al. The Effects of Anodic and Cathodic Processes on the Characteristics of Ceramic Coatings Formed on Titanium Alloy through the MAO Coating Technology. Applied Surface Science. 2005, 252:441~447
    102王亚明,雷廷权,蒋百灵等.氧化处理时间对Ti6Al4V微弧氧化陶瓷膜的影响.材料科学与工艺. 2003, 11(3):244~247
    103唐光昕,张人佶,颜永年等.时间参数对复合氧化法制备多孔二氧化钛涂层结构的影响.稀有金属材料与工程. 2005, 34(5):821~825
    104 Y. M. Wang, B. L. Jiang and T. Q. Lei, et al. Dependence of Growth Features of Microarc Oxidation Coatings of Titanium Alloy on Control Modes of Alternate Pulse. Materials Letters. 2004, 58:1907~1911
    105 M. Cormier, F. Claisse. Beta-alpha Phase Transformation in Ti and Ti-O Alloys. Journal of the Less Common Metals. 1974, 34(2):181~189
    106 H. Onodera, T. Yokogawa. A Thermodynamic Analysis of TheαandβPhases in The Ti-O System. Scripta Metallurgica et Materialia. 1990, 24(6):1119~1123
    107 G. L. Yang, X. Y. Lu and Y. Z. Bai, et al. The Effects of Current Density on The Phase Composition and Microstructure Properties of Micro-Arc Oxidation Coating. Journal of Alloys and Compounds. 2002, 345:196~200
    108 H. H. Wu, X. Y. Lu and B. H. Long, et al. The Effects of Cathodic and Anodic Voltages on the Characteristics of Porous Nanocrystalline Titania Coatings Fabricated by Microarc Oxidation. Materials Letters. 2005, 59:370~375
    109庞佑霞,黄伟九,谭援强等.工程摩擦学基础.煤炭工业出版社.2004:30~33
    110 W. G. Zhang, C. T. Wang and W. M. Liu. Characterization and Tribological Investigation of Sol-gel Ceramic Films on Ti6Al4V. Wear. 2006, 260:379~386
    111郭宝刚,陈建敏,梁军等. Ti6Al4V微弧氧化陶瓷膜的微观结构及摩擦磨损性能研究.摩擦学学报. 2005, 25(6):510~515
    112 S. Krol, L. Ptacek and Z. Zalisz, et al. Friction and Wear Properties of Titanium and Oxidised Titanium in Dry Sliding Against Hardened C45 Steel. Journal of Materials Processing Technology. 2004, 157-158:364~369
    113 Y. J. Zhang, C. W. Yan and F. H. Wang, et al. Study on The Environmentally Friendly Anodizing of AZ91D Magnesium Alloy. Surface and Coatings Technology. 2002, 161:36~43
    114魏同波,田军,阎逢元. LY12铝合金微弧氧化陶瓷层的结构和性能.材料研究学报. 2004, 18(2):161~166
    115蒋百灵,张淑芬,吴国建等.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性.中国有色金属学报. 2002, 3:454~457
    116关振铎,张中太,焦金生.无机材料物理性能.清华大学出版社. 1992:345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700