Ti/DLC和W/DLC纳米多层膜PIIID制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用等离子体浸没离子注入与沉积(PIIID)技术在GCr15钢和2Cr13钢表面制备了Ti/DLC和W/DLC纳米多层薄膜,DLC、Ti和W层均通过PIIID技术中的阴极弧沉积方法来制备。实验过程中所有纳米多层膜的总厚度均为1.5μm,其调制周期从50nm增加到400nm。
     对制备的纳米多层膜进行了扫描电镜(SEM)、X射线衍射(XRD)、显微硬度、摩擦磨损、划痕和电化学腐蚀测试。SEM测试结果表明:纳米多层膜具有完整、清晰的调制层结构,但膜层界面处较模糊,存在成分的过渡层,这主要是由于PIIID过程中的离子注入的混合效应造成的。XRD测试结果表明这种方法制备的纳米多层膜均为非晶态薄膜。显微硬度测试结果表明:Ti/DLC和W/DLC纳米多层薄膜分别在小调制周期时显微硬度最低,在较大调制周期时的显微硬度最高。划痕试验表明:纳米多层薄膜均不同程度的改善了DLC膜和基体的结合力,不同调制周期薄膜的破裂方式明显不同,说明不同膜层的内应力差异很大。摩擦磨损实验结果表明:Ti/DLC和W/DLC纳米多层薄膜分别在小调制周期时摩擦磨损性能较好,其摩擦系数在磨擦10000转后保持稳定,而2Cr13钢基体上制备的DLC单层薄膜在摩擦2000转后摩擦系数就逐渐上升,从综合性能的表现看:纳米多层薄膜既保持了类金刚石(DLC)薄膜低摩擦系数的特性,又改善薄膜和基体的结合力。腐蚀实验表明:纳米多层膜均不同程度的提高了GCr15基体表面的腐蚀电位,Ti/DLC纳米多层膜较基体提升最高达19.4%,W/DLC纳米多层薄膜较基体提升最高达32.6%。Ti/DLC纳米多层膜对2Cr13钢基体表面的耐腐蚀性能没有明显的提高,W/DLC纳米多层膜在调制周期为200nm、300nm、400nm均不同程度的提高了2Cr13钢基体表面的耐腐蚀性能。
Using plasma immersion ion implantation and deposition (PIIID), Ti/DLC and W/DLC multilayer were synthesized on GCr15 and 2Cr13 steel. Diamond-like carbon (DLC), titanium, tungsten layers were synthesized by the pulsed cathodic arc plasma source in our PIIID facility. All multilayers have the same thickness of approximately 1.5μm, but its modulation period is varied from 50 to 400nm.
     The films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), micro-hardness, scratch and electrochemistry corrosion tests. The SEM result indicates that the as-synthesized multilayer has a good periodicity structure. However, the interface between neighbor layers is vague, which can be attribute to the effect of ion implantation. XRD results show that the Ti/DLC and W/DLC multilayers are both amorphous structures. The micro-hardness testing results reveal that the maximum micro-hardness of Ti/DLC and W/DLC multilayers lies at a large specific period. The minimal microhardness of Ti/DLC and W/DLC multilayers lies at a small specific period. Scratch test results show that the multilayer sturcture can improve the adhesion strength between the substrate and the surface modification layer. However, since the flake behavior of different multilayers is different, different multialyers should have different stress distribution. The tribological results show that Ti/DLC and W/DLC multilayers have a high wear resistance at a small specific period. The cut-through number of the Ti/DLC and W/DLC multilayers on 2Cr13 substrate exceeds 10000 r, whereas that of the single DLC film on 2Cr13 substrate is about 2000 r. It can be concluded that the multilayer not only maintains the low coefficient characteristic of the single DLC film, but also improves adhesion strength between the surface modification layer and the substrate. The electrochemistry testing results exhibit that the corrosion voltage of the GCr15 steel is increased by the multilayers. The maximum corrosion voltage of Ti/DLC and W/DLC multilayers have increased by 19.4 percent and 32.6 percent, respectively. For 2Cr13 steel, the corrosion resistant of the W/DLC multilayer at the specific period of 200nm 300nm and 400nm is improved slightly, whereas that of the Ti/DLC structure has nearly the same corrosion resistance of the substrate.
引文
1刘志平,王加春,杨育林.类金刚石的力学性能及工业应用.工具技术. 2005, 399(12):30~33
    2 J. Robertson. Diamond-like Amorphous Carbon. Materials Science and Engineering R. 2002, 37:129~131
    3 Da-Yung. Wang, Chi-Lung. Chang and Wei-Yu. Ho. Characterization of Hydrogen-free Diamond-like Carbon Films Deposition by Pulsed Plasma Technology. Thin Solid Films. 1999, 355-356:246~251
    4 A. H. Hamdi, X. Qiu, and G. W. Malaczynski et al. Microstructure Analysis of Plasma Immersion Ion Implanted Diamond-like Carbon Coatings. Surf. Coat. Technol. 2001, 103:395~400
    5 R. Hatada, K. Baba. Preparation of Hydrophobic Diamond-like Carbon Films by Plasma Source Ion Implantation. Nucl. Instrum. Methods.in Phys. Resear. B. 1999, 148:655~657
    6 V. Kh. Kudoyarova, A. V. Chernyshov and T. K. Zvonareva. Study of Diamond-like Carbon Films for Protective Coatings. Surf. Coat. Technol. 1998, 100-101:192~195
    7 M. FRED. Kimock, J. Knaap. BRADLEY. Commercial Application of Ion Beam Deposited Diamond-like Carbon Coatings. Surf. Coat. Technol. 1993, 56:273~275
    8袁镇海,付志强等.类金刚石薄膜的新进展.广东有色金属学报. 1998, 8(1):152~155
    9张通和,吴瑜光.离子束多层膜制备技术及应用.机械工人热加工. 2005, 7:57~59
    10柳翠.类金刚石的制备工艺及掺杂性能研究.大连理工大学博士学位论文. 2005:1~101
    11 G. A. Collins, R. Hutchings and J. Tendys et al. Advanced Surface Treatment by Plasma Ion Implantation. Surf. Coat. Technol. 1994(68):285~289
    12汤宝寅.离子体源离子注入(Ⅰ) -原理和技术.物理. 1994, 23(1):41~45
    13 J. R. Conrad. Sheath Thickness and Potential Profiles of Ion–matrix Sheaths for Cylindrical and Spherical Electrodes. J. Appl. Phys. 1987, 62(3):777~779
    14 J. R. Conrad, R. A. Dodd and S. Han et al. Ion Beam Assisted Coating and Surface Modification with Plasma Source Ion Implantation. J. Vac. Sci. Technol. 1990, 8(4):3146~3151
    15 S. Y. Wang, P. K. Chu and B. Y. Tang. Improvement of the Corrosion Property of Cr4Mo4V Bearing Steel Using Plasma Ion Implantation. Nucl. Instr. Methods. B. 1997, 127:1000~1003
    16 Y. F. Chen. Study on Surface Modification of Metals by Ion Beam Mixing Implanting With Plasma Science Ion Implantation. Chinese Science Bulletin. 1994, 39(14):1161~1165
    17 G. A. Collins, R. Hutching and K. T. Short et al. Ion-assisted Surface Modification by Plasma Immersion Ion Implantation. Surf. Coat. Technol. 1998, 104:212~217
    18 A. Anders, S. Anders and I. G. Brown et al. Metal Plasma Immersion Ion Implantation and Deposition Using Vacuum Arc Plasma Sources. J. Vac. Sci. Technol. B. 1994, 12(2):815~820
    19徐滨士,刘世参.表面工程新技术.国防工业出版社, 2002:221~222
    20靳九成,赵传国.磨削变质层及表面改性.湖南大学出版社, 1992:1~186
    21张涛,候君达. MEVVA源金属离子注入和金属等离子体浸没注入.中国表面工程. 2000, 3:8~12
    22张通和,吴瑜光.离子束材料改性科学和应用.科学出版社, 1999:1~33
    23 Adners. Metal Plasma Immersion Ion Implantation and Deposition. Surf. Coat. Technol. 1997, 93:158~167
    24 H. H. Tong, O. R. Monterio and R. A. Macgill et al. Fabrication and Characteristics of Ta-c Biomaterial Coatings on Ti-6Al-4V Using Metal Plasma Immersion Ion Implantation and Deposition. Current. Applied. Physics. 2000, 1:197~201
    25黄立业,徐可为.类金刚石碳膜在纳米划擦过程中的弹一塑性变形及断裂机制分析.金属学报. 2001, 37(17):733~736
    26 L. Zajickova, V. Bursffcava and Perina et al. Correlation between SiOx Content and Properties of DLC: SiOx Films Prepared by PECVD. Surf. Coat. Technol. 2003, 174:281~285
    27 M. Ban, T. Hasegawa. Internal Stress Reduction by Incorporation of Silicon in Diamond-like Carbon Films. Surf. Coat. Technol. 2002, 162(1):1~5
    28 W. W. Wu, M. H. Hon. Thermal Stability of Diamond-like Carbon Films with Added Silicon. Surf. Coat. Technol. 1999, 111(2):134~140
    29 Jr. S. S. Camargo, R. A. Santos and A. L. Baia Neto et al. Structural Modifications and Temperature Stability of Silicon Incorporated Diamond-like a-C:H Films. Thin Solid Films. 1998, 332(1):130~135
    30 J. Takadoum, J. Y. Rauch and J. M. Cattenot et al. Comparative Study of Mechanical and Tribological Properties of CNX and DLC Films Deposited by PECVD Technique. Surf. Coat.Technol. 2003, 174:427~33
    31 M. Allon. Alaluf, N. Croitoru. Nitrogen and Iodine Doping Inamorphous Diamond-like Carbon Films. Diam. Relat. Mater. 1997, 6(5):555~558
    32 P. Hammer, R. G. Lacerda. Comparative Study on the Bonding Structure of Hydrogenated and Hydrogen Free Carbon Nitride Films with High N Content. Diam. Relat. Mater. 2000, 9(3):577~581
    33 K. Baba, R. Hatada and Jr. R. Droppa et al. Deposition and Characterization of Ti- and W-containing Diamond-like Carbon Films by Plasma Source Ion Implantation. Surf. Coat. Technol. 2003, 169:287~290
    34 K. Baba, R. Hatada. Preparation and Properties of Metal Containing Diamond-like Carbon Films by Magnetron Plasma Source Ion Implantation. Surf. Coat. Technol. 2002, 158:373~376
    35 Y. Y. Chang, D. Y. Wang and C. H. Chang et al. Tribological Analysis of Nano-composite Diamond-like Carbon Films Deposited by Unbalanced Sputtering. Surf. Coat. Technol. 2004, 184(2):349~355
    36 Y. Y. Chang, D. Y. Wang and W. T. Wu. Catalysis Effect of Metal Doping on Wear Properties of Diamond-like Carbon Films Deposited by a Catholic-arc Activated Deposition Process. Thin Solid Films. 2002, 420:241~247
    37季红兵,夏立芳,马欣新等.基材添加元素及中间层对DLC膜结构与性能的影响.金属热处理. 1999(5):10~13
    38 J. G. Deng, M. Braun. Residual Stress and Microhardness of DLC Multilayer Coatings. Diam. Relat. Matei. 1996, 5(3):478~482
    39 F. Ma, G. Li. Diamond-like Carbon gradient Film Prepared by Unbalanced Magnetron Sputtering and Plasma Immersion Ion Implantation hybrid Technique. Mater.Lett. 2002, 57(1):82~86
    40 Kwang. Ryeol. Leea, Kwang. Yong. Euna. Design of W Buffer Layer forAdhesion Improvement of DLC Films on Tool Steels. Thin Solid Films. 2000, 377:261~268
    41 C. C. Chen, C. N. F. Hong. Interfacial Studies for Improving the Adhesion of Diamond-like Carbon Films on Steel. Applied Surface Science. 2005, 243:296~303
    42 X. M. He, W. Z. Li. Enhancement of Tribological Properities by Dynamic Mixing of Diamond-like Carbon/Mo Films on Steel. Material Science and Engineering. 1995, B31:269~274
    43陶斯武,雷诺,曲选辉.纳米硬质薄膜的研究进展.稀有金属与硬质合金. 2005, 3(3):38~41
    44李戈扬,许俊华,顾明元.纳米多层膜的微结构与超硬效应.上海交通大学学报. 2001, 35(3):457~461
    45许俊华,顾明元,李戈扬.纳米多层膜力学性能研究进展.宇航材料工艺. 1999(3):7~11
    46沈海军,穆先才.纳米薄膜的分类、特性、制备方法与应用.微纳电子技术. 2005(11):506~510
    47刘传胜,付强,叶明生等.用扫描电镜研究CNx/TiN涂层的摩擦磨.电子显微学报. 2003, 22(4):323~326
    48王松雁,汤宝寅等.用于材料表面改性的多功能等离子体浸没离子注入装置.物理. 1997, 26(6):362~365
    49常铁军,祁欣.材料近代分析测试方法.哈尔滨工业大学出版社, 1999:139~145
    50田家万,韩增虎,虞晓江等.力学探针两步压入法研究(Ti,Al)N/A纳米多层膜的超硬效应.材料工程. 2002:10~13
    51刘洪喜. PIIID技术合成碳化钛和类金刚石薄膜研究.哈尔滨工业大学硕士学位论文. 2003, 7:39~43
    52张通和,吴瑜光离子束表面工程技术及应用.机械工业出版社, 2005:119~126
    53 F. Ramsteiner, T. Jaworek. Scratch Resistance and Embrittlement of Coated Polymers. Polymer Testing. 2003, 22(4):439~451
    54王宇航.轴承钢表面PIIID处理膜基结合力的研究.哈尔滨工业大学硕士学位论文. 2003:21~24
    55孙跃,胡津.金属腐蚀与控制.哈尔滨工业大学出版社, 2003:25~30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700