钛氧薄膜材料表面层粘连蛋白与纤连蛋白联合固定以及内皮化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用非平衡磁控溅射沉积技术制备了具有金红石与锐钛矿混合结构的钛氧(Ti-O)薄膜,对其进行等离子体浸没H~+注入,并在此基础上,对Ti-O薄膜进行表面生物化改性。通过浓硫酸和双氧水活化Ti-O膜表面使其产生活性的羟基(-OH)基团,并通过硅烷偶联剂氨丙基三乙氧基硅烷(APTE)共价固定细胞外基质成分中的重要生物分子层粘连蛋白(Ln)和纤连蛋白(Fn)。另外,采用傅立叶变换红外光谱仪(FTIR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)、扫描电子显微镜(SEM)、接触角测量等方法对每一步处理后的样品表面特征进行了测试与分析,最后通过体外人脐静脉血管内皮细胞(HUVEC)原代培养实验评价固定Ln和Fn前后Ti-O薄膜表面内皮细胞相容性。
     Ti-O薄膜以及注氢Ti-O薄膜经浓硫酸和双氧水活化后,FTIR结果显示表面可产生亲水性基团-OH;XPS结果显示-OH对应的O峰位增强;接触角减小,薄膜表面亲水性提高,并且注氢后产生的-OH基团更多。在活化的注氢Ti-O膜表面涂覆APTE后,FTIR及XPS结果表明APTE中的乙氧基水解后可以和Ti-O膜表面的羟基基团反应,使APTE化学键合到Ti-O膜表面;SEM及AFM结果显示表面更加平整,接触角增加,亲水性降低。在注氢Ti-O薄膜表面偶联固定Ln和Fn后,FTIR结果显示样品表面出现蛋白中的特征基团酰胺Ⅰ带、酰胺Ⅱ带基团,联合固定后峰值更强;免疫荧光染色结果显示Ln和Fn在表面出现,并且显示Ln和Fn联合固定成功。蛋白固定使样品表面粗糙度增大。
     体外人脐静脉内皮细胞培养实验结果表明,Ti-O薄膜本身具有一定的内皮细胞亲和性,在Ti-O薄膜表面固定Ln和Fn对内皮细胞的生长有良好的促进作用,在注氢Ti-O薄膜表面活化偶联后联合固定层粘连蛋白和纤连蛋白促内皮化效果非常显著,优于单种蛋白固定及在未注氢Ti-O薄膜表面固定蛋白的方法。
     以上的试验结果表明,通过对Ti-O薄膜表面注氢以及活化偶联,可以将Ln和Fn成功的共价固定在Ti-O薄膜表面。在Ti-O薄膜表面固定Ln和Fn对内皮细胞的生长有良好的促进作用。在注氢Ti-O薄膜表面活化偶联后联合固定层粘连蛋白和纤连蛋白促内皮化效果非常显著。
In this work,titanium oxide(Ti-O)films were synthesized using Unbalance Magnetron Sputtering(UBMS).To obtain hydroxyl group,the films were treated by plasma immersion H~+ ion implantation.The films were then activated by acid solution.After that,aminopropyltriethoxysilane(APTE)was covalently interacted with the hydroxyl on the Ti-O film surface from activation.Then, laminin(Ln)and fibronectin(Fn)were covalently immobilized to the surface by the amidogen of APTE.Scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Fourier Transform Infrared spectroscopy (FTIR),Atomic Force Microscopy(AFM)and contact-angle measurement were used to investigate the characteristics of Ti-O films and modified Ti-O film surface.Human umbilical vein endothelial cells(HUVEC)were in vitro seeded to the modified and unmodified Ti-O films surface for evaluating the cell compatibility and endothelialization trend.
     The results of FTIR indicated that the functional group of hydroxyl was presented onto Ti-O film surface after being pretreated by plasma implantation and acid solution.The peak of O element corresponding to hydroxyl group increased in results of XPS,the contact angle of Ti-O film surface was lower.
     The results of FTIR and XPS indicated that APTE could be chemically reacted with the hydroxyl of Ti-O film surface.The results of SEM and AFM suggested that the surface roughness was lower after APTE coated and the contact angle of the film surface was increased.
     The result of FTIR indicated that albumen amideⅠ,and amideⅡadsorption peaks were presented after laminin and fibronectin immobilized onto Ti-O films. The peaks were stronger when laminin and fibronectin were immobilized together.The result of immunofluorescence indicated that laminin and fibronectin were immobilized to Ti-O film surface.The contact angle of Ti-O film surface showed no obvious change,and the surface roughness was increased.
     Cell culture investigation suggested that laminin and fibronectin could enhance HUVEC adhesion and proliferation,and improve the HUVE cell behavior.And the results of HUVECs cultured experiment suggested that Ti-O film which modified by plasma implantation and acid solution and immobilized with Ln and Fn is best.
     All these results indicated that laminin and fibronectin could be covalently immobilized onto Ti-O film surface by APTE.Laminin and fibronectin can promote the adhesion and growth of endothelial cells.So,it is a good surface endothelialization way to immobilized laminin onto and fibronectin Ti-O film surface.
引文
[1]俞耀庭.生物医用材料.天津.天津大学出版社.2000.第一版:20-30.
    [2]周长忍.生物材料学.中国医药科技出版社.2004.1-2.
    [3]王正平,叶贤富.生物材料的应用及进展.应用科技,2002,29:68-70.
    [4]P.K.Chu,J.Y.Chen,L.P.Wang,N.Huang,Plasma-surface modification of biomaterials,Materials Science and Engineering R 36(2002)143-206.
    [5]Takao Hanawa,In vivo metallic biomaterials and surface modification,Materials Science and Engineering A267(1999)260-266.
    [6]李洁华等.应用聚氨酯生物相容性研究新进展.生物医学工程杂志.2002,19(2):315-319.
    [7]周序珑等.左心辅助泵内皮细胞化的实验研究.暨南大学学报.1997,18(5):99-104.
    [8]Deng Chenghua,Shen Manhua,Zhao Chengxue.Chinese Journal of Organic Chemistry(有机化学),2002,22:943-950.
    [9]Guilbault G G,Hock B,Schimid R.Biosensors & Bioelectronics,1992,7:411-419.
    [10]Gao zhixian,Zhang Chao,Tao Guiquan,Li Gaoxiang,Feng Guangping.Chinese J.Microbil.Immunal.(中华微生物学和免疫学杂志),1996,16(3):191-195.
    [11]Muramastu H,Dicks J M,Tamiya E,Karube I.Anal.Chem.,1987,59:2760-2763.
    [12]Tessier L,Patat F,Schmitt N,Lethiecq M,Frangin Y,Guilloteau D.Sensors and Actuators B,1994,18-19:698-703.
    [13]Bames C,D'Silva S,Jones J P,Lewis T J.Sensors and Actuators B,1992, 7:347-350.
    [14]Grande L H,Geren C R,Paul D W.Sensors and Actuators B,1998,14:387-403.
    [15]Bames C,D'Silva S,Jones J P,Lewis T J.Sensors and Actuators B,1991,3:295-304.
    [16]Zhang Chao,Xie Wenzhang,Feng Guanping,Sui Senfang,Ma Hong,Acta Biophysica Sinica,1995,11(3):464-468.
    [17]Rowland S M,Stanley K D.inventors,cjordis corporation,assignee,"Biocompatible metal surfaces," U.S.Patent NO.5,356,433,1994.
    [18]Liujingxiao,Yang dazhi et al.Surface modification of biomedical NiTi alloy by ion beam synthesizing Tio_2 films.chinese journal of materials research,2001,15:445-450.
    [19]TidwellD,Ertel I,Ratner B,et al.L angmuir,1997,13:3404-3413.
    [20]Pakalns T,Haverstick L,Fields B,et al.Biomaterials,1999,20:2265-2279.
    [21]Denise A Barrera,Robert Langer.Synthesis and RGD peptide modification of a new biodegradable copolymer:Poly(lactic acid-coly2sine).J Am Chem Soc,1993,115:11010-11011.
    [22]Jon A Rowley,Gerard Madlambayan,David J Mooney.Alginate hydrogels as synthetic extracellular matrix materials.Biomaterials,1999,20:45-53.
    [23]武忠,石应康等.RGD肽对内皮细胞在聚酯材料表面粘附、增殖的影响.北京生物医学工程.2003,22(4):278-280.
    [24]Ziats NP,Andersen JM,Human vascular endothelial cell attachment and growth inhibition by type ⅴ collagen,J Vasc Surg,1993,17:710.
    [25]Honduvilla NG,Bujan J,Lizarbe MA et al,Adhesion and Stability of fibronection on PTFE before and after seeding with normal and synchronized endothelial cells,In vitro study.Artif Organs,1995,19:144.
    [26]贝建中等.生物材料与细胞的相互作用.北京生物医学工程.2005.2.1(24).
    [27]蔡开勇等,组织工程生物材料的表面修饰,中国康复理论与实践,2002.8(5).
    [28]赵宏伟,王贵学,戴传云.血管内支架和支架内皮化.生物技术通讯.2005,16(6):684-686.
    [29]刘敬肖,杨大智,王伟强等.管腔内支架用金属材料的生物相容性及其表面改性.功能材料.2000,31(6).
    [30]K Anselme.Osteoblast adhesion on biomaterials Biomaterials.2000,21:667-681.
    [31]顾汉卿,徐国风.生物医学材料学.天津:天津科技翻译出版社.1993.40-45.
    [32]高长有,李安,封麟先.促进组织生长的聚合物骨架工程材料.功能高分子学报,1998,11(3):408-414.
    [33]R M Shelton,A C Rasmussen,J E Davies.Protein adsorption at the interface between charged polymer substrataand migrating osteoblasts.Biomaterials,1988,9:24-29.
    [34]Pietro Favia,Riccardo D'Agostino.Plasma treatments and plasma deposition of polymers for biomedical applications.Surface and Coating Technology,1998,98:1102-1106.
    [35]Quirynen M,Bollen C M.The influence of surface roughness and surface free energy on supra-and subgingival plaque formation in man,A review of the literature.J Clin Periodonto,1995,22:1-14.
    [36]S M Kuo,S W Tsai,L H Huang,et al.Plasma-modified nylon meshes as supports for cell culturing.Art Cell Blood Subs,and Im2 mob Biotech,1997,25:551-562.
    [37]张京川等,人工血管表面内皮细胞种植研究,国外医学生物医学工程分册,1993.16(5).
    [38]Herring M,Gardner A,Glvover J.A single-staged technigue for seeding vascular graft swith autogenous.Endothelium.Surgery.1978,84(4):498-499.
    [39]Sharefk in JB,Latker C,Smith M,et al.Earlynormalizationof platelet surrival by endothelial seeding of Darconarterial prostheses in dogs Surgery,.1982,92(2):385.
    [40]Stanley JC,Burkel WE,Ford JW,et al.Enhanced patency of smalldiameter,externally supported Darconiliofemoral grafts seeded with endothelial cells Surgery.1982,92(6):994.
    [41]Vender Gissen.WJ,Sorruys PW,Visser WJ,et al.Endothelialization of intravancular stents.J Intervent Cardiol.1998,1:109.
    [42]潘明新等.人工血管内皮化的研究进展.中华胸心血管外科杂志.1998,14:190-191.
    [43]杨健等.组织工程细胞支架及细胞亲和性改进研究进展.功能高分子学报.2000,13-4.
    [44]Tamada Y,Ikada Y.Fibroblast growth on polymer surfaces and biosynthesis of collagen.J Biomed Mater Res,1994,28:783-792.
    [45]Jaffee EA,Mosher DF.Synthesis of fibronectin by cultured huaman endothelial cells,J Exp Med,1978,147:1779.
    [46]Tomasini R.On the identity of vitronectin and S-Protein:Immunological crossreactivity and functional studies.Blood,1986,68:737.
    [47]Foidart JM,Bere EW,Yaar M et al.Distribution and immunoelectron miscroscopic location of laminin,a noncollagenous basement membrane glycoprotein.Lab Invest,1980,42:331.
    [48]Kleinman HK,Klebe RJ.Role of collagenous matrices in the adhesion and growth of cells.J Cell Biol,1981;88:473.
    [49]Jacek Dobkowski,Robert Kolos,Jaroslaw Kamifiski.Cell adhesion to polymeric surfaces:Exper-imental study and simple theoretical approach.J Biomed Mater Res,1999,47:234-242.
    [50]郎需庆等,PTFE超细颗粒的表面活化与化学接枝,物理化学学报,2005.vol21.704.
    [51]吴清华等,两种氨基修饰的基因芯片表面制备方法比较,第一军医大学学报,2005;25(7).
    [52]Heyman pw,cho cs,mcrea JC et al.Heparinized polyurethanes:In vitro and in vivo studies.J biomed Mater Res,1985,19:419.
    [53]YL Cui,A D Qi,W GLiu et al.Biomaterials,2003,24:3859-3868.
    [54]童宏扬等,Ti/TiO_2膜电极在H_2SO_4和NaOH溶液中的电化学活化表面积,稀有金属材料与工程2005,34(7).
    [55]梁芳慧等,钛和钛合金生物活化研究现状,稀有金属材料与工程,2003,25(4).
    [56]Wayne Yoshida,Yoram Cohen,Topological AFM characterization of graft polymerized silica membranes,Journal of Membrane Science 215(2003)249-264.
    [57]Shou-Jun Xiao,Marcus Textor et al,Covalent Attachment of Cell-Adhesive,Langmuir 1998,14,5507-5516.
    [58]Rajender Sipehia.The enhanced attachment and growth of endothelial cells on anhydrous ammonia gaseous plasma modified surfaces of polystyrene and poly(tetrafluoroethylene).Biomat Art Cells Org,1990,18:437-446.
    [59]Hans J Griesser,Ronald C Chatelier,John G Steele.Growth of human cell on plasma polymers:Putative role of amine and amide groups.J Biomater Sci Polymer Edn,1994,5:531-554.
    [60]R Daw,S Candan,A J Beck,et al.Plasma copolymer surfaces of acrylic acid/1,7 octadiene:surface characterization and the attachment of ROS 17/2.8 osteoblast-like cells.Biomaterials,1998,19:1717-1725.
    [61]Eric S Carlisle,Muthumarthanda R Mariappan,et al.Enhancing hepatocyte adhesion by pulsed plasma deposition and polyethylene glycol coupling.Tissue Egineering,2000,6(1):45-52.
    [62]J Yang,G X Shi,J Z Bei et al.Biomed.Mater.Res.,2002,62:438-446.
    [63]Z Ding,J N Chen,S Y Gao et al.Biomaterials,2004,25:1059-1067.
    [64]J T Kim,J K Park,D C Lee.Polymer International,2002,51:1063-1065.
    [65]X Y Chen,X F Zhang,Y Zhu et al.Polymer Journal,2003,35(2):148-154.
    [66]白薇,陈治清,张敏,等.氨基注入钛表面及其微观分析.华西口腔医学杂志,2003,21(1):22-24.
    [67]杨烈宇,关文绎,顾卓明,材料表面薄膜技术,人民交通出版社,1991,16.
    [68]Steve Weiner etal.Materials design in biology.Materials Science and Engineering C.2000,11:1-8.
    [69]赵振国,接触角及其在表面化学研究中的应用.化学研究与应用.2000,12(4):370-374.
    [70]Moulder,J.E.,Stickle,W.F.,et al.Handbook of X-ray ohotoelectron spectroscopy.Perkin-Elmer Corporation,(1992).
    [71]景凤娟,黄楠.与血液接触材料表面活化的研究进展.材料导报.2003,17(9):187-190
    [72]白薇,陈治情,管利民等.对离子复合注入钛表面改性的微观分析.四川大学学.2001,38(1):68-72.
    [73]景风娟.Ti-O薄膜表面接枝生物分子和血小板粘附行为的研究.西南交通大学,成都,2004:37.
    [74]Conrad J R,Radtke J L.Plasma source ion2implantation technique forsurface modification of materials.J.Appl.Phys.,1987,62(11):4591-4596.
    [75]王钧石,陈元儒,黄楠.等离子体源离子注入技术.材料导报,1994(2):79-80.
    [76]J.Y.Chen,X.Zhang,G.J.Wan,Y.X.Leng,H.Sun,P.Yang,J.Wang,A.S.Zhao,N.Huang.Effect of hydrogen on the behavior of cultured human umbilical vein endothelial cells(HUVEC)on titanium oxide films fabricated by plasma immersion ion implantation and deposition.Surface & Coatings Technology 2007,201:8140-8145.
    [77]Xie,Y.T.,Liu,X.Y.,et al.Improvement of surface.Bio.26(2005)6129-6135.
    [78]高红云,张招贵.硅烷偶联剂的偶联机理及研究现状.南昌大学化学系.南昌 330047.
    [79]Arkles B.Tailoring Surfaces with silanes Chem Tech.1977,7:766.
    [80]李瑞琦.氨基硅烷偶联剂.哈尔滨化化工研究所,黑龙江,哈尔滨.
    [81]赵瑶兴 孙祥玉编著.有机分子结构鉴定.
    [82]Salo,S.,Haakana,H.,Laminin-5 promotes adhesion.Matrix Biol.18(1999)197-210.
    [83]Timpl,R.,Brown,J.C.,The laminins.Matrix Biol.14(1994)275-281.
    [84]Tryggvason,K.,1993.The laminin family.Curr.Opin.Cell Biol.5(1993)877-882.
    [85]王露.钛氧膜表面纤连蛋白的固定及内皮细胞生长行为研究.西南交通大学硕士论文.2006.
    [86]葛胜男.钛氧薄膜表面层粘连蛋白修饰以及内皮化研究.西南交通大学硕士论文.2007.
    [87]许屏.荧光和免疫荧光染色技术及应用.人民卫生出版社.1983第1版:69.
    [88]许屏.荧光和免疫荧光染色技术及应用.人民卫生出版社.1983第1版:74
    [89]Browne.M.M.,Lubarsky.G.V.,Davidson.M.R.et al.Protein adsorption onto polystyrene surface studied by XPS and AFM.Surface Science.553(2004)155-167.
    [90]田仁来,Ti-O薄膜表面内皮细胞化研究,西南交通大学硕士论文,2004.
    [91]Quirynen M,Bollen C M.The influence of surface roughness and surface -free energy on supra-and subgingival plaque formation in man,A review of the literature.J Clin Periodonto,1995,22:1-14.
    [92]Derick C,Miller,et al.Endothelial and vascular smooth muscle cell function on poly(Lacfic-Co-Jlycolic acid)with nano-structured surface features.Biomaterials.2004,25:53-61.
    [93]徐志云,张宝仁.组织工程心脏瓣膜的研究现状与展望.第二军医大学学报.2003,24(3):233-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700