空间等离子体环境对电子设备的充放电效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间等离子体是影响各类航天电子设备的工作性能、使用寿命、工作可靠性的主要复杂电磁环境之一,它能通过充放电效应对电子设备造成干扰甚至破坏,是各类航天电子设备必须加以预防和克服的主要空间环境因素之一。
     本文立足于本专业的相关理论基础,结合经典等离子体理论、鞘层理论、电动力学理论以及现有的研究成果,提出了从时域角度研究空间等离子体对电子设备充放电效应的思路,分析推导了空间等离子体对电子设备充放电效应的时域特征:
     (1)在不考虑空间磁场影响的情况下,基于等离子体鞘层理论、Boltzmann-Maxwell方程,建立了一维空间等离子体对电子设备的充电模型,引入了时域特征变量和空域特征变量分离的空间等离子体鞘层动力学方程组。采用逆解析法求解空间等离子体鞘层动力学方程组,得出了合理的空间等离子体对电子设备充电的时域特征解;
     (2)根据典型的可引发危害性效应的空间等离子体环境参数,计算分析了电子设备被充电可达到的最大电位及充电时间。结合航天器的飞行速度,对航天器在空间等离子体中的充电时间和航天器进入空间等离子体所需的飞行时间作了分析比较,进一步说明了电子设备的失效或破坏是由充电时间差、电位差引起的;
     (3)分析了空间等离子体三种不同参数对电子设备的最大充电电位和充电时间的影响;
     (4)结合电子设备常见的接地方式,分析了在不同的接地方式下,电子设备被空间等离子体充电至最大电位后的放电机理。
     希望本文能为电子设备预防空间等离子体的充放电现象提供一定的借鉴和参考。
Space plasma is one of the main complex electromagnetic environments, which makes effects on the performance, operational life span and operational reliability of space electronic equipments. It makes disturbances even damages on them by so-called charging and discharging effect. So it must be prevented and overcame by all space electronic devices.
     This thesis stands on the correlated theories of my profession and at the same time makes use of classical theories such as plasma, plasma sheath and electrodynamics, proposes the idea of researching the space plasma‘s charging-discharging effect on electronic equipments, studyes the character in the time domain of the charging and discharging effect of space plasma on the electronic equipments:
     (1) On the condition of without considering the effect of space magnetic field and based on the plasma sheath theory and Boltzmann-Maxwell equations, a charging model of space plasma to electronic equipments in one-dimensional space was build. a space plasma sheath dynamic equations which includes the time variable and the space variable and the two variables are separated was introduced。This paper solved the space plasma sheath dynamic equations by the inverse analytical method and acquired a reasonable time domain solution of space plasma charging to the electronic equipments;
     (2) Basing on typical space plasma parameters which can cause harmful charging and discharging effect, the paper calculated the highest charging voltage and charging time。Combing with the flight speed of the spacecrafts in cosmos, an analysis was made between the charging time and the fly time when the spacecrafts fly into space plasma environment, which further proved the electronic equipments` failures or damage is caused by the Charging time difference and the potential difference;
     (3) The paper analyzed respectively the influence of the variation of three different parameters of space plasma to the highest electric potential and the charging time of the electronic equipments be charged, and got the relations between the space plasma parameters and the charging time;
     (4) Combined with electronic equipments' common grounding methods, the paper analyzed the discharged mechanism of the electronic equipments in different grounding way when the discharging phenomenon occurs。
     The author hopes this paper could provide necessary references for prevent the disturbances and damages of space plasma to electronic equipments.
引文
[1]叶宗海.空间环境与航天活动.中国科学院空间科学与应用研究中心, 1992.
    [2]刘振兴.太空物理学.哈尔滨:哈尔滨工业大学出版社, 2005.
    [3]叶宗海.空间环境对航天活动的影响.载人航天, 1997(1). 52-60,
    [4]濮祖荫.空间物理前沿进展.气象出版社, 1998.
    [5]叶宗海.空间粒子辐射探测技术.科学出版社, 1986.
    [6]孙杏凡.等离子体及其应用.高等教育出版社, 1982.
    [7] B.E戈兰特[苏],马腾才译.等离子体物理基础.原子能出版社, 1983.
    [8] F.F.陈,林光海译.等离子物理学导论.人民教育出版社, 1980.
    [9] N.A.克拉尔,郭书印译.离子体物理学原理.原子能出版社, 1983.
    [10]庞永江,徐跃民.地面实验室模拟空间等离子体环境的初步测试.空间科学学报. Vol.21, No.3, July, 2001.
    [11] Koon H C, Gorney D J. Relationship between electrostatic discharges on spacecraft P-78 and the electron environment. AD-A255-179, 1992.
    [12]贾瑞金.地面实验室模拟空间等离子体环境的初步测试.航天器环境工程.第22,第3期, 2005年6月.
    [13]盛丽艳.GEO卫星表面充电相对电位的工程分析.航天器工. 2007, 16(6).
    [14]李冬梅.缓解航天器带电方法的研究.航天器环境工程.2005, 22(03).
    [15]曹晋滨.电子环束流航天器表面电位和等离子体鞘层的影响.空间科学学报.Vol.20,No.1,Jan,2000.
    [16]曹晋滨.低轨道磁化等离子体中运动航天器等离子体鞘层特性.地球物理学报.Vol.43,No.4,July,2000.
    [17]杨集.低轨道卫星表面充电模拟.微电子技术.2007,7/8期.
    [18]都亨,叶宗海.低轨道航天器空间环境手册.北京:国防工业出版社, 1996.
    [19] (美)D.L.布克.等离子体物理常数及公式手册.原子能出版社, 1984.
    [20]李志刚.低气压容性射频等离子体壳层特性研究.西安:西安交通大学博士论文, 2006.
    [21]毕德显.电磁场理论.电子工业出版社,1985.
    [22]李丽,王振领.MATLAB工程计算及应用.人民邮电出版社,2001.
    [23]朱士尧.等离子物理基础.科学出版社,1983.
    [24] (美)迈克尔.A.力伯曼.等离子体放电原理.科学出版社, 2007.
    [25]李笙.理论物理概论.高等教育出版社, 1991.
    [26]李雪春,王友年.介质靶表面的充电效应对等离子体浸没离子注入过程中鞘层特性的影响.物理学报.第53卷,第8期,2004.8.
    [27] Hong J I et al. Electron. temperature control with grid bias in inductively coupled argon plasma, Phys, Plasma, 1999, 6(3), l017-1628.
    [28]李嘉巍,李中元.空间尘埃的充电过程及与等离子体参数的关系.空间科学学报. Vol.24, No.5, sept, 2000.
    [29]李中元.空间尘埃动力学的研究方向.天文学进展.2001, 19(2),161-166.
    [30] Bringol-Barge L, Hyde T W. The calculation of grain charge in a dense dusty plasma with a nonuniform surface potential. Adv. Space. Res, 2002, 29(9),1277-1282.
    [31] Bringol-Barge L, Hyde T W. Charging in a dusty plasma with a size distribution a comparison of three models. Advance, Res, 2002, 29(9), 1283-1288.
    [32]王正汹.尘埃等离子体鞘层的玻姆判据.物理学报.第53卷,第3期,2004.3.
    [34] Robertson S. 1995, Phys. Plasmas, 2 2200.
    [35] Chen X P. 1998, Phys., Plasmas, 5 804.
    [36]梅忠恕.雷电冲击电压下接地装置的电压升高和反击.昆明昆雷电力科学研究所.
    [37]华更新.星载计算机抗辐射加固技术.航天控制, 2003, 1.
    [38]王鲁华.抗恶劣环境计算机及发展趋势.中国北方车辆研究所.
    [39] (美)Ralph Moorrison,陈志雨译.接地与屏蔽技术(原著第四版).机械工业出版社, 2006.
    [40]沈培坤.防雷与接地装置.化学工业出版社, 2006.
    [41]张宝铭.静电防护技术手册.电子工业出版社, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700