氧化钽薄膜材料的制备及其生物化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料仅在表面的几个原子层的范围内生物体发生作用,材料表面的成分结构、表面形貌、亲疏水性、荷电性、表面能等物理化学状态决定着材料的抗凝血性能。因此寻找一种无机生物材料并对其进行生物化表面改性,是有效改善和提高血液直接接触的一类生物材料的抗凝血性能的重要途径之一。
     钽系材料生物无毒性,钽及其氧化物薄膜在生物医学领域已经有了一定的研究和应用,如人造骨、血管支架等。通过调整氧化钽的制备工艺,薄膜具有较宽的表面性质调节范围,在此基础上对其进行生物化表面改性,用于研究材料学因素材料表面抗凝血性能的关系。
     本论文采用脉冲非平衡磁控溅射沉积技术制备了不同结构、成分、物理性质和机械性能的氧化钽薄膜,重点研究了反应气体(O_2)工作气体(Ar)的流量比(O_2:Ar)的变化对薄膜结构和性能的影响。
     为了在表面获得羟基官能团,对氧化钽薄膜进行高频低压等离子体氢化处理,并采用紫外辐照的方法在薄膜表面产生更多的羟基官能团,最后通过硅烷偶联固定白蛋白(BSA)的方法,使薄膜具有良好的抗凝血性能的材料表面。使用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、傅立叶变换红外光谱仪(FTIR)、接触角测试仪、扫描电子显微镜(SEM)等方法对表面改性前后的氧化钽薄膜进行分析和表征,通过体外血小板粘附实验和动物体内实验对改性前后的氧化钽薄膜材料进行抗凝血性能及生物相容性评价。
     研究结果表明:脉冲非平衡磁控溅射技术沉积的氧化钽薄膜为非晶态,经高真空800℃、60min退火后,转变为相应晶态的氧化钽薄膜,薄膜表面水的接触角介于82-90°之间,具有一定的疏水性。综合考虑薄膜的表面状态、物理及机械性能,优化出O_2:Ar流量比为0.2的氧化钽薄膜进行表面生物分子固定。
     等离子体氢化处理导致氧化钽薄膜表面粗糙度增大、疏水性增加。FTIR及薄膜表面水的接触角结果分析表明,等离子体氢化后用紫外辐照处理的薄膜表面具有一定数量的羟基(-OH),并显著提高了薄膜表面的亲水性。XPS结果表明,硅烷偶联接枝白蛋白处理后的薄膜表面固定了一定量的白蛋白。
     体外血小板粘附实验结果表明:高频低压等离子体氢化表面改性对改善氧化钽薄膜的抗凝血性能没有积极贡献;紫外辐照2h后,氧化钽薄膜的抗凝血性能有所提高;表面硅烷偶联固定白蛋白以后,氧化钽薄膜的血液相容性具有一定程度的改善。
     初步动物体内实验结果表明:在钛金属基体上沉积氧化钽薄膜,并通过硅烷偶联固定白蛋白后,样品表现出优良的生物相容性;高频低压等离子体氢化处理对氧化钽薄膜表面生物相容性的提高没有积极贡献;沉积在金属钛表面未经表面改性的氧化钽薄膜具有良好的生物相容性;(Ta-O)、(Ta-O+氢化)及(Ta-O+氢化+APTES+BSA)工艺的氧化钽薄膜均没有产生血栓,表明其血管内壁具有良好的组织和生物相容性。
Interaction between biomaterials and organism merely occurred in the range of several atomic layers on surface,and anticoagulation property of the biomaterials is affected by their surface properties,such as composition, microstructure,morphology,surface wettability,surface conductivity and surface energy,etc.So it is one of efficacious ways to improve the anticoagulation property of blood-contacting biomaterials by researching a kind of inorganic biomaterials and investigating its biological surface modification.
     Tantalum-related materials are biologically nontoxic.They were already been investigated and applied into biomedical field,such as vascular stents and artificial bones.In order to research the relationship between material characteristic and anticoagulation property,tantalum oxide films with various surface properties were synthesized by different processing parameters,then surface modification of the films were studied to optimize the biological properties.
     Tantalum oxide films with different microstructure,composition, physical and mechanical properties prepared by reactive pulse unbalanced magnetron sputtering system were investigated in this study.The effect of gas flow ratio between reactive gas(O_2)and working gas(Ar)on microstructure and properties of tantalum oxide films was mainly studied.For obtaining good antithrombogenic surface,as-deposited tantalum oxide films were treated by plasma hydrogenation,ultraviolet irradiation,silane coupling immobilization and bovine serum albumin immobilization in turn.Pre-and-post modified tantalum oxide films were analyzed and characterized by X-ray diffraction (XRD),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectrometer(FTIR),contact angle tester and scanning electron microscopy (SEM),etc.,respectively.Then vitro platelet adhesion experiments and vivo experiments in animal body were performed to evaluate anticoagulation properties and biocompatibilities of the films.
     The results showed that tantalum oxide films synthesized by reactive pulse unbalanced magnetron sputtering were amorphous,and transferred to relevant crystal tantalum oxide films via high vacuum annealing at 800℃for 60 minutes.Contact angle of the films were between 80°and 90°which performed a certain hydrophobic property.Tantalum oxide film with O_2:Ar ratio of 0.2 was optimized by comprehensive analysis to immobilize bovine serum albumin.
     The surface roughness and hydrophobic property of tantalum oxide films were increased by plasma hydrogenation modification.The results of contact angle test and FTIR showed that a certain amount hydroxyl group was observed on the surface of tantalum oxide films after successive plasma hydrogenation and ultraviolet irradiation,and the hydrophilicity on the surface of films was increasing.The result of XPS showed that a certain amount BSA was immobilized onto the surface of tantalum films by APTES.
     Vitro platelet adhesion experiments indicated that plasma hydrogenation modification did not have positive contribution for improving anticoagulation property of tantalum oxide films.The anticoagulation property of the films was somewhat increased via ultraviolet irradiation for 2 hours and immobilization of BSA by APTES,respectively.
     The result of preliminary vivo experiments in animal body showed that immobilization of BSA by APTES onto surface of tantalum oxide films synthesized on titanium substrate performed excellent biocompatibility.There was no positive contribution for improving biocompatibility of tantalum oxide films by plasma hydrogenation surface modification.As-deposited tantalum oxide films had good biocompatibility.There was no thrombus on the surface of the films of as-deposited Ta-O films,hydrogenated Ta-O films and BSA immobilized Ta-O films with APTES,which indicated all three kinds of samples had good histocompatibility and biocompatibility with blood vessel inter wall.
引文
[1]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社.2000,20-30
    [2]汤顺清,周长忍,邹翰.生物材料的发展现状展望.暨南大学学报(自然科学版).2000,21:122-125
    [3]王正平,叶贤富.生物材料的应用及进展.应用科技。2002,29:68-70
    [4]阮建明,邹俭鹏,黄伯云.生物材料学.北京:科学出版社.2004,2-8
    [5]Courtney J M,Sundaram S,Forbes C D.Extracorporeal circulation:biocompatibility of biomaterials.In:Frobes CD,Cushieri A,CD,Cushieri A,eds.Management of bleeding disorders in surgical pratice.Oxford:Blackwell Scientific.1993,236-273
    [6]易树,尹光福.生物材料表面界面特性其血液相容性的关系.中国口腔种植学杂志.2003,8:83-88
    [7]杨文茂。Ta-O及Ta-N薄膜的制备及性能研究.西南交通大学硕士研究生学位论文.2005:2-3
    [8]Andrade JD等.表面和血液相容性的当今假设.国外医学生物医学工程分册.1989,121:35-42
    [9]计剑,邱永兴,俞小洁等.抗凝血聚氨酯材料的研究进展.功能高分子学报.1995,8(2):225-235
    [10]王洪柞,杨延武.抗凝血高分子.功能高分子学报.1989,2(2):81-86
    [11]潘仕荣,周群.共聚物表面亲疏水微相分离结构抗凝血性.生物医学:工程学杂志.1989,0(3):201-207
    [12]杨明京,周成飞,乐明伦.生物材料血液相容性的表面能量观.生物医学工程学杂志.1990,7(1):59-69
    [13]周成飞.医用高分子表面及其血液相容性.高分子通报.1989,(3): 44-47
    [14]曹宗顺,卢凤琦.界面现象材料的生物相容性.化学通报.1994,(7):15-20
    [15]Baurschmidt P,Schaldach M.Electrochemical aspects of the thrombogenicity of a materials.J Bioengng.1997,1(11):261-267
    [16]Huang N,Yang P,Leng Y-X,et al.Surface modification of biomaterials by plasma immersion ion implantation.Surf Coat Tech.2004,186:218-226
    [17]顾汉卿,徐国凤.生物医学材料学.天津:天津翻译出版公司.1993
    [18]陈裕旭,尹效华,王杰.钽及其氧化物的生物学作用.预防医学情报杂志.1999,15:14-16
    [19]Findlay D M,Welldon K,Atldns G J,et al.The proliferation and phenotypic expression of human osteoblasts on tantalum metal.Biomaterials.2004,25:2215-2227
    [20]Park S J,Park S W,Hong M K,et al.Late clinical outcomes of cordis tantalum coronary stenting without anticoagulation.American Journal of Cardiology.1997,80:943-947
    [21]Kokubo T,Kim H M,Kawashita M.Novel bioactive materials with different mechanical properties.Biomaterials.2003,24:2161-2175.
    [22]余存烨,余毅骏.“外星”金属钛、锆、钽.稀有金属快报.2004,23(10):31-34
    [23]Dimitrova T,Arshak K,Atanassova E.Crystallization effects in oxygen annealed Ta_2O_5 thin films on Si.Thin Solid Films.2001,381:31-38
    [24]Lai Y S,Chert J S.Spectroscopic Ellipsometry Study on the Structure of Ta_2O_5/SiO_xN_y/Si Gate Dielectric Stacks.Thin Solid Films.2002,420/421:117-121
    [25]Zitter H,Plenk H Jr.Electrochemical behavior of metallic implant materials as an indicator of their biocompatibility.Journal of Biomedical Materials Research.1987,21(7):881-896
    [26]Macionczyk F,Gerold B,Thull R.Repassivating tantalum/tantalum oxide surface modification on stainless steel implants.Surface and Coatings Technology.2001,142-144:1084-1087
    [27]Leng Y X,Chen J Y,Yang P,et al.The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2006,242(1-2):30-32
    [28]杨文茂,刘艳文,冷永祥等.溅射沉积技术的发展及其现状.真空科学技术学报.2005,25(3):204-2 1 0
    [29]Kelly P J,Amell R D.Magnetron sputtering:a review of recent developments and applications.Vacuum.2000,56(3):159-172
    [30]Window B,Sawides N.Charged particle fluxes from planar magnetron sputtering sources.Journal of Vacuum Science Technology A.1986,4(2):196-202
    [31]Window B,Savvides N.Unbalanced de magnetrons as sources of high ion fluxes.Journal of Vacuum Science Technology A.1986,4(2):453-456
    [32]Savvides N,Window B.Unbalanced magnetron ion-assisted deposition and property modification of thin films.Journal of Vacuum Science Technology A.1986,4(2):504-508
    [33]董骐,范毓殿.非平衡磁控溅射及其应用.真空科学技术.1996,16(1):51-57
    [34]Kelly P J,Arnell R D.The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system.Surface and Coatings Technology.1998,108-109(1-3):317-322
    [35]Sproul W D,Rudnik P J,Michael E.Graham,et al.High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system.Surface and Coatings Technology.1990,43-44:270-278
    [36]Pignolet A,Mohan R,Krupanidhi S B.Rapid thermal processed thin films of reactively sputtered Ta_2O_5.Thin Solid Films.1995,258(1-2):230-235
    [37]郑彦,柳襄怀,邹世昌.离子束增强沉积在材料表面改性和优化方面的应用.物理.1988,17(12):732-736
    [38]Cevro M,Carter G.Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films.Optical Engineering.1995,34(2):596-606
    [39]Boughaba S,Islam M U.Optical properties of tantalum oxide films deposited on BK7 substrates by excimer laser ablation.Materials Research Society Symposium-Proceedings.2000,617:371-376
    [40]Zhang J Y,Lim B,Boyd I W.Thin tantalum pentoxide films deposited by photo-induced CVD.Thin Solid Films.1998,336(1-2):340-343
    [41]Cappellani A,Keddie J L,Barradas N P,et al.Processing and characterization of sol-gel deposited Ta_2O_5 and TiO_2-Ta-2O_5 dielectric thin films.Solid State Electronics.1999,43:1005-1099
    [42]蔡谨.等离子体技术生物材料的表面改性.杭州师范学院学报.1997,6:83-88
    [43]李定,陈银华,马锦秀等.等离子体物理学.高等教育出版社.2006
    [44]赵化侨.等离子体化学工艺.西安:中国科技大学出版社.1993
    [45]任兆杏,丁振峰.低温等离子体技术.自然杂志.1996,15(4):202-207
    [46]H.Yasuda,M.Gazicki.Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces.Biomaterials.1982,3(2):68-77
    [47]徐学基,褚定吕.气体放电物理.上海:复旦大学出版社.1996,121-158
    [48]Raizer Y P.Gas Diseharge Physies.NewYork:SPringer.1991,1-101
    [49]Boenig H V.Fundamentals of Plasma.Lancaste:Teehnomic Publishing Co.1988,417
    [50]徐家莺,金尚宪.等离子体物理学.北京:原子能出版社.1985,41-50
    [51]张玉文.冷等离子体氢还原金属氧化物的基础研究.上海大学博士学位论文.2004
    [52]Hollaban J R,Bell A T.Techniques and application of plasma chemistry.New York:Wiley.1974
    [53]T.Wierzchon,et al.Properties of surface layers on Titanium Alloy Produced by Thermo chemical Treatment sunder Glow Discharge Conditions.Surface and Coating Technology.1997,96(2-3):205-209
    [54]赵化侨.等离子体化学工艺.合肥:中国科学技术大学出版社,1993:32-36
    [55]Conrad J R.Plasma source ion implantation:A new approach to ion beam modification of materials.Materials Science and Engineering A.1989,116:197-203
    [56]Wei R,Vajo J J,Matossian J N,et al.A comparative study of beam ion implantation,plasma ion implantation and nitriding of AISI 304 stainless steel.Surface and Coatings Technology.1996,83(1-3):235-242
    [57]Leigh S,Samandi M,Collins G A,et al.The influence of ion energy on the nitriding behaviour of austenitic stainless steel.Surface and Coatings Technology.1996,85(1-2):37-43
    [58]Johns S M,Bell T,Samandi M,et al.Wear resistance of plasma immersion ion implanted Ti6A14V.Surface and Coatings Technology.85(1-2):7-14
    [59]田修波,汤宝寅,王小峰.高频低压等离子体浸没离子注入技术研究.新技术新工艺.2000,1:40-42
    [60]丛秋滋.多晶二维X射线衍射.北京:科学出版社.1997
    [61]黄惠忠.论表面分析及其在材料研究中的应用.北京:科学技术文献出版社.2002
    [62]范松灿.傅立叶变换红外光谱仪的原理特点.高分子材料研究.2007.11:40-41
    [63]Chen J Y,Leng Y X,Tian X B,et al.Antithrombogenic investigation of surface energy and optical band-gap and hemocompatibility mechanism of Ti(Ta~(+5))O_2 thin films.Biomaterials.2002,23:2545-2552
    [64]Weiner S,Addadi L,Wagner H D.Materials design in biology.Materials Science and Engineering C.2000,11:1-8
    [65]Liu L,Gong H,Wang Y,et al.Annealing effects of tantalum thin films sputtered on[001]silicon substrate.Materials Science and Engineering C.2001,16:85-89
    [66]Hubner R,Hecker M,Mattem N,et al.Structure and thermal stability of graded Ta-TaN diffusion barriers between Cu and SiO2.Thin Solid Films.2003,437:248-256
    [67]Saha R,Barnard J A.Effect of structure on the mechanical properties of Ta and Ta(N)thin films prepared by reactive DC magnetron sputtering.Journal of Crystal Growth.1997,174:495-500
    [68]Zhang M,Yang B,Chu J,et al.Hardness enhancement in nanocrystalline tantalum thin films.Scripta Materialia.2006,54:1227-1230
    [69]Oladczuk L,Patel A,Demaree JD,et al.Sputter deposition of bcc tantalum films with TaN underlayers for protection of steel.Thin Solid Films.2005,476:295-302
    [70]Huang A P,Chu P K.Crystallization improvement of Ta_2O_5 thin films by the addition of water vapor.Journal of Crystal Growth.2005,274(1-2):73-77
    [71]Huang T W,Lee H Y,Hsieh Y W,et al.X-ray study of the surface morphology of crystalline and amorphous tantalum peroxide thin films prepared by RF magnetron sputtering.Journal of Crystal Growth.2002,237-239:492-495
    [72]Huang A P,Xu S L,Zhu M K,et al.Crystallization control of sputtered Ta_2O_5 thin films by substrate bias.Applied Phyics Letters.2003,83(16):3278-3280
    [73]Briand D,Mondin G;Jenny S,et al.Metallo-organic low-pressure chemical vapor deposition of Ta_2O_5 using TaC_(12)H_(30)O_5N as precursor for batch fabrication of Microsystems.Thin Solid Films.2005,493(1-2):6-12
    [74]Chang P H,Liu H Y.Structures of tantalum pentoxide thin films formed by reactive sputtering of Ta metal.Thin Solid Films.1995,258(1-2):56-63
    [75]高诚辉.非晶态合金镀及其镀层性能.北京:科学出版社.2004
    [76]MarSmay.牛血清白蛋白的性质.http://www.technew.cn/index.php?act=productinfo&code=view&ids=713.2008-4-25
    [77]Joseph G;Sharma C P.Platelet adhesion to surfaces treated with glow discharge and albumin.Journal of Biomedical Materials Research.1986, 20(5):677-682
    [78]Fischer A M,Mauzac M,Tapon-Bretaudiere J,et al.Anticoagulant activity of dextran derivatives.Part II:Mechanism of thrombin inactivation.Biomaterials.1985,6(3):198-202
    [79]陶慰孙,主编.蛋白质分子基础.高等教育出版社.1995
    [80]Cuatrecasas E Agarose Derivatives for Purification of Protein by Affinity Chromatography.Nature.1970,228:1327-1328
    [81]侯亚奇,庄大明,张弓等.Ti02复合薄膜光生亲水性及防结雾性能研究.真空科学技术学报.2004,24(5):329-333
    [82]付英,于水利,张存兰.纳米Ti02膜无机亲水改性及在污水处理中应用展望.化工时刊.2004,18(12):8-11
    [83]沃松涛,崔晓莉,张群等.紫外光下纳米Ti02薄膜亲水性机理的电化学研究.化学物理学报.2004,17(2):211-214
    [84]Lrie H,Morib H.Interfacial Structure Dependence of Layered TiO_2/WO_3Thin Films on the Photoinduced Hydrophilic Property.Vacuum.2004,74(3-4):625-629
    [85]Watanabe T,Nakajimaa A,Wang R.Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass.Thin Solid Films.1999,351(1-2):260-263
    [86]李芳伯,古国榜,李新军等.纳米复合Sb203/Ti02的光催化性能研究无机化学学报.2001,17(1):40-41
    [87]Jing X Y,Chen S D.Guide of infrared spectroscopy.Tianjing:Science and Technology Press.1992
    [88]Moulder J F,Stickle W F,Sobol P E,et al.Handbook of X-ray Photoelectron Spectroscopy.Minnesota:Perkin-Elmer Corporation.1992
    [89]XPS:Chemical bond(Nls).http://www.lasurface.corn/database/liaisonxps.php?el=158.2008-5-5
    [90]Bubio C,Costa D,Bellon-Fontaine M N,et al.Characterization of bovine scum albumine adsorption on chronium and AISI 304 stainless steel,consequences for the Pseudomonas fragi K1 adhesion:Colloids and surfaces B:Biointerfaces.2002,24:193-195
    [91]Atanassova E,Spassov D.X-my photoelectron spectroscopy of thermal thin Ta_2O_5 films on Si.Applied Surface Science.1998,135:71-82
    [92]Nandi S K,Chatterjfe S,Samanata S K,et al.Electrical properties of Ta_2O_5 films deposited on ZnO.Bulletin of Material Science.2003,26:365-369
    [93]XPS:Chemical bond(Ols).http://www.lasurface,corn/database/liaisonxps.php?el=187.2008-5-5
    [94]罗满林,顾为望.实验动物学.北京:中国农业出版社.2002,181-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700