温敏纺织品的等离子体诱导接枝制备及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚N-异丙基丙烯酰胺(PNIPAAm)水凝胶可感知外界温度的细微变化并产生体积相变,是生物组织领域一种理想的温敏材料。但PNIPAAm本身机械强度很差,其应用受到了很大的限制。通过接枝方法,如化学引发接枝、光引发接枝、辐射引发接枝和等离子体诱导接枝等,将其到接枝到力学性能较好的纤维基材上可望克服这一不足。其中,等离子体诱导接枝法是一种环境友好的、有效率的干式加工技术,备受研究者关注,但与其相关的一些基本问题仍有待进一步研究和明确。
     本文以棉织物和涤纶织物为基质,利用低压射频辉光放电等离子体和大气压辉光放电等离子体活化纤维表面,通过不同的等离子体诱导接枝过程,在织物表面接枝聚合N-异丙基丙烯酰胺,成功制备了温度响应型棉织物和涤纶织物。探明了等离子体处理参数、接枝反应参数对诱导接枝反应的影响;考察了接枝织物的温度响应性能及其影响因素,明确了接枝率与织物开关效应之间的关系;运用FESEM、SEM、FTIR、EDS、XPS、1HNMR、EPR等各种分析手段表征接枝织物表面形貌及结构,并结合等离子体发射光谱对大气压放电等离子体活性种的诊断和分析,揭示了棉织物和涤纶织物的等离子诱导接枝机制。
     通过单因素法分析了等离子体处理参数(包括等离子体放电功率、气体压强、气体流量、处理时间)对织物间接引发接枝率的影响。研究结果表明,采用射频辉光放电等离子体活化纤维,氧等离子体处理时间、放电功率、气体压强均与织物间接引发接枝率之间存在着密切的关系,等离子体对织物表面活化的同时,也存在着一定的刻蚀作用,而过强的刻蚀作用会削弱对织物的活化效果;控制等离子体处理条件可以获得较高的接枝率;采用APGD等离子体活化棉纤维,激励电压在90-120V范围内,通入一定量的氩气,可获得较好的辉光放电等离子体,同时控制大气压等离子体处理条件可有效地获得较高的接枝率。对直接引发接枝方式也进行了研究,对涤纶织物,相比氧等离子改性后在单体溶液中进行接枝的方法,氩等离子体共引发接枝需要更长的等离子体处理时间及更高的放电功率,方能获得较高的接枝率。
     探讨了单体浓度、温度、时间等因素对经等离子诱导活化的棉织物和涤纶织物与N-异丙基丙烯酰胺单体之间接枝反应影响,获得了较佳的接枝反应条件。单体用量的提高会相应的提高接枝率;反应温度以15-20℃为宜,过高的反应温度会使已接枝的温敏聚合物在织物表面发生相变收缩,限制单体的扩散,从而降低棉织物和涤纶织物的接枝率;为保证反应能彻底进行,棉织物接枝反应时间选取16h为宜,涤纶织物接枝反应时间选取8h为宜。
     棉织物和涤纶织物等离子体诱导接枝后的水通量和差热分析实验结果表明,和未处理织物相比,接枝织物在不同温度的水通量有明显的差异;氧等离子体和APGD等离子体诱导接枝后的棉织物在34℃附近具有明显的相转变行为;而氧等离子体诱导接枝及氩等离子体共引发接枝涤纶织物在32℃~34℃附近具有明显的相转变行为;氧等离子体诱导接枝棉织物及涤纶织物的温度响应系数随着接枝率的提高而愈加明显,但接枝涤纶织物接枝率达到某一临界值后,再继续增大反而会削弱接枝织物的开关效应。织物表面润湿性实验和接触角实验结果表明,APGD等离子体诱导接枝棉织物在低于相转变温度时织物表面表现为亲水性,在室温时水接触角为0°,高于相转变温度时织物表面表现为疏水性,在40℃时水接触角为128.3°。亚甲基蓝染色实验结果从侧面佐证了接枝涤纶织物的温度响应性能。
     涤纶织物的氧等离子体诱导接枝反应中,BIS用量的提高有利于提高接枝率和接枝均匀性,但过高的用量会削弱接枝织物的开关效应;过高的反应温度也会降低涤纶接枝物的温度响应系数;在一定范围内,接枝聚合过程中亲水性单体AAm的加入可以使接枝涤纶织物的相变温度增大,并且其随着AAm用量的增加而增高;水环境中盐溶液使LCST向低温方向调节,LCST随着NaCl溶液浓度增大而减小。
     接枝织物的红外光谱、EDS、XPS分析和电镜结果表明,经等离子体诱导接枝后,棉织物、涤纶织物表面已引入了PNIPAAm。EPR分析结果表明,经等离子体活化后的棉织物、涤纶织物表面均产生了自由基。等离子体诊断结果表明APGD等离子体中包含Ar正离子、O正离子、N正离子。在氧等离子体或APGD等离子体对棉织物活化过程中,自由基主要产生于棉纤维大分子C(2)和C(6)的羟基位置,并以此为中心发生了接枝聚合反应。氧等离子体或氩等离子体对涤纶织物的活化过程中,自由基主要产生于涤纶大分子中乙二醇链段上,并以此为中心发生了接枝聚合反应。
Poly (N-isopropylacrylamide)(PNIPAAm) hydrogel can sense a very minute change in theexternal environment temperature and generates a volume phase transition, which was widelyused in the field of biological tissues. The mechanical strength of PNIPAAm itself is poor, so itsapplication has great restrictions. In order to overcome this drawback, many methods, such aschemical grafting, gamma ray radiation grafting, photo-induced grafting, low temperatureplasma grafting and so on, can be applied to graft PNIPAAm on the substrate of fiber. In thesemethods, low temperature plasma grafting is an environmentally friendly, efficient, and dryprocessing technology, which was concerned by researchers. However, some of the basic issuesrelated to the grafting by plasma-induced are yet need to be further investigated or confirmed.
     In this paper, the low-pressure RF glow discharge plasma and atmospheric pressure glowdischarge plasma were used to activate cotton and PET fiber surface. Thetemperature-responsive cotton fabric and polyester fabric were successfully prepared bydifferent plasma induced grafting methods. The effects of reaction conditions, such as plasmatreatment parameters, grafting reaction parameters on the grafting were investigated.Meanwhile, the temperature-responsive property of the graft fabrics and its influence factorswere investigated. The relationship between the graft ratio and switching effect of fabrics wererevealed. To reveal the grafting mechanism, the morphological changes and structure of graftedfabric were characterized through analysis methods, such as field emission scanning electronmicroscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), EDS, X-rayphotoelectron spectroscopy (XPS),1HNMR and EPR. And the active species in atmosphericpressure discharge plasma were determined by plasma emission spectroscopy.
     The effects of plasma treatment parameters on the graft ratio of fabrics were investigated,such as discharge time, discharge power and flow pressure. The results showed that there existsa close relationship between plasma parameters and the graft ratio. The plasma activation andetching occur simultaneously at the plasma treatment process. Strong plasma etching willweaken the activation effect of fabrics. A higher graft ratio can be obtained by controlling theplasma parameters. To obtain a higher grate ratio, a longer plasma treatment time and higher discharge power should be selected, when polyester fabrics are grafted by argon plasmainduced in one step method (plasma treatment on fabrics pre-impregnated), compared withoxygen plasma induced in two step method (plasma activation of fabric followed by soakinginto monomer solution).When APGD plasma activated cotton fibers, energizing voltage shouldbe controlled at90-120V, a certain amount of argon gas will be helpful to obtain good glowdischarge effect. Meanwhile, a higher graft ratio can be obtained by controlling the atmosphericpressure plasma treatment conditions.
     The effects of monomer solution concentration, reaction temperature and time on thecotton and PET fabrics grafting using NIPAAm monomers were discussed and optimumgrafting reaction conditions were obtained. The increase in the monomer concentration leads tothe increase in the graft ratio. Increasing reaction temperature is not helpful to get a higher graftratio. At a higher temperature, the grafted polymers shrink on the surfaces of fabrics andmonomer diffusivity is restricted significantly. The reaction temperature should be controlled at15-20℃. In order to ensure the complete reaction, grafting reaction time of cotton fabricsshould be selected for16hours, and8h is an appropriate reaction time for polyester fabrics.
     After grafting, a significant difference on the water flux was observed at differenttemperatures as compared to the control fabrics. Grafted cotton fabric show obvious phasetransition endotherm at34℃, and grafted polyester fabric show obvious phase transitionendotherm at32~34℃. In a certain range, the switch effect of cotton and polyester fabric isgetting stronger as the graft ration increases, after reaching a certain threshold, increasing graftration will weaken switch effect of polyester fabrics. According to wetting experiments andwater contact angle tests results,the surface of grafted cotton fabric by APGD plasma inducedis hydrophilic with a water contact angle of0°below LCST at room temperature, andhydrophobic with a water contact angle of128.3°above LCST at40℃. Methylene blue dyeingresults revealed yet the temperature-responsive property of the grafted polyester fabrics.
     The increasing of BIS concentration benefits to getting a higher graft ratio and improvingthe grafting uniformity, but further increase will weaken the switch effect of the graftedpolyester fabrics. The reaction temperature which is too high will weakentemperature-responsive coefficient of the grafted polyester fabrics. In a certain range, the morethe amounts of AAm are added in the grafting reaction, the higher the LCST increases. And with the concentration of NaCl solution increasing, the LCST decreases.
     FTIR and XPS spectra of grafted fabrics by plasma-induced indicated that the NIPAAmmonomers were grafted from cotton and PET fabrics surfaces, which was further confirmed bythe EDS test and SEM results. EPR spectra of plasma-treated fabrics showed that the freeradicals have been generated on cotton and polyester fabric surfaces after plasma treatment.Plasma diagnostic results show that there exists Ar positive ion, O positive ion and N positiveions in the APGD plasma. When the oxygen plasma or APGD plasma activated cotton fabrics,free radicals are generated in the hydroxyl groups of the C (2) and C (6) atom of the cotton fibermacromolecules. And the grafting polymerization take place at this position. When the oxygenplasma and argon plasma activated polyester fabrics, the free radicals were generated only onthe EG chain segments of the polyester macromolecules, and then chain propagation grew atthat points.
引文
[1]杨大智.智能材料与智能系统[M].北京:化学工业出版社,2002:1-20.
    [2] Tao X. Smart Fibres, Fabrics, and Clothing [M]. Woodhead publishing,2001.
    [3]黄鹤,于伟东,严灏景.自适应纺织品的类别及其制品[J].纺织学报,2007,28(12):135-140.
    [4] Hu J, Meng H, Li G, et al. A review of stimuli-responsive polymers for smart textileapplications [J]. Smart Materials and Structures,2012,21(5):053001.
    [5] E.S. Gil, S.M. Hudson. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym.Sci.29(2004)1173–1222.
    [6] Liu F, Urban M W. Recent advances and challenges in designing stimuli-responsivepolymers [J]. Progress in Polymer Science,2010,35(1):3-23.
    [7] M.S.M.Alger. Polymer Science Dictionary [M].New York: Elsevier Science Publishing Co.,Inc,1989:181.
    [8] A.S.Hoffman. Bioconjugates of intelligent polymers and recognition proteins for use indiagnostics and affinity separations [J]. Clinical Chemistry.2000,46(9):1478-1486.
    [9] Meng H, Hu J. A brief review of stimulus-active polymers responsive to thermal, light,magnetic, electric, and water/solvent stimuli [J]. Journal of Intelligent Material Systemsand Structures,2010,21(9):859-885.
    [10]Prabaharan M, Mano J F. Stimuli‐Responsive Hydrogels Based on PolysaccharidesIncorporated with Thermo-Responsive Polymers as Novel Biomaterials [J].Macromolecular bioscience,2006,6(12):991-1008.
    [11]Costa R O R, Freitas R F S. Phase behavior of poly (N-isopropylacrylamide) in binaryaqueous solutions [J]. Polymer,2002,43(22):5879-5885.
    [12]Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds fortissue engineering applications: a review [J]. Biomacromolecules,2011,12(5):1387-1408.
    [13]Feng Q, Chen F, Wu H. PREPARATION AND CHARACTERIZATION OF ATEMPERATURE-SENSITIVE LIGNIN-BASED HYDROGEL [J]. BioResources,2011,6(4):4942-4952.
    [14]Cayre O J, Chagneux N, Biggs S. Stimulus responsive core-shell nanoparticles: synthesisand applications of polymer based aqueous systems [J]. Soft Matter,2011,7(6):2211-2234.
    [15]Morishima Y. Thermally responsive polymer vesicles [J]. Angewandte ChemieInternational Edition,2007,46(9):1370-1372.
    [16]Cayre O J, Chagneux N, Biggs S. Stimulus responsive core-shell nanoparticles: synthesisand applications of polymer based aqueous systems [J]. Soft Matter,2011,7(6):2211-2234.
    [17]Salehi R, Arsalani N, Davaran S, et al. Synthesis and characterization of thermosensitive andpH‐sensitive poly (N‐isopropylacrylamide‐acrylamide‐vinylpyrrolidone) for use incontrolled release of naltrexone [J]. Journal of Biomedical Materials Research Part A,2009,89(4):919-928.
    [18]Iizawa T, Matsuura Y, Onohara Y. Synthesis of thermosensitive poly(N-alkylacrylamide)gels and core–shell type gels [J]. Polymer,2005,46(19):8098-8106.
    [19]Wei H, Cheng S X, Zhang X Z, et al. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers [J]. Progress in Polymer Science,2009,34(9):893-910.
    [20]C.dlH. Alarcon, S. Pennadam, C. Alexander. Stimuli responsive polymers for biomedicalapplications [J]. Chem Soc Rev,2005,34:276–285.
    [21]Afroze F, Nies E, Berghmans H. Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks [J].Journal of Molecular Structure,2000,554(1):55-68.
    [22]王昌华,曹维孝.温敏水凝胶[J].化学通报,1996,1:33-35.
    [23]马晓光.微波低温等离子体引发聚合P_AMPS_NIPA凝胶及其智能纺织品的研究[D].天津工业大学,2005.
    [24]Winnik F M. Fluorescence studies of aqueous solutions of poly (N-isopropylacrylamide)below and above their LCST [J]. Macromolecules,1990,23(1):233-242.
    [25]Toyoichi Tanaka. Collapse of Gels and the Critical Endpoint [J].Physical Review Letter,1978,40(12):820-823.
    [26]Fujishige S, Ando KKI. Phase transition of aqueous solutions of poly (N-isopropyl-acrylamide)and poly (N-isopropylmethacrylamide)[J]. Journal of Physical Chemistry,1989,93:3311-3313.
    [27]K.Kajiwara, Y.Osada. Gels Handbook [M].San Diego, Academic Press,2001.
    [28]任彦荣,霍丹群,侯长军.温敏性聚合物聚N-异丙基丙烯酰胺及其应用[J].材料导报.2004,18(11):54-60.
    [29]尹唯斯,杨琥,郑云,等.一种水溶性温敏共聚高分子的制备及溶液性质研究[J].南京大学学报:自然科学版.2005,41(2):133-138.
    [30]Kato K, Uchida E, Kang E T, et al. Polymer surface with graft chains [J]. Progress in PolymerScience,2003,28(2):209-259.
    [31]Lee H, Pietrasik J, Sheiko S S, et al. Stimuli-responsive molecular brushes [J]. Progress inPolymer Science,2010,35(1):24-44.
    [32]Yang H, Esteves A, Zhu H, Wang D, Xin John H.. In-situ study of the structure anddynamics of thermo-responsive PNIPAAm grafted on a cotton fabric [J]. Polymer,2012.Volume53, Issue16, Pages3577–3586
    [33]Wan L S, Yang Y F, Tian J, et al. Construction of comb-like poly (N-isopropylacrylamide)layers on microporous polypropylene membrane by surface-initiated atom transfer radicalpolymerization [J]. Journal of Membrane Science,2009,327(1):174-181.
    [34]Liu H, Hsieh Y L. Surface methacrylation and graft copolymerization of ultrafine cellulosefibers [J]. Journal of Polymer Science Part B: Polymer Physics,2003,41(9):953-964.
    [35]袁燕华,陈明清,刘晓亚,等. PNIPAAM接枝PAN/PSt热敏性聚合物微球的制备[J].高分子材料科学与工程.2005,21(5):71-74.
    [36] Carrillo F, Defays B, Colom X. Surface modification of lyocell fibres by graftcopolymerization of thermo-sensitive poly-N-isopropylacrylamide [J]. European PolymerJournal,2008,44(12):4020-4028.
    [37]Liang L, Feng X, Peurrung L, et al. Temperature-sensitive membranes prepared by UVphotopolymerization of N-isopropylacrylamide on a surface of porous hydrophilicpolypropylene membranes[J]. Journal of membrane science,1999,162(1):235-246.
    [38]Chen K S, Tsai J C, Chou C W, et al. Effects of additives on the photo-induced graftingpolymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabricsurface[J]. Materials Science and Engineering: C,2002,20(1):203-208.
    [39]Chen K S, Ku Y A, Lee C H, et al. Immobilization of chitosan gel with cross-linkingreagent on PNIPAAm gel/PP nonwoven composites surface [J]. Materials Science andEngineering: C,2005,25(4):472-478.
    [40]Curti P S, Moura M R, Veiga W, et al. Characterization of PNIPAAm photografted on PETand PS surfaces [J]. Applied surface science,2005,245(1):223-233.
    [41]李斌,陈文广,王晓工,等.聚丙烯表面接枝PNIPAAM膜光接枝反应和表面形态结构研究[J].高分子学报.2002,12(6):780-785.
    [42]Gupta B, Mishra S, Saxena S. Preparation of thermosensitive membranes by radiationgrafting of acrylic acid/N-isopropyl acrylamide binary mixture on PET fabric[J]. RadiationPhysics and Chemistry,2008,77(5):553-560.
    [43]Ikram S, Kumari M, Gupta B. Thermosensitive membranes by radiation-induced graftpolymerization of N-isopropylacrylamide/acrylic acid on polypropylene nonwovenfabric[J]. Radiation Physics and Chemistry,2011,80(1):50-56.
    [44]翟茂林,李军,刘建琴,等.NIPAAM在棉纤维织物上预辐射接枝共聚机理研究[J].辐射研究与辐射工艺学报.1999,17(3):140-144.
    [45]卢君,翟茂林,伊敏,等.棉纤维预辐射接枝NIPAAM的溶剂效应[J].辐射研究与辐射工艺学报.2000,18(2):124-128.
    [46]Jianqin L, Maolin Z, Hongfei H. Pre-irradiation grafting of temperature sensitive hydrogelon cotton cellulose fabric[J]. Radiation Physics and Chemistry,1999,55(1):55-59.
    [47]Jun L, Jun L, Min Y, et al. Solvent effect on grafting polymerization of NIPAAm ontocotton cellulose via γ-preirradiation method [J]. Radiation Physics and Chemistry,2001,60(6):625-628.
    [48]Chauhan G S, Lal H, Mahajan S. Synthesis, Characterization and Swelling Responsive ofPoly(N-isopropylacrylamide) and Hydroxypropyl Cellulose-Based EnvironmentallySensitive Biphasic Hydrogels[J]. J Appl Polym Sci.2004(91):479-488.
    [49]Lee Y M, Shim J K. Preparation of pH/temperature responsive polymer membrane byplasma polymerization and its riboflavin permeation [J]. Polymer,1997,38(5):1227-1232.
    [50]Liang L, Shi M, Viswanathan V V, et al. Temperature-sensitive polypropylene membranesprepared by plasma polymerization[J]. Journal of Membrane Science,2000,177(1):97-108.
    [51]齐旺顺,王晓琳,黄健,等. N-异丙基丙烯酰胺接枝聚乙烯微孔膜的接枝形态和动电现象[J].膜科学与技术.2003,23(1):1-6.
    [52]黄健,王晓琳,陈秀珍,等.高分子微滤膜等离子体处理接枝N-异丙基丙烯酰胺[J].高分子材料学与工程.2003,19(4):48-51.
    [53]G.S.Nadiger, Kiran H.Kale, Shital Palaskar. Plasma technology and its applications intextiles [J].Bata Scan,2009, December:1-9.
    [54]http://ds9.ssl.berkeley.edu/themis/images/phases_large.jgp.
    [55]甄汉生.等离子体加工技术[M].北京:清华大学出版社.第一版,1990.
    [56]陈杰瑢.等离子体清洁技术在纺织印染中的应用[M].中国纺织出版社.2005.
    [57]宋心远,沈煜如.新型染整技术[M].中国纺织出版社.1999,27.
    [58]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社,2001.
    [59]Jinqiang Liu, Yongqiang Li, Jianzhong Shao. A study on silk surface modification withcarbon tetrafluoride low temperature plasma. Research Journal of Textile&Apparel,2009,13(4):19-25.
    [60]陈国荣,张开.等离子体接枝聚合在高分子材料表面改性中的应用[J].高分子材料,1991(4):37-40.
    [61]R.Shishoo. Plasma technologies for textiles [M].Washington DC. CRC Press.
    [62]周其凤,胡汉杰等.高分子化学[M].北京:化学工业出版社.第一版,2001.
    [63]吴人洁.高聚物的表面与界面[M].北京:科学出版社,1998:176
    [64]Hoffman, A. S., Stayton, P. S.. Conjugates of Stimuli-responsive Polymers and Proteins.Progr. Polym. Sci.,2007,32,922-932.
    [65]Crespy D, Rossi R M. Temperature‐responsive polymers with LCST in the physiologicalrange and their applications in textiles [J]. Polymer International,2007,56(12):1461-1468.
    [66]T.Tanaka, I.Nishio, S.T.Sun, S.Ueno-Nishio. Collapse of in an Electric Field [J].Science.1982,218(4571):467-469.
    [67]Chan C M, Ko T M, Hiraoka H. Polymer surface modification by plasmas and photons[J].Surface science reports,1996,24(1):1-54.
    [68]Oehr C, Müller M, Elkin B, et al. Plasma grafting—a method to obtain monofunctionalsurfaces[J]. Surface and Coatings Technology,1999,116:25-35.
    [69]Castelvetro V, Fatarella E, Corsi L, et al. Graft polymerisation of functional acrylicmonomers onto cotton fibres activated by continuous Ar plasma[J]. Plasma Processes andPolymers,2006,3(1):48-57.
    [70]Tourrette A, De Geyter N, Jocic D, et al. Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibresurface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,352(1):126-135.
    [71]Tsafack M J, Levalois-Grützmacher J. Flame retardancy of cotton textiles byplasma-induced graft-polymerization (PIGP)[J]. Surface and coatings technology,2006,201(6):2599-2610.
    [72]冯玉红.现代仪器分析实用教程[M].北京,北京大学出版社,2008.
    [73]Liu F, Urban M W. New thermal transitions in stimuli-responsive copolymer films[J].Macromolecules,2009,42(6):2161-2167.
    [74]俞坚磊,刘今强,邵建中,李永强,王锋.一种测试热智能纺织品温敏特性的方法及装置
    [P].中国,200710068356.9.
    [75]Ikram S, Kumari M, Gupta B. Thermosensitive membranes by radiation-induced graftpolymerization of N-isopropylacrylamide/acrylic acid on polypropylene nonwovenfabric[J]. Radiation Physics and Chemistry,2011,80(1):50-56.
    [76]Kunugi S, Takano K, Tanaka N, Suwa K and Akashi M, Effects of pressure on the behaviorof the thermoresponsive polymer poly(N-vinylisobutyramide).Macromolecules,30(1997),pp.4499–4501.
    [77]Tanaka T, Nishio I, Sun S T, et al. Collapse of gels in an electric field[J]. Electroactivity inPolymeric Materials,2012:145.
    [78]Hirokawa Y, Tanaka T. Volume phase transition in a non-ionic gel[C]//AIP ConferenceProceedings.1984,107:203.
    [79]叶由忠译. N-异丙基丙烯酰胺[J].精细与专用化学品,2003(3):23.
    [80]Guilherme M R, Da Silva R, Rubira A F, et al. Thermo-sensitive hydrogels membranes fromPAAm networks and entangled PNIPAAm: effect of temperature, cross-linking andPNIPAAm contents on the water uptake and permeability[J]. Reactive and FunctionalPolymers,2004,61(2):233-243.
    [81]陈冰,陈银,王红卫.低温氩等离子体表面改性提高PET亲水性[J].纺织学报,2009,28(6):28-31.
    [82]Lee W F, Lin Y H. Swelling behavior and drug release of NIPAAm/PEGMEA copolymerichydrogels with different crosslinkers[J]. Journal of materials science,2006,41(22):7333-7340.
    [83]陈瑜,陈明清,刘晓亚,杨成.N-异丙基丙烯酰胺共聚物的温度敏感性研究[J].胶体与聚合物,2001,19(3):5-8.
    [84]许小平.聚N-异丙基丙烯酰胺类凝胶在NaCl水溶液中的溶胀平衡[J].福州大学学报,2001,29(1):101-104.
    [85]赖金洪,潘春跃,饶燕平.合成温度对PNIPAAm水凝胶结构与性能的影响[J].中南大学学报(自然科学版),2005,36(6):1006-1010.
    [86]Nayak S, Debord S B, Lyon L A. Investigations into the deswelling dynamics andthermodynamics of thermoresponsive microgel composite films[J]. Langmuir,2003,19(18):7374-7379.
    [87]Kayaman N, Kazan D, Erarslan A, et al. Structure and protein separation efficiency of poly(N-isopropylacrylamide) gels: Effect of synthesis conditions[J]. Journal of applied polymerscience,1998,67(5):805-814.
    [88]Paul J. Flory. Principles of polymer chemistry[M]. New York:Cornell University Press,1953.
    [89]Masaaki Okubo, Noboru Saeki, Toshiaki Yamamoto. Development of functional sportswearfor controlling moisture and odor prepared by atmospheric pressure nonthermal plasma graftpolymerization induced by RF glow discharge[J].Journal of Electrostatics,2008,66:381-387.
    [90]刘今强,张芳,邵建中,李永强,范钦国.棉纤维的N-异丙基丙烯酰胺接枝共聚及产物的温敏性研究[J].高分子学报,2009,12:1266-1272.
    [91]Hegemann D, Brunner H, Oehr C. Plasma treatment of polymers for surface and adhesionimprovement[J]. Nuclear instruments and methods in physics research section B: Beaminteractions with materials and atoms,2003,208:281-286.
    [92]潘铁英,张玉兰,苏克曼编著.波谱分析法[M].上海:华东理工大学出版社,2009.
    [93]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1999:236.
    [94]Kogelschatz U. Dielectric-barrier discharge: their history, discharge physics, and industryapplications [M]. Plasma Chemistry and Plasma Processing,2003,23(1): l-46.
    [95]Massines F, Rabehi A, Decomps P, Gadri R B, Segur P, and Mayous C. Experimental andtheoretical study of a glow discharge atmospheric pressure controlled by dielectric barrier [J].Appl. Phys,1998,83:2950-2957.
    [96]AATCC Test Method79, AATCC Technical Manual,2010.
    [97]毛志国,冉俊霞,尹增歉,董丽芳.不同气压下氩气介质阻挡辉光放电的特性研究[J].河北大学学报(自然科学版),2004,24(6):589-592.
    [98]王新新,芦明泽.空气中大气压下均匀辉光放电的可能性[J].物理学报,2002,12:2778-2885.
    [99]辛仁轩.等离子体发射光谱分析[M].北京:北京工业出版社,2005.
    [100] Liu S, Sun G. Functional modification of poly (ethylene terephthalate) with an allylmonomer: Chemistry and structure characterization[J]. Polymer,2008,49(24):5225-5232.
    [101]黄惠忠.论表面分析及其在材料研究中的应用[M].北京:科学技术文献出版社,2002.
    [102] Zhu L, Wang C, Qiu Y. Influence of the amount of absorbed moisture in nylon fibers onatmospheric pressure plasma processing[J]. Surface and Coatings Technology,2007,201(16):7453-7461.
    [103] Masaaki Okubo, Noboru Saeki, Toshiaki Yamamoto. Development of functionalsportswear for controlling moisture and odor prepared by atmospheric pressure nonthermalplasma graft polymerization induced by RF glow discharge[J].Journal of Electrostatics,2008,66:381-387.
    [104]陈森,陈英.低温等离子体引发的涤纶织物的接枝改性[J].北京服装学院学报,2007,27(3):6-12.
    [105] Chen J R. Free radicals of fibers treated with low temerature plasma [J]. Journal ofapplied polymer science,1991,42(7):2035-2037.
    [106] Wakida T, Takeda K, Tanaka I, et al. Free radicals in cellulose fibers treated with lowtemperature plasma[J]. Textile Research Journal,1989,59(1):49-53.
    [107]李钢,李汉明,聂超群,张翼,李英骏.介质阻挡放电等离子体发光特性的光谱分析[J].航空动力学报,2008,3(23):490-495.
    [108]蔡再生.纤维化学与物理[M].北京:中国纺织出版社,2009.
    [109] Rowell, R, M and Young, R, A.,"Modified Cellulosics", Academic Press, New York,1978.
    [110] Vaideki K, Jayakumar S, Thilagavathi G, et al. A study on the antimicrobial efficacy ofRF oxygen plasma and neem extract treated cotton fabrics[J]. Applied surface science,2007,253(17):7323-7329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700