动态鞘层长探针检测及保形增强沉积工艺初步探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从分析等离子体浸没离子注入技术(Plasma Immersion Ion Implantation,PIII)目前存在的改性不均匀及改性层较薄的问题入手,针对等离子体动态鞘层诊断、提高等离子体密度、改进偏压方式等关键技术,提出相应的解决方案并开展了初步工艺探索。为该技术的推广与实际工程应用奠定基础。
     绪论部分主要回顾等离子体浸没注入技术的发展历程,并简要分析工程上材料改性对等离子体技术的实际要求。由此引出本文所针对的关键问题及研究工作安排。改性不均匀及改性层较薄是浸没注入目前比较突出的两个主要问题。本文围绕这两个问题开展了动态鞘层检测、微波等离子体源改进、脉冲直流复合偏压及保形增强沉积工艺探索等工作。
     第二章介绍PIII过程中高压鞘层演化特点,举例说明目前典型理论模型与实际问题的差别以及现有实验检测方法的对比。不同理论模型对同一问题的模拟结果仍然存在较大出入,且很少涉及鞘层的恢复过程。现有检测方法大多利用小探针移动方式来获取不同位置的鞘层信号。此类方法不易获得鞘层演化的整体信息及时间过渡特征。
     第三章提出长探针对动态鞘层演化的测量方法及基本原理。利用此方法用对“静态”磁控溅射等离子体以及脉冲阴极弧“流动”金属等离子体的鞘层进行了测量。经与理论值初步对比,结果认为是合理的。同时发现,在快速流动的金属等离子体中,基体的上、中、下游的鞘层行为有着很大的区别。上游及侧面鞘层对高压脉冲响应迅速,但下游明显地存在着时间延迟现象,而且鞘层尺寸按上、中、下游的次序依次增大。侧面鞘层实测值与理论值的偏差最小,吻合程度最好。
     根据鞘层检测结果,第四章对微波ECR等离子体源与高压电源进行改进,以期提高等离子体密度(缩小鞘层尺寸达到保形注入)及实现复合偏压(增加改性层厚度)。采用谐振腔内部添加铁芯的措施,使得微波放电区进一步向工艺区靠近,测量数据显示工艺区的平均等离子体密度由6.67×10~9提高到了2.12×10~(10)cm~(-3)。这样既延长了微波等离子体源的工作寿命,又保持了工艺区的等离子体密度,将有助于增加处理工艺的均匀性。针对浸没注入及增强沉积的复合工艺,利用电感、电容元件对交、直流电的不同特性,将负高压脉冲与直流偏压复合在一起,在浸没方式下实现混合注入与沉积。
     第五章以TiN涂层为例,进行复杂形面(杯形件)的保形增强沉积工艺探索与动态混合沉积试验。结果显示,在实验条件下,5μs的脉冲宽度可获得较好的均匀性。当杯形件口径接近2倍鞘层尺寸且深度不大于口径的2/3时,用20kV、5μs的高压脉冲可以实现内壁的注入与强化,对底部强化作用偏弱。同时,当脉冲高压参数选择适当时,复合偏压可使涂层硬度与结合力同时得到提高。
     利用脉冲阴极弧等离子体,在0-90°的范围内测量了基体偏压对Cu、Ti等元素的附着系数的影响。实验发现一定入射能量下(>50eV)Cu元素在入射角60°附近有最小(为0)的附着系数。该结果与文献上的理论模拟取得了很好的一致。而基体偏压可明显改善最小附着系数为0的现象,有利于涂层沉积。
The present dissertation analyses the problems such as nonuniformity and thinner modification layer existing in Plasma Immersion Ion Implantation (PIII). Aiming at these problems, some ideas are proposed to improve the dynamic sheath measurement, increase plasma density, and modifythe substrate biasing. Establish a basic support of this technology's application in industry.
     The first chapter mainly reminds the development process of PIII and describe the surface modification demands on plasma technology, and then educe the problems that limited the technology and the arrangements of the dissertation. Aiming at the limitations, the research works including dynamic sheath measurement, modifying the ECR plasma souece and the high voltage pulas souce have been finished. The conformal enhanced deposition process is explored.
     The second chapter makes an intrpduction of the PIII sheath features. Illustrate the defferirnts between fifferent models for a certion problem. Although various theoretical models and simulations were developed to explain the sheath behavior, experimental results are still considered more reliable for guiding the practical process. Most of the methods to measure the sheath reported up to now are putting several small probes at different positions or moving the probes to different positions. The whole data of sheath expansion and recovery during a high voltage pulse usually can't be obtained in such conditions because one cannot move the probe continuously nor put probes at every position.
     To measure the whole information of a sheath, a method and its principle of using a long probe is proposed in the third chapter. Using the long probe, the sheaths in "static" magnetron sputtering and the "flowing" pulsed cathodic arc plasma are measured. The results can be believed reasonable after comparision with the theoretic values. It is found that there are big differences between the sheaths induced in upstream, side and the downstream of the substrate in the fast flow plasma. In upstream and side, almost no time delay between the sheath and the HVP . But there is apparent response delay for the downstream sheath after the HVP passed. The sheath thickness is increased in the sequence of upstream, side and the downstream. But the agreement between measured side sheath and theoretic value is the best one.
     In the fourth chapter some modifations have been done related to the plasma source according to the sheath measurement result. An iron core is put inside the cavity and make the discharge zone moving closer to the process area. The density in the process area is increased from 6.67×10~9 to 2.12×10~(10)cm~(-3). So the lifetime of the couple window is elongated and higher plasma density is kept. Also, HVP and DC bias are composed together by using the features of inductance and capacitance. Thus the implantation, deposition or dynamic mixing deposition can be realized in one vacuum period.
     Finally, the conformal implantation and deposition process is explored by "cup" shape holder with TiN coating. Under the test condition, the results show that when the pulse width is 5μs the uniformity is better and it is difficult to implant or enhance the bottom when the cup diameter less than 2 times sheath size and the cup depth greater than the 2/3 diameter. But when proper HVP parameters are choosed the bound strength and hardness of the coating can be increased.
     The sticking probabilities of deposition particles in different incident angle(0-90o ) are measuered in cathodic arc plasma with Cu and Ti elements. It is found that the substrate bias has more effect to the sticking probability in the flowing plasma. It can change the phenominon of 0 sticking probability at certain incident angle(for Cu is 60°).
引文
[1]T.S.Sudarshan著.范玉殿等译.表面改性技术工程师指南华大学出版社,1992.3:P206.
    [2]师昌绪,徐滨士等.21世纪表面工程的发展趋势.中国表面工程,2001年第1期:2-7.
    [3]聂勇,汪晶毅,钟侃等.等离子体辅助催化还原NOx的协同特性.电工电能新技术.Vol.26,No.3(2007.7)47-51.
    [4]向鹏飞,陈俊芳,蒙高庆等.等离子体辅助电子枪蒸发制备AIN薄膜及等离子体参数诊断。华南师范大学学报(自然科学版)No.29(2006.5)61-65
    [5]李驰麟,傅正文,舒兴胜等。电子回旋共振等离子体辅助溅射沉积锂磷氧氮薄膜。无机材料学报,Vol.21.No.1(2006.1)193-198
    [6]杨武保,范松华,戈敏等.高能等离子体辅助CVD法新型纳米碳膜的制备及分析。物理学报。Vol.55,No.1(2006.1)351-355.
    [7]张茂平,陈俊芳,蒙高庆等.离子源辅助法制备TiN及等离子体特性研究。华南师范大学学报(自然科学版) No.3(2006.8)59-64
    [8]梁红伟,颜建锋,吕有明等.用等离子体辅助分子束外延生长氧化锌单晶薄膜.发光学报,Vol.25No.2(2004.4)147-150
    [9]J.Leon Shohet.Plasma-Aided Manufacturing.IEEE Transaction on plasma science Vol.19No.5(1991.10)725-733
    [10]P.H.Rose.A history of commercial implantation.Nucl.Instrum.Methods Phys.Res.B6(1985):1-8.
    [11]M.I.Current,R.A.Martin,K.Doganis et al.MeV implantation for CMOS applications.Semicond.Int.8(1985):106-113.
    [12]J.R Conrad.Method and apparatus for plasma source ion implantation.U.S Patent:No4764394(16August,1988)
    [13]J.R Conrad.Plasma source ion implantation:a new approach to ion beam Modification of materials,Material Sci.Eng.116A(1987):197-203.
    [14]R.J.Adler.Ion implantation source and devic.U.S.patent4,587,430.Mission Research Corporation,Sant,Barbara,CA,1986.
    [15]R.J.Adler and S.T.Picranx.Repetitively pulsed metal ion beams for implantation.Nucl.Instrum.Methods Phys.Res.B6(1985):123-128.
    [16]R.J.Adler,R.J.Richter-Sand,E.J.Clark etc.Conformal ion implantation using pulsed plasma source.J.Vac.SCi.Technol.B 17(2),Mar/Apr.1999
    [17]Andrea Anders.Handbook of Plasma Immersion Ion Implantation and Deposition.A WILEY-INTERSCIENCE PUBLICATION,JOHN WILEY&SONS,INC.2000:11-14,309-404.
    [18]Shohet J.L.Madison Wis.Ion purification for implantation.U.S.Pat.5289010.Feb.22,1994.
    [19]汤宝寅.Current International Status ofthe Plasma Immersion Ion Implantation.97高能束流加工技术发展方向研讨会.北京.1997.10.
    [20]Donald J.Rej.Cost estimates for commercial plasma source ion implantation.J.Vac.Sci.Technol.B 12(4) Jul/Aug 1994:2380-2387.
    [21]Andre Anders.From plasma immersion ion implantation to deposition:a historical perspective on principles and trends.Surf.& Coat.Technol.156(2002):1-12.
    [22]MePIIID I.Brown.Plasma and Ion Beam Surface Modification at Lawrence Berkeley National Laboratory:Methodd,5th Conference on Modification of Materials with Particle Beams and Plasma Flows Proceedings,Tomsk,Ru.2000:235-239.
    [23]A.I.Ryabchikov,I.B.Stepanove,P.Ya.lsakov,etc.,High Average Power Metal Ion Beams Production from DC Vacuum Arc Plasma,5th Conference on Modification of Materials with Particle Beams and Plasma Flows Proceedings.Tomsk,Ru.2000:159-163.
    [24]D.J.REJ,J.R.CONRAD etc.First Results from the Los Alamos Plasma Source ion Implantation Experiments.Mat.Res.Soc.Symp.Proc.316(?) 1994 Material Research Society:593-598.
    [25]Carter P.Munson,etc.Recent Advances in plasma source Ion Implantation,Ninth International Conference on Surface Modification of Metals by Ion beam.San Sebastan,Spain Sep.4-8,1995.
    [26]Jesse N.Matossian.Plasma ion implantation technology at Hughes Research Laboratories.J.Vac.Sci.Technol.(2) Mar/Apt/1994:850-853.
    [27]哈工大 汤宝寅等,9Cr18轴承钢的金属离子加氮离子复合注入处理新工艺.中国表面工程,2000,Vol.13/4,24-27.
    [28]王永康,熊仁章,雷廷权,夏立芳等,Ti过渡层与高速钢基底间的界面结构研究,第27卷第5期,机械工程材料2003.5:39-41.
    [29]廖家轩,夏立芳,孙明仁,等,铝合金表面等离子体基离子注入碳层的摩擦学性能,摩擦学学报23,4:282-287.
    [30]孙跃,董学军,夏立芳等,N等离子体基注渗方法研究。真空,2003年5月,33-37
    [31]ZHANG Ling zhao,LIAO Jiaxuan,XIA Lifang.Structure and tribological properties of modified layer on 2024aluminum alloy by plasma based ion implantation with nitrogen/titanium/carbon,Vol.13 No.6Trans.Nonferrous Met.Soc.China,Dec.2003:1371-1375.
    [32]李光,孙跃,夏立芳,高超,PBH制备TiNx/DLC多层膜的结构及摩擦学性能.材料科学与工艺,Vol.11 No11,Mar,2003:20-24.
    [33]俞世吉,马腾才,感应耦合等离子体源制备硬质类金刚石膜的研究,核技术Vol.26,No.2,2003年2月:125-128.
    [34]李晓娜,聂冬,马腾才等,离子注入合成β-FeSi2薄膜的显微结构,物理学报,2002,01期.
    [35]徐军,邓新绿,张家良,陆文棋,马腾才,双放电腔微波-ECR等离子体源增强磁控溅射沉积技术.大连理工大学学报,Vol.4l No.3,May,2001:275-278.
    [36]马腾才,外磁场作用下的射频等离子体鞘层,大连理工大学学报Vol.37.No.2,Mar.1997:0125-128
    [37]刘元富,韩建民,张谷令,王久丽等,脉冲高能量密度等离子体沉积(Ti,Al)N薄膜组织及其性能研究,物理学报,Vol.54,No.3,March,2005,P1301-05.
    [38]孙牧,杨思泽,李冰等,等离子体源离子注入同轴电极间的鞘层模型,真空科学与技术,1997.5:206-209.
    [39]杨思泽,张谷令,王久丽等,管形材料离子注入内表面该性研究进展,科学技术与工程,Vol.3No.6,2003.12:594-60.
    [40]Changrong Li,Zhihong Zheng,Fuming Zhang,etc.TiO2-x films prepared by ion bcam assisted deposition,Nucl.Instr.and Meth.in Phys.rcs B169(2000):21-25.
    [41]王钧石,柳襄怀,王曦,PⅢ技术在制备C2BN硬化层中的应用,稀有金属,Vol.28 No.4,2004.8:690-1594
    [42]柳襄怀.离子束研究和应用走上新台阶.材料导报,14(1)(2000)10-12.
    [43]王钧石,柳襄怀,黄楠等,等离子体浸没式离子注入—离子柬增强沉积TiN膜研究,材料工艺,材料开发与应用,2003.10:17-20.
    [44]童洪辉等,核工业西南物理研究院.全方位离子注入及增强沉积技术研究,97高能束流加工技术发展方向研讨会.北京,1997.10.
    [45]陈庆川,童洪辉,崔西蓉等.多功能复合离子镀膜机的研制,真空,Vol.42,No.1Jan.2005:36-38
    [46]童洪辉,陈庆川,霍岩峰等,全方位离子注入及增强沉积工业机和应用,核技术Vol.25,No.9:684-689.
    [47]R.J.Adler,W.Horne,R.Brunke etc.,Results from 2 years of operation of a plasma implantation facility.Surf.&Coat.Tecgnol,136(2001):252-254.
    [48]R.J.Adler."PSII Basic Process and Equipment" PⅢ 技术交流会.北京,1999.7.
    [49]K.H.M(u|¨)ler.Stress and microstructure of sputter-deposited thin film:Molecular dynamics investigations.J.Appl.Phys.62(1987):1796-1799.
    [50]H.Windischmann.Intrinsic stress in sputtered thin films.J.Vac.Sci.Technol.A 9(1991):2431-2436.
    [51]http//www.Yahoo.com/Wikipedia.Plasma(physics)-Wikipedia,the flee encyclopedial)
    [52]Langmuir.I.Positive Ion Currents from the Positive Column of Mercury Arcs.1923 Science,Volume 58,Issue 1502:290-291.
    [53]Langmuir.I.Oscillations in ionized gases.1928,Proc.Nat.Acad.Sci.U.S.,vol.14,628-637.
    [54]C.G.Suits.The Collected Works of Irving Langmuir,vol.5,New York:Pergamon,1961,111-120.
    [55]L.Tonks,The birth of"plasma".Amer.J.Phys.1967,(35):857-858.
    [56]Albert W.Hull and Irving Langmuir.Control of an Arc Discharge by Means of a Grid,Proc Natl Acad Sci U S A.1929 March 15;15(3):218-225.
    [57]甄汉生.等离子加工技术.北京:清华大学出版社,1990.10第一版.
    [58]徐学基 诸定昌.气体放电物理.上海:复旦大学出版社,1996.P58.
    [59]Andrea Anders.Handbook of Plasma Immersion Ion Implantation and Deposition.NY,A WILEY-INTERSCIENCE PUBLICATION,JOHN WILEY&SONS,INC.2000:49,115,254.
    [60]Dai Zhong-Ling,Wang You-Nian.Dynamic sheath model at pulsed-biased insulating substrates.JOURNAL OF APPLIED PHYSICS,2002,92,(11) 6428-6433.
    [61]Y.Miyagawa,M.Ikeyama,S.Miyagawa,etc.Computer simulation of plasma for plasma immersed ion implantation and deposition with bipolar pulses.Nuclear Instruments and Methods in Physics Research B 2003(206):767-771.
    [62]R.A.Stewart and M.A.Lieberman.Model of plasma immersion ilon implantation for voltage pulses with finite rise and fall times.1991,J.Appl.Phys.70(7):3481-3487.
    [63]M.A.Lieberman,Model of plasma immersion ion implantation.J.Appl.Phys.1989,66(7):2926-2929.
    [64]J.T.Scheuer,M.Shamin,J.R.Conrad.Model of plasma source ion implantation in planar,cylindrical,and spherical geometries.J.Appl.Phys.1990,67(3):1241-1245.
    [65]C.K.Birdsall.Particle-in-cell charged-particle simulations,pluss Monte Carlo collisions with neutral atoms,PIC-MCC.IEEE Trans.Plasma Sci.1991(19):65-85.
    [66]G.A.Emmert,M.A.Henry.Numerical simulation of plasma sheath expansion,with applications to plasma-source ion implantation.J.Appl.Phys.1992,71(1):113-117.
    [67]T.E.Sheridan,M.I.Goeckner,Collisional sheath dynamics.1995,J.Appl.Phys.77(10):4967-4972
    [68]M.Shamim,J.T.Scheuer,and John FL Conrad.Measurements of spatial and temporal sheath evolution for spherical and cylindrical geometries in plasma source ion implantation.J.Appl.Phys.69(5),1 March 1991:2904-2908.
    [69]J(o|¨)rg Brutscher,Reinhard G(u|¨)nzel and Wolfhard M(o|¨)ller.Sheath dynamics in plasma immersion ion implantation.Plasma Sources Sci.Technol.5(1996):54-60.
    [70]Young-Woo Kima,Gon-Ho Kima,U,Seunghee Hanb.Measurement of sheath expansion in plasma source ion implantation.Surface and Coatings Technology 136 2001:97-101.
    [71]M.YatsuzukaU,S.Miki,R.Morita,etc.Spatial and temporal growth and collapse in a PBⅡ plasma Surface and coating Technology 136(2001):93-96.
    [72]Andre Anders.Width,structure and stability of sheaths in metal plasma immersion ion implantation and deposition:measurements and analytical considerations,Surface and Coatings Technology 136 2001:85-92.
    [73]Andre Anders.Metal plasmas for the fabrication of nanostructures.J.Phys.D:Appl.Phys.2007,Vol.40:2272-2284.
    [74]Andre Anders.Cathodic arcs.Springer Science+Business Media,LLC,233 Spring Street,New York,NY1003,USA.2008.
    [75]J(u|¨)ttner B.Cathode spots of electric arcs.2001 J.Phys.D:Appl.Phys.34(17):R103-123.
    [76]Sch(u|¨)lke T and Siemroth P.Vacuum arc cathode spots as a self-similarity phenomenon.IEEE Trans.Plasma Sci.1996,24(1):63-64.
    [77]Anders A.The Fractal Nature of Vacuum Arc Cathode Spots.IEEE Trans.Plasma Sci.2005,33(5):1456-1464.
    [78]Andre Anders.Atomoc scal heating in cathodic arc plasma deposition.Applied physics letter.Vol.80No.6(2002.11)1100-1102.
    [79]Andre Anders and George Yu Yushkov.Ion flux from vacuumarc cathode spots in the absence and presence of magnetic field.Journal of applied physics 2002,Vol.91(8):4824-4832.
    [80]Jacques Pelletier and Andre Anders.Plasma-Based Ion Implantation and Deposition:A Review of Physics,Technology,and Applications.IEEE TRANSACTIONS ON PLASMA SCIENCE,2005 VOL.33,NO.6:1944-1959
    [81]J.Matossian,G.A.Collins,P.K.Chu,C.P.etc."Design of a PIII&D processing chamber," in Handbook of Plasma Immersion Ion Implantation and Deposition,A.Anders,Ed.New York:Wiley,2000:343-379.
    [82]J.H.Keller,Inductive plasma for plasma processing.Plasma Sources Sci.Technol,1996(5):166-172
    [83]Andrea Anders,Handbook of Plasma Immersion Ion Implantation and Deposition,P384,468.A WILEY-INTERSCIENCE PUBLICATION,2000.
    [84]Oleg A.Popov.High density plasma source.Park Ridge NJ.USA,Noyes Publishing,1995.361-365
    [85]http://en.wikipedia.org/wiki/Special:Search=thin+film+deposition+process
    [86]T.Spalvins.Plasma Assisted Surface Coating/Modification Processes:An Emerging Technology,Prepared for the First International Ion Nitriding Conference cosponsored by the American Society for Metals and NASA Lewis Research Center Cleveland,Ohio,September 1986:15-17.
    [87]C.Ratsch,J.A.Venables.Nucleation theory and the early stages of thin film growth J.Vac.Sci.Technol.A 21(.5),2003:96-109.
    [88]http://www.uccs.edu/~tchriste/courses/PHYS549/549lectures/index.html
    [89]J A Venables,G D T Spiller,M Hanbucken.Nucleation and growth of thin films.School of Mathematical and Physical Sciences,University of Sussex,Brighton BN1 9QH,UK.401-403.
    [90]D.M.Mattox.Particle bombardment effects on thin-film deposition:a review.J.Vac.Sci.Technol.A 7.1989:1105-1114.
    [91]F.A.Smidt.Use of ion beam assisted deposition to modify the microstructure ad properties of thin films.Int.Mater.Rew.35,1990:61-128.
    [92]M.Marinov.Effect of ion bombardment on the initial stages of thin film growth.Thin Solid Films 46,1977:267-274.
    [93]G.P.Chambers and B.D.Sartwell.Growth modes of Ag deposited on Si(111) with simultaneous low energy ion bombardment.Surf.Sci.218,1989:55-57.
    [94]J.Y.Tsao,E.Chason,K.M.Horn,etc.Low-energy ion beams,molecular beam epitaxy,and surface morphology.Nuel.Instrum.Methods B.1989(39):72-80.
    [95]Goggle:Applied Physics 298r Ⅱ.Thin Film Deposition.www.mrsec.harvard.edu/education/ap298r 2004/E.Chen(4-12-2004)
    [96]Wu Hongchen,Zhang Huafang,Ma Guojia,etc.A biasing method for plasma immersion ion implantation and deposition process to enhance coating adhesion。Surface &Coatings Technology 201(2007) 6611-6614.
    [97]Andre Anders.Time-Dependence of Ion Charge State Distributions of Vacuum Arcs:An Interpretation Involving Atoms and Charge Exchange Collisions.IEEE TRANSACTIONS ON PLASMA SCIENCE,VOL.33,NO.1,FEBRUARY 2005:205-209
    [98]D.E.Hanson,J.D.Kress,and A.F.Voter.Trapping and desorption of energetic Cu atoms on Cu(111)and(001) surfaces at grazing incidence.PHYSICAL REVIEW B VOLUME 60,1999-Ⅱ:11723-729.
    [99]D.E.Hanson,B.c.Stephens,C.Saravanan,etc.Molecular dynamics simulations of ion self-sputtering of Ni and Al surface.J.Vac.Sci.Tcch.A,Vac.Surf.Films.(19)2001:820-825.
    [100]Andre' Anders,George Yu.Yushkov.Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field.JOURNAL OF APPLIED PHYSICS VOLUME 91,NUMBER 8,15 APRIL 2002:4824-4832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700