水下金属元素的激光诱导击穿光谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有海水中金属含量的分析方法主要有原子吸收分光光度法、电感耦合等离子光谱法及一些传统的化学分析方法。虽然测量精度很高,但都需要对海水进行采样,并对样品进行预先的处理,分析时间较长,不具备快速、实时、在线分析的能力,难以满足海洋原位探测的需要。激光诱导击穿光谱技术(LIBS)作为一种原位、实时、连续、无接触检测技术,常用于一些异常环境下的化学成分检测,其检测对象主要是金属元素。目前,LIBS技术已被广泛地应用于矿业、冶金业、环境分析等多个领域。然而在液体环境中,受液体压力、吸收等因素的影响,光谱探测难度增加,使得LIBS技术应用到水下探测面临着极大的挑战。因此,作为LIBS海洋原位探测技术研究的实验室预演,本课题瞄准LIBS技术在水下应用的技术关键进行实验探索,以期为基于LIBS的海洋原位探测系统原理样机的开发提供有价值的技术参数与方案。
     论文首先介绍了选题的背景和意义,然后从LIBS技术的基础原理、现状及发展趋势、仪器等方面介绍了本论文的理论依据和实验方法。作者的主要工作包括:①搭建气-液界面LIBS实验系统,对气-液界面激光诱导等离子的光谱特性进行了分析;②搭建水下LIBS实验系统,对水下激光诱导等离子的光谱特性进行了分析;③搭建LIBS & Raman光谱联合探测系统,对将两种光谱技术结合的可行性进行了探讨。
     运用气-液界面LIBS实验系统,对竖直流动的CuSO4和Pb(NO3)2水溶液样品表面的LIBS光谱特性进行了观测分析。通过对Cu元素的LIBS信号随时间及能量演化的研究,确定了该系统脉冲激光在气-液界面的击穿阈值约为10 mJ,诱导的等离子体寿命约为1400 ns;检测Cu元素时的最佳延时为700 ns,最佳脉冲能量为40 mJ。在进一步优化系统的其它工作参数后,对信号随浓度的演化进行了探测,初步确立了系统对Cu元素的检测限为31 ppm。在对Cu元素检测的基础上,对溶液中的Pb元素进行了探测,结果表明两者有着几乎相同的时间及能量演化趋势;为了减少空气击穿时氧信号对Pb元素信号的影响,实验在探测Pb元素时,将击穿点从液柱的前表面移到了后表面,优化工作条件后,系统对Pb的检测限由在前表面击穿时的200 ppm降到了50 ppm,得到了很大的改善。
     运用水下LIBS实验系统,对激光在CaCl2溶液中诱导的等离子体特性进行了研究。通过对Ca I 422.7 nm、Ca II 393.4/396.8 nm特征谱线强度随时间演化的研究,得到了532 nm和1064 nm脉冲各自在溶液中诱导的等离子体寿命分别约为600 ns及1200 ns,确定了有利于信噪比改善的探测延时。通过对Ca的特征信号随能量演化的研究发现,在脉冲能量高于击穿阈值时,激光诱导等离子体的寿命趋于恒定,并且增加脉冲能量会使等离子体辐射的连续背景大大增强,影响元素特征辐射的探测,选择较低的单脉冲能量激发将使信号得到改善。开展上述工作之后,对实验条件进行了优化,初步确定了在采用532 nm及1064 nm脉冲激发时,所搭建的LIBS系统对溶液中Ca元素的最低检测浓度分别为50 ppm和25 ppm。
     通过对水下LIBS实验系统的改进,引入Raman光谱的探测,对LIBS与Raman光谱技术的结合进行了初步的探讨。实验通过两种工作方式同时获得了Na元素的LIBS信号及SO42-的Raman信号,肯定了将LIBS和Raman技术结合的可行性,但所探测到信号的信噪比都较差,有待对激光器及探测器等方面进行改善。
     在总结所做工作的基础上,论文最后对开发一种基于LIBS的海洋原位探测系统,应用于海洋中金属通量监测的可行性进行了分析;对今后的工作开展进行了展望;并浅谈了进一步的努力方向。
Standard analysis methods, including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, X-ray emission spectroscopy etc., have been used to assess the elemental composition of water samples. However, these methods have suffered from a unique set of practical and technical limitations due to it needs to pre-handle the sample. Laser-induced breakdown spectroscopy (LIBS) has been shown to be a useful technique in elemental analysis with many advantages including rapid analysis, simultaneous multi-element detection, in-situ and stand-off analysis capability. LIBS has been widely used in many areas such as mining, metallurgy, environmental analysis and numerous other fields, but the application of LIBS for water samples remains interesting in the laboratory due to low ablation efficiency and short lifetime of laser induced plasma in water. So in this thesis, to evaluate its potential application for on-line metals elements monitoring in ocean, the spectroscopic characteristics of the laser induced plasma of water samples has been investigated in this work.
     The thesis begins with a brief background introduction of this work. After that is the description of fundamental mechanical of LIBS, a detailed review of the status quo and the tendency of this technique. A detail introduction of the LIBS systems used to carry out the work was given in Chapter 3. The bulk of author’s contribution, within the general group effort, was described in Chapter 4 and Chapter 5.
     The experimental investigation of laser induced plasma on a flowing water solutions surface has been presented in Chapter 4. The Cu and Pb in CuSO4 and Pb(NO3)2 water solutions has been detected. The temporal characteristic of the laser induced plasma and the power dependence of LIBS signal had been investigated. The operation condition was improved with the optimal ablation pulse energy and the delay time for LIBS signal detection. The ablation location has been varied to achieve better LIBS signal. The optimized ablation location for lead was found to be different from that for copper due to the breakdown of the ambient air. The detection limit of metal ion in water solution under the optimized operation conditions was found to be 31 ppm for copper and 50 ppm for lead.
     After the above work, the characteristics of the laser induced plasma in water have been investigated with calcium chloride water solution samples in this work and it has presented in Chapter 5. The lifetime of the laser induced plasma underwater is determined to be about 600 ns for 532 nm laser pulses, 1000ns for 1064nm laser pulses by the study of the temporal characteristic of the laser induced plasma and the optimal detector delay for signal detection is determined to be about 150ns to 500ns when 532nm laser pulses have been used. Through the study of the power dependence of the LIBS signal, it was found that the lifetime of the laser induced plasma doesn’t change with the pulse energy and when the pulses energy is above some level, the increased pulse energy cannot improve but deteriorate the signal. The detection limit of Ca in water solution under the optimized operation conditions was found to be about 25 ppm. The potential and obstacles of LIBS for on line metal elements monitoring in ocean has been point out.
     Along with the ongoing Raman Project in the laboratory, the feasibility of combine LIBS and Raman spectroscopy together as a system has been evaluated. The work of joint analysis of sodium sulfate by LIBS and Raman spectroscopy has also been carried out. The LIBS signal of sodium and the Raman signal of sulfate have been detected at the same time in two different ways with the same spectra system. This work is presented in the last part of Chapter 5. The results suggest that the two technique can integrated into a system with the improvement of the LIBS and Raman signal.
     In the last part of this thesis, a general discussion of the work and some suggests of possible future developments have been given in chapter 6.
引文
[1] D. Cremers, L. Radziemski. Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons, Ltd. 2006
    [2]孙承伟.激光辐照效应.国防工业出版社.2002
    [3]陆同兴,路轶群.激光光谱技术原理及应用.中国科学技术大学出版.1999
    [4] Markolf H.Niemz. Laser-Tissue Interactions Fundamentals and Applications. (张镇西等译).西安交通大学出版社.1999
    [5]辛仁轩.等离子体发射光谱分析.化学工业出版社. 2005
    [6]周炳琨,高以智等.激光原理.国防工业出版社. 2000
    [7] Dimitrijevic M. S., Konjevic N.. Experimental stark widths and shifts for spectral lines of positive ions. Astron. Astrophys, 1987, 172(62): 345~349
    [8] H. R. Griem. Spectral Line Broadening by Plasmas. Academic Press. New York. 1974
    [9]张国威,王兆民.激光光谱学原理与技术.北京理工大学出版社.1989. 95~117
    [10] G. Bekefi. Principles of laser plasmas. Wiley Interscience. New York. 1976
    [11] Griem H. R.. Spectral line broadening by Plasmas. New York Academic Press, 1974.
    [12] Griem H. R.. Plasma Spectroscopy. McGraw Hill. New York. 1989
    [13] Ciucci A., Corsi M., Palleschi V., Rastelli S., Salvetti, A., Tognoni E.. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 1999, 53: 960~964
    [14] Ilaria Borgia, Lucia M.F. Burgio, Michela Corsi, Roberta Fantoni,Vincenzo Palleschi, Azenio Salvetti, Maria Cristina Squarcialupi, Elisabetta Tognoni. Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy: application to pigment analysis. J. Cult. Heritage, 2000, 1: 281~286
    [15] D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochimica Acta Part B, 2002, 57: 339~353
    [16] Michela Corsi, Gabriele Cristoforetti, Montserrat Hidalgo, Stefano Legnaioli, Vincenzo Palleschi, Azenio Salvetti, Elisabetta Tognoni, Chiara Vallebona. Double pulse, calibration-freelaser-inducedbreakdown spectroscopy: A new technique for in situstandard-less analysis of polluted soils. Applied Geochemistry, 2006, 21: 748~755
    [17] Anna P. M. Michel, Marion Lawrence-Snyder, S. Michael Angel, and Alan D. Chave. Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters. Applied Optics. 2007, 46(13): 2507~2515
    [18] Ying Li, Yuan Lu, Kai Cheng, Jianglai Wu, Ronger Zheng. Plasma characterization of brass alloys by laser induced breakdown spectroscopy. Proc. of SPIE. 2007, 6825: 68251M-1~ 68251M-5.
    [19] L. St-Onge, V. Detalle, M. Sabsabi. Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses. Spectrochimica Acta Part B, 2002, 57: 121~135
    [20] V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenr?der. A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples. Spectrochimica Acta Part B, 2000, 55: 1771~1785
    [21] G.W. Rieger, M. Taschuk, Y.Y. Tsui, R. Fedosejevs. Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses. Spectrochimica Acta Part B. 2003, 58: 497~510
    [22] A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, G.P. Parisi. ns- and fs-LIBS of copper-based-alloys: A different approach. Applied Surface Science. 2007, 253: 7677~7681
    [23] J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger. Time-resolved and time-integrated single-shot laser-induced plasma experiments using nanosecond and femtosecond laser pulses. Spectrochimica Acta Part B. 2004, 59 : 1033~1039
    [24] Daniel X. Hammer, E. Duco Jansen, Martin Frenz, Gary D. Noojin, Robert J. Thomas, Joachim Noack, Alfred Vogel, Benjamin A. Rockwell, and Ashley J. Welch. Shielding properties of laser induced breakdown in water for pulse durations from 5 ns to 125 fs. Applied Optics. 1997, 36: 5630~5640
    [25]满宝元,王公堂,刘爱华,王象泰.不同气压背景下激光烧蚀Al靶产生等离子体特性分析.光谱学与光谱分析. 1998, 118(14): 411~415
    [26]张延惠,宋一中.气压对激光诱导等离子体辐射特征的影响.量子电子学报.1999, 16(3):237~242
    [27]张树东,刘兆远,陈冠英,刘亚楠,董晨钟.环境气体对激光诱导Al等离子体光谱的影响.原子与分子物理学报.2001,18(1): 64~66
    [28]郑贤锋,唐晓闩,凤尔银,杨锐,季学韩,崔执凤.缓冲气体对激光等离子体光谱特性影响的实验研究.原子与分子物理学报. 2002, 19(3): 267~271
    [29]唐晓闩,李春燕,朱光来,季学韩,凤尔银,张为俊,崔执凤.激光诱导Al等离子体中电子密度和温度的实验研究.中国激光. 2004, 31(6): 687~692
    [30]陈文,陆继栋,李捷,崔执凤.应用激光诱导击穿光谱对煤中Al、Ca、Fe的定量分析.中国科技论文在线.
    [31] B. Wolff-Rottke, J. lhlemann, H. Schmidt, A. Scholl. Influence of the laser-spot diameter on photo-ablation rates. Appl. Phys. A. 1995, 60: 13~17
    [32] R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris. Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy. Appl. Spectrosc. 1996, 50(12): 1483~1499
    [33] Russell S. Harmon, Frank C. DeLucia, Catherine E. McManus, Nancy J. McMillan, Thomas F. Jenkins, Marianne E. Walsh, Andrzej Miziolek. Laser-induced breakdown spectroscopy - An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Applied Geochemistry. 2006, 21: 730~747
    [34] F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, G. Wilsch. Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2005, 60: 1121~1131
    [35] M.F. Bustamante, C.A. Rinaldi. Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile. Spectrochimica Acta Part B. 2002, 57: 303~309
    [36] B. Bousquet, J.-B. Sirven, L. Canioni. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples. Spectrochimica Acta Part B. 2007, 62: 1582~1589
    [37] C.A. Rinaldi, J.C. Ferrero. Analysis of Ca in BaCl2 matrix using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2001, 56: 1419~1429
    [38] R.T. Wainner, R.S. Harmon, A.W. Miziolek, K.L. McNesby, P.D. French. Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments. Spectrochimica Acta Part B.2001, 56: 777~793
    [39] F. Capitelli, F. Colao, M.R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi. Determination of heavy metals in soils by Laser Induced Breakdown Spectroscopy. Geoderma. 2002, 106: 45~62
    [40]许洪光,管士成,傅院霞,张先燚,许新胜,季学韩,凤尔银,郑荣儿,崔执凤.土壤中微量重金属元素Pb的激光诱导击穿谱.中国激光. 2007, 34(4): 577~581
    [41] Kristalia Melessanaki, Maripaz Mateo, Susan C. Ferrence, Philip P. Betancourt, Demetrios Anglos. The application of LIBS for the analysis of archaeological ceramic and metal artifacts, Applied surface science. 2002, (197-198): 156-163
    [42] Yoonyeol Yoon, Taesam Kim, Myeongkwon Yang, et al. Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy. Microchemical Journal. 2001, 68: 251~256
    [43] M. Kuzuya, M. Murakami, N. Maruyama. Quantitative analysis of ceramics by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2003, 58: 957~965
    [44] Stefan Klein, Jens Hildenhagen, Klaus Dickmann, T. Stratoudaki,Vassilis Zafiropulos. LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass. J. Cult. Heritage. 2000, 1: 287~292
    [45] A. Kaminska, M. Sawczak, K. Komar, G. ?liwiński. Application of the laser ablation for conservation of historical paper documents. Applied Surface Science.2007, 253: 7860~7864
    [46] F. Colao, R. Fantoni, V. Lazic, V. Spizzichino. Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—application on multi-layered ceramics and copper based alloys. Spectrochimica Acta Part B. 2002, 57: 1219~1234
    [47] Tjung Jie Lie, Koo Hendrik Kurniawan, Davy P. Kurniawan, Marincan Pardede, Maria Margaretha Suliyanti, Ali Khumaeni, Shouny A. Natiq, Syahrun Nur Abdulmadjid, Yong Inn Lee, Kiichiro Kagawa, Nasrullah Idris, May On Tjia. Elemental analysis of bead samples using a laser-induced plasma at low pressure. Spectrochimica Acta Part B. 2006, 61: 104 ~112
    [48] M. Oujja, A. Vila, E. Rebollar, J.F. Garc?′a, M. Castillejo. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2005, 60: 1140~ 1148
    [49] A. Kaminska, M. Sawczak, K. Komar, G. S liwinski. Application of the laser ablation for conservation of historical paper documents. Applied Surface Science. 2007, 253: 7860~7864
    [50] S. Gaspard, M. Oujja, E. Rebollar, C. Abrusci, F. Catalina, M. Castillejo. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy. Spectrochimica Acta Part B. 2007, 62: 1612~1617
    [51] J.M. Gomba, C. D’Angelo, D. Bertuccelli, G. Bertuccelli. Spectroscopic characterization of laser inducedbreakdown in aluminium_lithium alloy samples for quantitative determination of traces. Spectrochimica Acta Part B 2001, 56: 695~705
    [52] Igor V. Cravetchi, Mike Taschuk, Ying Y. Tsui, Robert Fedosejevs. Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2004, 59: 1439~1450
    [53] Awadhesh K. Rai, Hansheng Zhang, Fang Yu Yueh, Jagdish P. Singh, Arel Weisburg. Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys. Spectrochimica Acta Part B. 2001, 56: 2371~2383
    [54] A.De Giacomo, O.De Pascale. Laser induced plasma spectroscopy by air spark ablation. Thin Solid Films. 2004, (453–454): 328~333
    [55] Andrew Freedman, Frank J. Iannarilli Jr., Joda C. Wormhoudt. Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy. Spectrochimica Acta Part B. 2005, 60: 1076~1082
    [56] Awadhesh K. Rai, Hansheng Zhang, Fang Yu Yueh, Jagdish P. Singh, Arel Weisburg. Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminumalloys. Spectrochimica Acta Part B. 2001, (56): 2371~2383
    [57] Walid Tawfik Y. Mohamed. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Optics & Laser Technology. 2008, 40: 30~38
    [58] C. Argon, V. Madurga, J. A. Aguilera. Application of laser-induced breakdown spectroscopy to the analysis of the composition of thin films produced by pulsed laser deposition. Applied Surface Science. 2002, (197-198): 217~223
    [59] E. Jimenez, M.J.M. Gomes, M. Pereira, M.F. Costa, M.I.C. Ferreira. In-situ plasma emission optical spectroscopy during pulsed laser ablation deposition of PZTN thin films. Vacuum. 2002, 64: 353~358
    [60] Qing Sun, Michael Tran, Benjamin W. Smith, James D. Winefordner. Zinc analysis in human skin by laser induced-breakdown spectroscopy. Talanta. 2000, 52: 293~300
    [61] Mark D. Mowery, Robert Sing, John Kirsch, Amir Razaghi, Simon Bechard, Robert A. Reed. Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy. Journal of Pharmaceutical and Biomedical Analysis. 2002, 28: 935~943
    [62] O. Samek, D.C.S. Beddow, H.H. Telle, J. Kaiser, M. Liska, J.O. Caceres, A. Gonzales Urena. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochimica Acta Part B, 2001, 56: 865~875
    [63] L. St-Onge , E. Kwong, M. Sabsabi , E.B. Vadas. Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2002, 67:1131~1140
    [64] Ota Samek, Helmut H Tell, David CS Beddows. Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth. BMC Oral Health. 2001, 1
    [65] Ioannis G. Pallikaris, Harilaos S. Ginis, Georgios A. Kounis, Demetrios Anglos, Theodore G. Papazoglou, Leonidas P. Naoumidis. Corneal Hydration Monitored by Laser-induced Breakdown Spectroscopy. Journal of Refractive Surgery.1998, (14): 655~660
    [66] Saara Kaski, Sulfide mineral identification using laser-induced plasma spectroscopy, Minerals Engineering. 2003, (16): 1239~1243
    [67] CEcile Fabre, Marie-Christine Boiron, Jean Dubessy, Aliouka Chabiron, Bernard Charoy, Tomas Martin Crespo. Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: An exploratory study. Geochimica et Cosmochimica Acta. 2002, 66(8): 1401~1407
    [68] Q. Sun, M. Tran, B.W. Smith, J.D. Winefordner. Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy. Analytica Chimica Acta. 2000, 413:187~195
    [69] M. Gaft, I. Sapir-Sofer, H. Modiano, R. Stana. Laser induced breakdown spectroscopy for bulkminerals online analyses. Spectrochimica Acta Part B. 2007, 62:1496~1503
    [70] S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, T. Pearce, A. Zigler. Development of a method for automated quantitative analysis of ores using LIBS. Spectrochimica Acta Part B. 2001, 56: 707~714
    [71] Nancy J. McMillan, Russell S. Harmon, Frank C. De Lucia, Andrzej M. Miziolek. Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates. Spectrochimica Acta Part B. 2007, 62: 1528-1536
    [72] Madhavi Z. Martin, Nicole Labbe′, Timothy G. Rials, Stan D. Wullschleger. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra. Spectrochimica Acta Part B. 2005, 60: 1179 ~ 1185
    [73] A. Uhl, K. Loebe1, L. Kreuchwig. Fast analysis of wood preservers using laser induced breakdown spectroscopy. Spectrochimica Acta Part B. 2001, 56: 795~806
    [74] K. Novotny, T. Vaculovi?, M. Galiová, V. Otruba, V. Kanicky, J. Kaiser, M. Li?ka, O. Samek, R. Malina, K. Páleníková. The use of zinc and iron emission lines in the depth profile analysis of zinc-coated steel. Applied Surface Science. 2007, 253: 3834~3842
    [75] L. St-OngeU, M. Sabsabi. Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel. Spectrochimica Acta Part B. 2000, 55: 299~308
    [76] H. Balzer, M. Hoehne, V. Sturm, R. Noll. Online coating thickness measurement and depth profiling of zinc coated sheet steel by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2005, 60: 1172~1178
    [77] L. Caneve, F. Colao, F. Sarto, V. Spizzichino, M. Vadrucci. Laser-induced breakdown spectroscopy as a diagnostic tool for thin films elemental composition. Spectrochimica Acta Part B.2005, 60: 1098~1102
    [78] P. V. Maravelaki, V. Zafiropulos, V. Kilikoglou, M. Kalaitzaki, C. Fotakis. Laser induced breakdown spectroscopy as a diagnostic technique for the laser clealing of marble. Spectrochimica Acta Part B. 1997, 52: 41~53
    [79] A. Costela, I. Garc?a-Moreno, C. Gomez, O. Caballero, R. Sastre. Cleaning graffitis on urban buildings by use of second and third harmonic wavelength of a Nd:YAG laser: a comparative study. Applied Surface Science. 2002, 9559: 1~14
    [80] Tiejun Li, Qihong Lou, Yunrong Wei, Feng Huang, Jingxing Dong, Jingru Liu. Laser induced breakdown spectroscopy for on-line control of selective removal of cobalt binder from tungsten carbide hardmetal by pulsed UV laser surface ablation. Applied Surface Science. 2001, 181: 225~233
    [81] U. Panne, R.E. Neuhauser, M. Theisen, H. Fink, R. Niessner. Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy. Spectrochimica Acta Part B. 2001, 56: 839~850
    [82] R. E. Neuhauser, U. Panne, R. Niessner, W. H. Steinicke, H. J. Grimm. Elemental Characterization of Heavy Metal Aerosols by Laser Induced Plasma Spectroscopy. J. Aerosol Sci.. 1997, 28(1): 437~438
    [83] Steven G. Buckley, Howard A. Johnsen, Kenneth R. Hencken, and David W. Hahn. Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals. Waste Management. 2000, 20: 455~462
    [84] J.E. Carranza, B.T. Fisher, G.D. Yoder, D.W. Hahn. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2001, 56: 851~864
    [85] P.M. Lemieux, J.V. Ryan, N.B. French, W.J. Haas Jr, S.J. Priebe, D.B. Burns. Results of the September 1997 DOE/EPA demonstration of multi-metal continuous emission monitoring technologies. Waste Management. 1998, 18: 385~391
    [86] D.C.S. Beddows, H.H. Telle. Prospects of real-time single-particle biological aerosol analysis:A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry. Spectrochimica Acta Part B. 2005, 60: 1040~1059
    [87] A.I. Whitehouse, J. Young, I.M. Botheroyd, S. Lawson, C.P. Evans, J. Wright. Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2001, 56: 821~830
    [88] D. Bulajic, G. Cristoforetti, M. Corsi, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Steve Green, Derek Bates, Adolf Steiger, Jose Fonseca, Jose Martins, John McKay, Bryan Tozer, David Wells, Robert Wellf, M.A. Harith. Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project. Spectrochimica Acta Part B. 2002, 57: 1181~1192
    [89] V. Lazic, I. Rauschenbach, S. Jovicevic, E.K. Jessberger, R. Fantoni, M. Di Fino. Laser induced breakdown spectroscopy of soils, rocks and ice at subzero temperatures in simulated martian conditions. Spectrochimica Acta Part B. 2007, 62: 1546~1556
    [90] Louis St-Onge , Elizabeth Kwong. Rapid analysis of liquid formulations containing sodium chloride using aser-induced breakdown spectroscopy. Journal of Pharmaceutical and Biomedical Analysis.2004, 36: 277~284
    [91] BOUDJEMAI, S; GASMI. Laser induced breakdown spectroscopy in water. J. Appl. Sci. Environ. Mgt. 2004,8 (1): 13~15
    [92] Yueh, Fang-Yu, Sharma R C, Singh J P, Zhang H S, Spencer W A.. Evaluation of the potential of laser-induced breakdown spectroscopy for detection of trace element in liquid. Journal of the Air and Waste Management Association. 2002, 52(11): 1307~1315
    [93] Pavel Yaroshchyk, Richard J.S. Morrison. Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: A comparison between liquid jets and static liquids. Spectrochimica Acta Part B. 2005, 60: 986 ~992
    [94] S. Kochl, W. garen1. Detection of chromium in liquids by laserinduced breakdown spectroscopy (LIBS). Appl. Phys. A . 2004, 79: 1071~1073
    [95] Jer-Shing Huang, Ching-Bin Ke. The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets. Spectrochimica Acta Part B, 2002, 57: 35~48
    [96] Christoph Janzen, Rüdiger Fleige. Analysis of small droplets with a new detector for liquid chromatographybased on laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2005, 60: 993~1001
    [97] B. Charfi, M.A. Harith, Panoramic laser-induced breakdown spectrometry of water, Spectrochimica Acta Part B. 2002, 57: 1141~1153
    [98] Yoshiro I., Osamu U., Susumu N.. Determination of colloidal iron in water by laser-induced breakdown spectroscopy. Anal. Chem. Acta. 1999, 299: 401~405
    [99] Aragon C., Aguilera J. A., Campos J.. Determination of carbon content in molten steel using laser-induced breakdown spectroscopy. Appl. Spectrosc. 1993, 47: 606~608
    [100] Anna P. M. Michel, Marion J. Lawrence-Snyder, Oceanic Applications of Laser Induced Breakdown Spectroscopy: Laboratory Validation. 2005,1: 741~747
    [101] Marion Lawrence-Snyder, Jon Scaffidi, S. Michael Angel, Anna P. M. Michel, Alan D. Chave. Laser-Induced Breakdown Spectroscopy of High-Pressure Bulk Aqueous Solutions. Applied Spectroscopy. 2006, 60: 786~790
    [102] J.O. Cáceres, J. Tornero López, H.H. Telle, A. González Ureńa. Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2001, 56: 831~838
    [103] D.M. Díaz Pace, C.A. D'Angelo. Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion. Spectrochimica Acta Part B. 2006, 61: 929~933
    [104] Zhijiang Chen, Hongkun Li, Ming Liu, Runhua Li. Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates. Spectrochimica Acta Part B. 2008, 63: 64~68
    [105] F. Colao, V. Lazic. A comparison of single and double pulse laser-induced breakdown
    [106] spectroscopy of aluminum samples. Spectrochimica Acta Part B. 2002,57: 1167~1179
    [107] Pavel Yaroshchyk, Richard J.S. Morrison. Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS. Spectrochimica Acta Part B. 2005, 60: 1482~1485
    [108] X. Y. PU and N. H. CHEUNG. ArF Laser Induced Plasma Spectroscopy of Lead Ions in Aqueous Solutions: Plume Reheating with a Second Nd : YAG Laser Pulse. Appliedspectroscopy. 2003, 57(5): 588~590
    [109] V.I. Babushok, F.C. DeLucia Jr. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement. Spectrochimica Acta Part B. 2006, 61: 999–1014
    [110] A. De Giacomo, M. Dell’Aglio. Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach. Spectrochimica Acta Part B. 2004, 59: 1431~ 1438
    [111] A. De Giacomo, M. Dell’Aglio. Double-pulse LIBS in bulk water andon submerged bronze samples. Applied Surface Science. 2005, 247: 157~162
    [112] G. Cristoforetti, S. Legnaioli. Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration, Spectrochimica Acta Part B. 2004, 59: 1907~1917
    [113] Céline Gautier, Pascal Fichet. Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 2004, 59: 975~ 986
    [114] Céline Gautier, Pascal Fichet. Quantification of the intensity enhancements for the double-pulselaser-induced breakdown spectroscopy in the orthogonal beam geometry. Spectrochimica Acta Part B. 2005, 60: 265~276
    [115] Pavel Yaroshchyk, Richard J.S. Morrison. Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single and double-pulse LIBS. Spectrochimica Acta Part B. 2005, 60: 1482~1485
    [116] D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, J. Etchepare, Interaction of a laser-produced plume with a second time delayed femtosecond pulse, Appl. Phys. Lett. 2005, 86: 309~312
    [117] J. Scaffidi, J. Pender, W. Pearman, S.R. Goode, B.W. Colston Jr., J.C.Varter, S.M. Angel. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Appl.Opt. 2003, 42: 6099~6106
    [118] S. K. Ho, and N. H. Cheung. Sub-Part-per-Billion Analysis of Aqueous Lead Colloids by ArF Laser Induced Atomic Fluorescence. Anal. Chem. 2005, 77: 193~199
    [119] A. De Giacomo, M. Dell'Aglio, O. De Pascale, M. Capitelli. From single pulse to double pulse ns-Laser Induced Breakdown Spectroscopy under water: Elemental analysis of aqueous
    [120] solutions and submerged solid samples. Spectrochimica Acta Part B. 2007, 62: 721~738
    [121] Roger C. Wiens , Shiv K. Sharma. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochimica Acta Part A. 2005, 61: 2324~2334
    [122] Marta Castillejo, Margarita Martín. Laser-induced breakdown spectroscopy and Raman microscopy for analysis of pigments in polychromes, J. Cult. Heritage. 2000,1: 297~302
    [123] S.M. Clegg, R.C. Wiens. LIBS– Raman Spectroscopy of Minerals Using Remote SurfaceModification Techniques. Lunar and Planetary Science XXXVII (2006)
    [124] H.H. Telle, D.C.S. Beddows. Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy. Spectrochimica Acta Part B. 2001, 56: 947~960
    [125]王传辉,戴琳,张先燚,姚关心,季学韩,凤尔银,郑荣儿,崔执凤.AlCl3水溶液的激光诱导击穿光谱研究.中国激光. 2006, 33(9):1190~1194
    [126] L. Dai, C. Wang, J. Wu, Y Li, Z. Cui, R. Zheng. Laser-induced breakdown spectroscopy characterization of Al in bulk material and AlCl3 solution. Optoelectronics Letters. 2007, 3(2):148~151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700