基于元胞自动机模型的陶瓷刀具材料及其切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷刀具具有较高的硬度、耐磨性、耐热性,较为适用于难加工材料的高效加工,但现有的陶瓷刀具材料研制方法多以试验为主,可设计性差,特别是烧结过程微观组织结构的设计和优化没有较为系统的指导,使得新型陶瓷刀具材料的开发没有合适的理论指导,也较难获得力学性能理想的陶瓷刀具材料。
     本文利用元胞自动机模型,考虑了二相粒子、烧结助剂和烧结致密化过程,将烧结过程的主要参数保温时间、烧结温度、烧结压力耦合进元胞自动机模型,进行了Al2O3/TiN复相陶瓷刀具材料烧结过程的模拟,最后通过烧结实验验证了理论分析,结果表明模拟分析的结果与实际烧结实验结果符合很好。以此理论研究为指导结合实验研制了ATN50材料,并在其基础上研制成功了ATCN50b复合陶瓷刀具材料。利用ATCN50b陶瓷刀具进行了高效切削1Crl3马氏体不锈钢的性能研究,结果表明,在高速下刀具寿命和工件加工的表面粗糙度都优于现有的几种复合陶瓷刀具和常用硬质合金刀具。
     对元胞自动机算法进行了研究,确定了最大取向值对模拟结果的影响,考虑到实际烧结过程中主要参数的影响,将烧结时的保温时间、烧结温度、烧结压力耦合进了元胞自动机模型。基于晶界能与晶界曲率的变化的理论,建立了耦合实际烧结过程主要参数的两相陶瓷刀具材料的元胞自动机模型,实现了Al2O3/TiN两相陶瓷刀具材料烧结过程微观组织结构演变的模拟。研究了烧结过程中的晶粒生长情况,结果表明当烧结温度为1700℃、保温时间为10main或15min、烧结压力为32MPa时,模拟结果的晶粒粒径与尺寸分布良好,能够获得较好的烧结体微观组织结构。与同样工艺下实际烧结制备的Al2O3/TiN陶瓷刀具材料对比发现,烧结体中基体及二相粒子的粒径以及二相粒子的分布情况与用元胞自动机方法模拟的结果吻合。
     对Al2O3/TiN两相陶瓷刀具材料的元胞自动机模型进行了拓展,考虑随机分布的烧结助剂的影响,建立了含有烧结助剂的Al2O3/TiN复相陶瓷刀具材料的元胞自动机模型并进行了模拟,结果表明添加烧结助剂对细化晶粒有着明显的作用。考虑陶瓷刀具材料烧结致密化过程的情况,建立了含有气孔的Al2O3/TiN复相陶瓷刀具材料的元胞自动机模型,进行了陶瓷刀具材料烧结致密化过程的模拟,分析了同时含有烧结助剂和气孔情况下的晶粒生长情况,结果表明烧结助剂能够有效提高陶瓷刀具材料烧结体的致密度。与实际烧结制备的Al2O3/TiN复相陶瓷刀具材料对比发现,烧结体中基体、二相粒子、烧结助剂和气孔的分布情况与用元胞自动机方法模拟的结果十分吻合。
     以元胞自动机模拟研究结果为指导,制备了Al2O3/TiN复相陶瓷刀具材料,结果表明当烧结温度为1700℃、保温时间为10min、烧结压力为32MPa时,TiN体积含量为50%的Al2O3/TiN复相陶瓷刀具材料有最佳综合力学性能。在此基础上成功制备了Al2O3/Ti(C,N)基复合陶瓷刀具材料ATCN50b,当烧结温度为1700℃、烧结压力32MPa、保温时间10min时,ATCN50b材料获得最佳综合力学性能,其抗弯强度为910MPa、维氏硬度为20.5GPa、断裂韧性为8.11MPa·m1/2。
     研究了ATCN50b刀具连续切削1Cr13马氏体不锈钢的切削性能,并与原山东工业大学研制的商用SG-4、LT55复合陶瓷刀具、山东大学研制的AWT10、 A60W4T6、WZ10A复合刀具材料及商用YG8、YT5、TW1硬质合会刀具的切削性能进行了对比研究。在切削深度ap=0.1mm、进给量f=0.1mm/r、切削速度v=100m/min的切削参数下,ATCN50b刀具获得最长切削寿命61min,满足精加工的表面粗糙度要求,刀具寿命是YG8硬质合金刀具寿命的116%,是LT55和SG-4陶瓷刀具寿命的122%,是YW1硬质合金刀具寿命的129%,并且远高于其它对比刀具。在切削速度v=260m/min的切削参数下,ATCN50b刀具寿命接近30min,满足精加工的表面粗糙度要求。刀具寿命是LT55陶瓷刀具寿命的120%,是SG-4陶瓷刀具和YT15硬质合金刀具寿命的129%,并远高于其它对比刀具。研究了ATCN50b刀具的磨损破损形态和主要磨损和破损机理,结果表明,虽然刀具表面有一定的粘结现象发生,但ATCN50b刀具的高温稳定性还是较好的,适合于高效加工1Cr13马氏体不锈钢。
Ceramic tool materials have high hardness, high abrasion resistance and high stability in high temperature, it is suitable for high efficient cutting of the hard cutting materials. The developed method of the existing ceramic tool materials is experiment, which can cause to the bad design. Especially there are no systematic guidance to the sintering process microstructure design and optimization, there are no theories guidance for the new ceramic tool materials development, and it is difficult to obtain good mechanical properties.
     In this paper, using the cellular automata model, considering the two phase particles, sintering additives and sintering densification process, the main parameters including holding time, sintering temperature, sintering pressure are coupled into the cellular automata model. The grain growth process of Al2O3/TiN composite ceramic tool material sintering process is simulated. Finally the analysis process is validated through the sintering experiment, the results show that the simulation results and the experimental results are in good agreement with the actual sintering. This theory combining with experiment, the ATN50material is developed, and the ATCN50b composite ceramic tool materials are developed successfully. The high efficient cutting experimental studies of1Cr13stainless steel are processed. The results show that the cutting tool life and the surface roughness of the workpiece are superior to the existing several kinds of composite ceramic cutting tools and carbide cutting tools under high speed.
     The maximum grain orientation has an important impact on simulation process and result. The maximum grain orientation has been given, and the main parameters including holding time, sintering temperature, and sintering pressure are coupled into the cellular automata model. The grain growth simulation model for ceramic material sintering process based on cellular automaton is constructed based on the grain growth driving force theory of grain boundary energy and the curvature of the grain boundary. The ceramic tool materials sintering process of microstructure evolution are simulated. The results show that when the sintering temperature is1700℃, holding time is10min or15min, sintering pressure is32MPa, the simulation results of grain size and size distribution are good, the better sinter microstructur can obtained e. Contrasting the same process actual sintering preparation of Al2O3/TiN ceramic tool material with simulation results, sintered body of matrix, second phase particle size and the second phase particle distributionare consistent with cellular automaton method simulation results.
     Considering the impact of random distribution of sintering additives, based on Al2O3/TiN two-phase ceramic tool materials, the cellular automata model Al2O3/TiN composite ceramic tool material with sintering additives is established. The results show that sintering additives has obvious effect on grain refinement. Considering sintering densification process of ceramic tool materials, the cellular automata model of Al2O3/TiN composite ceramic tool material containing pores is established. Comparing the grain growth condition without hole with with hole, the results show that sintering additives can improve the ceramic sintered body density effectively. Contrasting the same process actual sintering preparation of Al2O3/TiN ceramic tool material with simulation results, sintered body of matrix, second phase particle size, sintering additives and hole distribution are consistent with the cellular automaton method simulation results.
     In the guidance of cellular automata simulation results, the Al2O3/TiN composite ceramic tool materials are prepared, the results show that when the sintering temperature is1700℃, holding time is10min, sintering pressure is32MPa, TiN volume content is50%, Al2O3/TiN composite ceramic tool material has the best comprehensive mechanical properties. On this basis, the Al2O3/Ti(C,N) composite ceramic tool material ATCN50b is prepared successfully. When the sintering temperature is1700℃, sintering pressure is32MPa, holding time is10min, ATCN50b materials obtain the best mechanical properties, the bending strength is910MPa, Vickers hardness is20.5GPa and fracture toughness is8.11MPa·m1/2.
     The cutting performance of ATCN50b ceramic tool cutting1Cr13martensitic stainless steel is studied, and is compared with the commercial SG-4, LT55composite ceramic tool that developed by the former Shandong University of Technology, AWT10A60W4T6, WZ10A composite tool materials that are developed by Shandong University and the commercial YG8, YT5, TW1carbide tool. When cutting depth ap is0.1mm, feed rate f is0.1mm/r, cutting speed v is100m/min, ATCN50b has the longest service life61min, meets the machining surface roughness requirements, the life is of116%YG8hard alloy tool, is122%of LT55and SG-4tool, is129%of YW1tool, and far higher than other tools. When the cutting speed v is260m/min, ATCN50b has the service life of30min, and meet the machining surface roughness requirements, the life is120%of LT55tool; is129%of SG-4tool and YT15tool, and far higher than other tools. The wear and failure form, the main wear and breakage mechanism of ATCN50b tool are studied. The results show that the ATCN50b tool high temperature stability is good and suitable for high efficient processing of1Cr13martensitic stainless steel, though the tool surface has a certain bond phenomenon.
引文
1.艾兴.高速切削加工技术[M].国防工业出版社,2003.
    2.邓建新,赵军.数控刀具材料选用手册[M].机械工业出版社,2007.
    3.杨发展.新型WC基纳米复合刀具材料及其切削性能研究[D].山东大学博士学位论文,2009.
    4.庞丽君.涂层硬质合金刀具加工镍基合金的应用[J].沈阳航空工业学院学报,1997,(2):30-32.
    5.邓建新,钮平章,王景海,艾兴.“软”涂层刀具的发展与应用[J].工具技术,2005,(3):10-12.
    6.侯玉山等.工程材料与热加工基础[M].北京:机械工业出版社,1994.
    7.刘毅,董英武.涂层刀具的分类及特点[J].机械工程师,2007,(6):142-144.
    8.郭瑞松,杨正方.反应结合Al2O3-ZrO2-SiC复合陶瓷的制备与性能[J].硅酸盐通报,1997,(6):42-44.
    9.王大巍.热喷涂Al2O3-TiO2复合陶瓷涂层滑动磨损特性的研究[J].润滑与密封,1999,(2):28-30.
    10.李秀燕.金属基陶瓷涂层的制备和应用[J].国外金属热处理,2000,(5):43-46.
    11.曾爱香.金属基陶瓷涂层的制备和应用及发展[J].表面技术,1999,(1):1-3.
    12.杨元政.等离子喷涂A1203陶瓷涂层的结构与组织特征[J].兵器材料科学与工程,2000,23(3):7-11.
    13. Normand B. Tribological properties of plasma sprayed alumina-titania coatings:role and control of the microstructure [J]. Surface and Coatings Technology,2000, (123):278-287.
    14. Huadong Wu. Friction and wear of a plasma sprayed Al2O3-40%ZrO2-cast iron system [J]. Wear, 1994, (176):49-60.
    15.贾成厂,李文霞,郭志猛.陶瓷基复合材料导论[M].北京:冶金工业出版杜,1998.
    16.叶毅,叶伟昌.陶瓷刀具材料的种类与应用[J].硬质合金,2003,20(3):182-186.
    17.夏春艳.陶瓷刀具材料及其在高速切削中的应用[J].煤炭技术,2006,(1):8-10.
    18.谷美林.新型硼化钛基复合陶瓷刀具及切削性能研究[D].山东大学博士学位论文,2007.
    19.赵军.新型梯度功能陶瓷刀具材料的设计制造与切削性能研究[D].山东工业大学博士学位论文,1998.
    20.黄传真.新型复相陶瓷刀具材料的研制及切削可靠性研究[D].山东工业大学博士学位论文,1994.
    21.周建强.陶瓷-硬质合金复合刀片的研制及其破损机理研究[D].山东工业大学博士学位论文,1998.
    22.李喜坤.常压烧结Al2O3/TiCN复合材料及Al2O3/TiCN刀具的研究[D].东北大学博士学位论文,2003.
    23. Pastor H. Titanium-earbonnitrid-based hard alloys for cutting tools [J]. Materials Science and Engineering,1988, A105/106:401-409.
    24. Tsuda K, Aikegaya Isobc K, Kitagawa N, et al. Development of fimctionally graded sintered hard materials [J]. Powder Metallurgy,1996,39(4):300-304.
    25. Zhang S Y. Tianium carbonitride-base Cermets:processes and properties [J]. Materials Science and Engineering,1993, A163:141-148.
    26. George Levi, Wayne D. Kaplan, Menachem Bamberger. Structure refinement of titanium carbonitride TiCN [J]. Materials Letters,1998,35:344-350.
    27. Jae Jung, Shinhoo Kang. A study of the characteristics of Ti(CN) solid solutions [J]. Journal of Materials Science,2000,35:87-90.
    28. Animesh Jha. Formation of titanium carbonitride phases via the reduction of TiO2 with carbon in the presence of nitrogen [J]. Journal of Materials Science,1999,34:307-322.
    29. Kang S. Stability of N in Ti(C,N) solid solutions for cermets applications [J]. Power Metallurgy, 1997,40(2):139-142.
    30. X Ai, Z Q Li, J X Deng. Development and perspective of advanced ceramic cutting tool materials [J]. Special Volume of Key Engineering Materials,1995:53-56.
    31. S T Buljan, et al. Silicon matrices based composite cutting tools:material design approach [J]. Advanced Ceramic Materials,1987,2(2):1453-1461.
    32. J Aucote. Performance of sialon tools when machining nickel-based aerospace alloys [J]. Materials Science and Technology,1986,2:700-708.
    33. Jung J, Kang S. A study of the characteristic of Ti(C,N) solid solutions [J]. Journal of Materials Science,2000,35:87-90.
    34.毕泗庆,熊计,龙新延.车、铣不锈钢的硬质合金涂层刀具研究[J].工具技术,2006,(2):34-37.
    35.中国腐蚀与防护学会.不锈钢[M].北京:化学工业出版社,1991.
    36.陆世英.不锈钢[M].北京:原子能出版社,1992.
    37.左敦稳.现代加工技术[M].北京:北京航空航天大学出版社,2005.
    38.刘凤棣,孙鲁.机械加工技术问题处理集锦[M].北京:机械工业出版社,1995.
    39.杜玉国,林春芳,孙丹30CrMnSiA等高强度合金钢加工用硬质合金的研制及应用[J].中国钨业,2009,(4):36-39.
    40.于杰栋,陈金旺.超细晶粒硬质合金刀具在加工耐热合金钢中的应用[J].工具技术,2005,(1):76-77.
    41.樊琳,程东霁,于江海,等.3Cr13马氏体不锈钢的加工[J].苏州大学学报(工科版),2006,(6):47-49.
    42.陈利,吴恩熙,李佳(Ti,Al)N单层和TiN/(Ti,Al)复合涂层的切削性能研究[J].硬质合金,2005,(2):104-106.
    43.高永明,山本勉.硬质合金材料及其涂层对不锈钢加工中刀具边界磨损的影响[J].工具技术,1999,(12):6-10.
    44.黄传真,张凯,周建强Al2O3-SiCp新型陶瓷刀具加工奥氏体不锈钢的性能研究[J].山东农业大学学报,1995,(4):487-490.
    45.黄传真,艾兴.切削奥氏体不锈钢(1Cr18Ni9Ti)时JX-2新型陶瓷刀具的切削性能[J].硬质合金,1995,(2):111-114.
    46.石增敏,郑勇,刘文俊,等Ti(C, N)基金属陶瓷刀具的切削性能[J].中国有色金属学报,2006,(5):805-810.
    47.石增敏,郑勇,袁泉,等.金属陶瓷刀具切削不锈钢的磨损机理研究[J].材料导报,2007,(5):244-246.
    48.谷美林,黄传真,肖守荣.TiB2基陶瓷刀具切削不锈钢时的切削性能研究[J].制造技术与机床,2008,(8):89-91.
    49. Meilin Gu, Chuanzhen Huang, Bin Zou, et al. Effect of (Ni,Mo) and TiN on the microstructure and mechanical properties of TiB2 ceramic tool materials [J]. Materials Science and Engineering A,2006,433:39-44.
    50. Meilin Gu, Chuanzhen Huang, Shourong Xiao, et al. Improvements in mechanical properties of TiB2 ceramics tool materials by the dispersion of Al2O3 particles [J]. Materials Science and Engineering A,2008,486:167-170.
    51.机械工人应知考核题解丛书编审委员会.车工应知考核题解[M].北京:机械工业出版社,1994.
    52. Zhijian Shen, Mats Johnsson, Mats Nygren. TiN/Al2O3 composites and graded laminates thereof consolidated by spark plasma sintering [J]. Journal of the European Ceramic Society, 2003,(23):1061-1068.
    53. Jingguo Li, Lian Gao, Jingkun Guo. Mechanical properties and electrical conductivity of TiN-Al2O3 nanocomposites [J]. Journal of the European Ceramic Society,2003,(23):69-74.
    54. Jing Sun, Chuanzhen Huang, Jun Wang, Hanlian Liu. Mechanical properties and microstructure of ZrO2-TiN-Al2O3 composite ceramics [J]. Materials Science and Engineering A,2006,416: 104-108.
    55. Shujie Li, Yuping Li, Paul Babayan Khosrovabadi, et al. Effect of the hard phase on the densification and properties of the hard materials composed of Al2O3/TiN interlayer/Ni [J]. International Journal of Refractory Metals & Hard Materials,1998,16:119-126.
    56. Zbigniew S Rak, Jerzy Czechowski. Manufacture and Properties of Al2O3-TiN Particulate Composites [J]. Journal of the European Ceramic Society,1998,18:373-380.
    57. Haitao Yang, Fuliang Shang, Ling Gao. Microstructure and mechanical properties of gas pressure sintered Al2O3/TiCN composite [J]. Ceramics International,2007,33:1521-1524.
    58.李华平,杜大明,赵世坤,等Al2O3-TiCN的制备和性能[J].江苏陶瓷,2003,6:26-28.
    59.李喜坤,修稚萌,孙旭东,等.常压烧结制备Al2O3/TiN复合陶瓷材料[J].硅酸盐学报,2003.11:1069-1074.
    60.许崇海,艾兴,黄传真,等.钇对陶瓷刀具材料Al2O3/TiCN的强韧化效应[J].中国稀士学报,1999,3:24-27.
    61. Qiu Guanming, Li Xikun, Xiu Zhimeng, et al. Effects of Y2O3 on thermal shock of Al2O3/TiCN composites [J]. Journal of Rare Earths,2005,3:266-270.
    62.D罗伯.计算材料学[D].北京:化学工业出版社,2002.
    63.方斌.烧结过程中陶瓷刀具材料微观组织结构演变模拟研究[D].山东大学博士学位论文,2007.
    64.麻晓飞.二项粒子材料再结晶退火的元胞自动机模型及其模拟研究[D].山东大学博士学位论文,2008.
    65. Chen I Q. Phase-Field models for microstructure evolution [J]. Ann Rev Mater Res,2002,32: 113-115.
    66. Fan D. Computer simulation of microstructural evolution in multiphase materials using a diffuse-interface field model [D]. USA:The Pennsylvania State University,1996.
    67. Bortz A B, Kalos M H, Lebowitz J L. A new algorithm for Monte Carlo simulation [J]. J Comput Phys,1975,17:10-18.
    68. Braginskym, Tikare V, Olevsky E. Numerical simulation of solid state sintering [J]. International Journal of Solid and Structures,2004,42:621-636.
    69. Nurminen L, Kuronen A, Kaski K. Kinetic Monte Carlo simulation of nucleation on patterned substrates [J]. Phys Rev B,2001,63:35407-35414.
    70. Battaile C C, Srolovitz D J, Butler J E. A kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition:application to diamond [J]. J Appl Phys,1997,82: 6293-6300.
    71. Raabe D, Hantcherlil.2D Cellular Automaton simulation of the recrystallization texture of an IF sheet steel under consideration of zener pinning [J]. Computational Materials Science,2005, 34(4):299-313.
    72. Ding H L, He Y Z, Liu L F, et al. Cellualr Automata simulation of grain growth in three dimensions based on the lowest-energy principle [J]. Journal of Crystal Growth,2006, 293(2):489-497.
    73. He Yi-zhu, Ding Han-lin, Liu Liu-fa, et al. Computer simulation of 2D grain growth using a Cellular Automata model based on the lowest-energy principle [J]. Mater Sci Eng A,2006, 429(1/2):236-246.
    74. H W Hesselbarth, I R Gobel. Simulation of recrystallization by Cellular Automata [J]. Acta Metallurgica Et Materialia,1991,39(9):2135-2143.
    75. Liu Y, Baudin T, Penelle R. Simulation of normal grain by Cellular Automata [J]. Scripta Materialia,1996,34(11):1679-1683.
    76. Geiger J, RoOSz A, BarkOCzy P. Simulation of grain coarsening in two dimensions by Cellular Automaton [J]. Acta Materialia,2001,49(4):623-625.
    77. He Y Z, Ding H L, Liu L F, Et Al. Computer simulation of 2D grain growth using a Cellular Automata model based on the lowest energy principle [J]. Materials Science and Engineering A, 2006,429(1-2):236-239.
    78. Raghavan S, Sahay S S. Modeling the grain growth kinetics by Cellular Automaton [J]. Materials Science and Engineering A,2007,445-446:203.
    79. Yu Wan-hua, Palmiere E J, Banks S P, et al. Cellular Automata modeling of austenite grain coarsening during reheating-I:normal grain coarsening [J]. Journal of University of Science and Technology Beijing,2004,11 (6):517-523.
    80.花福安,杨院生,郭大勇,等.基于曲率驱动机制的晶粒生长元胞自动机模型[J].金属学报,2004,40(11):1210-1214.
    81.焦究友,关小军,刘运腾,等.基于元胞自动机法的晶粒长大模拟[J].山东大学学报(工学版),2005,35(6):24-28.
    82.麻晓飞,关小军,刘运腾,等.基于改进转变规则的晶粒长大CA模型[J].中国有色金属学报,2008,18(1):138-141.
    83. Neumarm J V. Theory of self-reproducing Automata Champain [D]. USA:Univ of Illionis, 1966:30-33.
    84. M Gardner. Mathematical games [J]. Sci.Amer,1971,224:112-114.
    85.焦宪友.基于元胞自动机法的材料晶粒长大和再结晶模拟[D].山东大学硕士学位论文,2006.
    86.吕凯.元胞自动机的研究及模型的建立[D].哈尔滨理工大学硕士学位论文,2007.
    87.何东.晶粒组织演化的元胞自动机模拟[D].哈尔滨工业大学硕士学位论文,2007.
    88.卢瑜.纯铜及纯镍动态再结晶过程的二维元胞自动机模拟[D].大连理工大学硕士学位论文,2007.
    89.何燕.金属材料动态再结晶过程的元胞自动机法数值模拟[D].大连理工大学硕士学位论文,2005.
    90. E A Holm, C C Battaile. The computer simulation of microstructural evolution [J], Journal of Metals,2001,53(9):20-23.
    91. B Radhakrishnan, T Zacharia. Monte Carlo simulation of stored energy driver interface migration [J], Modelling Simul Mater Sci Eng,2003, (11):307-319.
    92. P Yu, S Ta'asan. Large scale limit of Monte-Carlo simulations of grain growth [J]. Computational Fluid and Solid Mechanics,2003.
    93. E A Holm, J A Glazier, D J Srolovitz, et al. Effect of lattice anisotropy and temperature on domain growth in the two-dimensional Potts mode [J]. Physical Review A,1991,43(6): 2662-2668.
    94. B Radhakrishnan, T Zacharia. Simulation of curature-driver growth by using a modified Monte Carlo algotithm [J]. Metallrtgical and Materials Transactions A,1994,26A:167-180.
    95. Brandt A G, Mikus M. Mechanisms of ceramic cutting tools when machining ferrous and nonferrous alloys [J]. Euro Ceram Soc,1990, (6):273-277.
    96. Wayne S F, Buljan S T. Wear of ceramic cutting tools in Ni based superalloy machining [J]. Tribol Trans,1990,33(4):618-620.
    97. M P Anderson, D J Srolovitz, G. S Grest, et al. Computer simulation of grain growth-1:kinetics [J]. Acta Metall,1984,32(5):783-791.
    98.果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998.
    99. H V Atkinson. Theory of normal grain growth in pure single phase systems [J]. Actametall, 1988,36(3):469-491.
    100. J E Burke, D Turnbull. Recrystallization and grain growth [J]. Prog Metal Phys,1952, (3): 220-292.
    101. Mohamed G, Bacroix B. Role of stored energy in static recrystallization of cold rolled copper single and multicrystals [J]. Acta Materialia,2000,48:3295-3302.
    102. J Gao, R G Thompson. Real Time-temperature model for Monte Carlo simulations of normal grain growth [J]. Acta Mater,1996,40(11):4564-4570.
    103. M F Ashby. Sintering and isostatic pressing diagrams, technical report [D]. University of Cambridge,1990.
    104. Zeming He, J Ma. Grain-growth low during stage 1 sintering of materials [J]. J. Phys. D:Appl. Phys.,2002,35:2217-2221.
    105.关小军,麻晓飞,王丽君,等.应用元胞自动机模型模拟析出相对材料晶粒长大的影响[J].材料热处理学报,2009,30(2):178-182.
    106.柯常波,张新平.第二相颗粒对多晶材料晶粒生长影响的元胞自动机(CA)模拟[J].中国有色金属学报,2009,19(12):2173-2178.
    107. Haroun N A. Theory of inclusion controlled grain growth [J]. Journal of Materials Science, 1980,15:2816-2822.
    108. Song X Y, Liu G Q. Kinetics and grain size distribution of two dimensional normal grain growth with the modified Monte Carlo simulation [J]. Journal of Materials Science,1998,14(6): 506-510.
    109.周咏辉.Al2O3基纳米复合陶瓷刀具材料的研制及切削性能研究[D].山东大学博士学位论文.2009:96-107.
    110.金宗哲,包亦望.脆性材料力学性能评价与设计[M].北京:中国铁道出版社,1996.
    111.张继祥,关小军,孙胜,等.晶粒长大过程微观组织演变Monte Carlo方法模拟[J].山东大学学报(工学版),2005,35(4):1-5.
    112. J E Burke, D Turnbull. Recrystallization and grian growth [J]. Prog Metal Phys,1952, (3): 220-292.
    113. R L Coble. Sintering crystalline solids Ⅱ:experimental test of diffusion models in powder compacts [J]. Journal of Applied Physics,1961,32(5):793-795.
    114. C A Bateman, S J Bennison, M P Harmer. Mechanism for the role of MgO in the sintering of Al2O3 containing small amounts of a liquid phase [J]. Journal of the American Ceramic Society, 1989,72(7):1241-1244.
    115. S J Bennison, M P Harmer. A history of the role of MgO in the sintering of Al2O3 [J]. Ceramic Transactions,1990, (7):13-16.
    116. J Wang, S Y Lim, S C Ng, et al. Dramatic effect of a small amount of MgO addition on the sintering of Al2O3-5vol% SiC nanocomposite [J]. Materials Letters,1998,33:273-276.
    117. A Rittidech, L Portia, T Bongkarn. The relationship between microstructure and mechanical properties of Al2O3-MgO ceramics [J]. Materials Science and Engineering A,2006,389: 438-440.
    118.李家亮,牛金叶,陈斐.低温放电等离子烧结法制备氮化硅陶瓷[J].硅酸盐学报,2011,39(2):246-249.
    119.牛锛,赵新亮,王孙昊,等.烧结助剂对A1N陶瓷制备及性能的影响[J].硅酸盐学报,2010,38(12):2257-2260.
    120.杨海涛,杨国涛,袁润章Si3N4-MgO-CeO2陶瓷烧结过程的致密化与相变[J].清华大学学报(自然科学版),1999,39(5):126-128.
    121.毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    122. Hassold G N, Chen I W, Srolovitz D J. Computer simulation of final-stage sintering Ⅰ:model, kinetics, and microstructure [J]. J. Am. Ceram. Soc.,1990,73:2857-2864.
    123. Chen I W, Hassold G N, Srolovitz D J. Computer simulation of final-stage sintering Ⅱ: influence of initial pore size [J]. J. Am. Ceram. Soc.,1990,73:2865-2872.
    124. Tikare V, Holm E A. Simulation of grain growth and pore migration in a thermal gradient [J]. J. Am. Ceram. Soc.,1998,81:480-484.
    125. Tikare V, Braginsky M, Olevsky E A. Numerical simulation of solid-state sintering I:sintering of three particles [J]. J. Am. Ceram. Soc.,2003,86:49-53.
    126. Qin X G, Sun J B, Liu G Q. Three-dimensional simulation of sintering of ceramics materials [J]. Science Forum,2005,475-479:1287-1290.
    127.王文仲,孙建波,秦湘阁.陶瓷烧结过程显微组织演化的模型化与模拟[J].农业机械学报,2005,36(10):152-155.
    128.Neal Myers, Tim Meuller, Randall German. Production of porous refractory metals with controlled pore size [M]. In Particle Packing Characteristics, Metal Powder Industries Federation, Edited by Randall German,1989:298-300.
    129.中华人民共和国国家技术监督局.GB6596-1986.中华人民共和国国家标准-工程陶瓷弯曲强度实验方法[S].北京:中国标准出版社,1986.
    130.中华人民共和国国家技术监督局.GB/T 16534-1996.中华人民共和国国家标准-工程陶瓷维氏硬度实验方法[S].北京:中国标准出版社,1996.
    131.周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995.
    132. Cook R F, Lawn B R. A modified indentation toughness technique [J]. Journal of the American Ceramic Society,1983,66(11):200-201.
    133.余立新.亚微米晶粒Ti(C,N)基金属陶瓷在热等静压条件下的组织、性能研究[M].华中科技大学博十学位论文,2004.
    134. Frederic Monteverde. Alida bellosi oxidation behavior of titanium carbonitride based materials [D],2002.
    135.李晨辉,余立新,熊惟皓.WC的粒度对WC-C硬质合金断裂韧性的影响[J].硬质合金,2001,3:138-141.
    136.赵顺兴,何如松,董应林,等.国内热等静压技术的若干应用 [J].华中科技大学学报,1997,7(1):12-16.
    137.张杰,刘灿楼,胡镇华.碳量对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,1997,(02):122-125.
    138.周书助.超细Ti(CN)基金属陶瓷粉末成形性能及刀具材料的研究[D].中南大学博士学位论文,2006.
    139. R Kieffer. Uber neuartige nitrid-und karbonitrid-hardmetal [J]. Metall,1971,25(12): 1335-1342.
    140.铃木寿TiC0.5N0.5-Mo2C-Ni烧结的强度与结构缺隙[J].日本金属学会志,1984,48(10):1011-1016.
    141.Jinkwan Jung, Shinhoo Kang. Effect of ultra-fine powders on the microstructure of Ti(CN)-xWC-Ni cermets [J]. Acta Materialia,2004,52:1379-1386.
    142.袁训亮Al2O3/TiC/WC纳米复合陶瓷刀具材料的研制及切削性能研究[D].山东大学硕士学位论文,2008.
    143.陈尧,白真权,林冠发.普通Cr13钢在高温高压下的抗CO2腐蚀性能[J].石油管工程重 点实验室科研成果汇编,2007:589-593.
    144.凤仪.金属材料学[D].北京:国防科技出版社,2009:111-147.
    145.温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002,301-430.
    146.曾杰.无润滑条件下氧化铝陶瓷材料与钢结构硬质合金GT35的磨损特性对比[J].硬质合金,2004,21(2):89-93.
    147.陈日耀.金属切削原理[M].北京:机械工业出版社,2009,127-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700