生物活性梯度多孔钛的制备及生物学评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔钛不仅具有优良的生物相容性,也因其孔结构的存在而能有效降低弹性模量,且能为组织提供大量的生长空间,利于植入体的固定。然而,过高的孔隙率会降低抗压强度等力学性能,且钛本身属于生物惰性材料。因而,如何解决孔隙率与力学性能之间的矛盾以及如何给具有复杂几何形貌的多孔钛赋予生物活性是值得研究的问题。
     添加造孔剂法是制备多孔材料的一种传统方法,操作简便、成本低、对设备要求不高,且孔的很多参数如孔隙度和孔径尺寸等可通过对造孔剂的调整来进行控制。因此,本文选用该方法来制备多孔钛。通过对单一孔隙率的多孔钛烧结工艺的考查及孔隙率与力学性能的评价,得出较为合理的烧结工艺方案,并以此合理的工艺,制备了“外疏内密”的梯度多孔钛,并对其相关力学性能进行了表征。通过电化学方法及化学方法对多孔钛进行活化处理并评价了其生物活性。建立了大型动物负载部位全缺损模型并利用力学性能优异的双层多孔钛对缺损部位进行了修复,考察了不同时间的修复情况。以羟基磷灰石粉和钛粉为原材料,通过添加造孔剂的方式烧结制备出生物陶瓷/钛多孔复合材料,评价了其力学性能及生物活性。
     首先对造孔剂添加量、保温时间、烧结温度等工艺参数对多孔钛孔隙率、抗压强度和弹性模量进行了研究。结果表明,当造孔剂添加量为35%、40%、50%和60%时,多孔钛的孔隙率分别为50%、58%、67%和72%,抗压强度分别为160MPa、105MPa、40MPa和25MPa,弹性模量分别为2.68GPa、2.00GPa、0.75GPa和0.55GPa;保温时间和烧结温度均对多孔钛的孔隙率和抗压强度有影响,烧结温度的提高和保温时间的延长有助于抗压强度的提高。
     通过调整各层造孔剂的添加量制备出双层和三层多孔钛,在温度为1300℃下保温2小时制备的双层和梯度多孔钛外层孔隙率可达67%,其最大抗压强度、抗弯强度及弹性模量分别为245.85MPa、64.54MPa及3.98GPa。力学性能与骨组织相匹配,解决了高孔隙率与抗压强度等力学性能之间的矛盾,为承载部位硬组织修复提供了可能。
     通过电化学方法和化学方法对多孔钛进行表面改性处理,构建多级微纳结构。结果表明,经过阳极氧化再热处理的多孔钛表面形成排列整齐的锐钛矿型纳米管;经过微弧氧化后的多孔钛表面形成含微孔结构的TiO薄膜;而经过碱处理后的多孔钛表面形成较复杂的微结构。体外仿生矿化结果表明,上述三类经改性后的多孔钛均能诱导羟基磷灰石的形成。
     通过动物体内实验进一步考察了改性前后多孔钛骨修复的能力。结果表明,添加造孔剂法制备的多孔钛具有良好的骨传导性和生物相容性。具有锐钛矿型TiO2纳米管的多级微结构多孔钛及经碱处理后的多孔钛可以增强骨形成能力,且植入体内6个月时,都比未处理多孔钛具有更高的骨结合力。为了考察承载部位的骨修复效果,建立了狗股骨中段全缺损模型,利用具有优异力学性能的双层梯度多孔钛对缺损部位进行修复,考察其在1、3和6个月时对骨的修复情况。结果表明,以钢板加螺钉的固定方式在1个月时固定良好,且有骨组织长入孔内;而在3个月固定实效,植入体移位,修复失败,表明该固定方式有待于进一步改进。此外,在肌肉内考察了改性前后多孔钛的骨诱导性能。实验结果表明,锐钛矿型Ti02纳米管的多孔钛及经碱处理后的多孔钛均能促进骨形态发生蛋白(BMP-2)的表达,表现出潜在的骨诱导能力。
     最后,在真空中烧结制备出HA/Ti复合材料并对其力学性能进行表征。结果表明,抗压强度随Ti添加量的增加而增加,HA/Ti值为1:15时,其抗压强度达181.89MPa,且该比例下的复合材料能诱导羟基磷灰石的形成;通过调整造孔剂添加量制备出外层高孔隙率且具有优异力学性能的双层梯度多孔生物活性复合材料,可以作为一种新型的骨替换材料。
Porous titanium has excellent biocompatibility and can reduce the Young's modulus because of the pore structure. Meanwhile, the pore structure can provide much space for tissue ingrowth, which can strengthen the bonding between the implant and tissue. However, the mechanical properties such as compressive strength will be decreased as the too high porosity. Further more, the titanium is a biologically inert material. Thus, how to solve the contradiction between porosity and compressive strength, and how to activate the porous titanium with comples topography is a problem to be solved.
     The space holder method is a fabrication process that can produce porous materials. As this method is simple, low cost and no expensive equipment needed, meanwhile, the size, shape and porosity can be adjusted by choosing the space holder particles, it was used to preparation of porous titanium implants in this paper. The optimized process parameter can be determined through investigating the process parameters by fabricating the porous titanium with sole porosity. And the effect of the parameters on the porosity and mechanical properties were also investigated. Then, the graded porous titanium with higher porosity in outer layer was fabricated and the mechanical properties were characterized. Subsequently, electrochemical treatments and chemical treatments were conducted to activate the surface and the biological activity of the treated porous titanium was studied in vitro and in vivo. In addition, the full-defect model in the bearing part was established by creating defects in the middle femur of the dogs. Then, the double graded porous titanium implants were used to repair the defect and the results were invested at different time. In this study, steel plates and screws were used to fix the implants. Finally, porous HA/Ti was processed using titanium and hydroxyapatite powder by space holder method, and the mechanical properties and biological activity of the porous composites were investigated.
     Firstly, the impact of addition of space holder, sintering temperature and holding time on porosity, compressive strength and Young's modulus were studied in this paper. When the addition of space holder was35%、40%/50%and60%, the porosity of porous titanium was 50%、58%、67%and72%, the compressive strength was160MPa、105MPa、40MPa and25PMa, the Young's modulus was2.68GPa、2.00GPa、0.75GPa and0.55GPa, respectively. When sintering temperature increased and the holding time extended, the compressive strength increased.
     In this study, graded porous titanium scaffolds containing the double layer or three layers were prepared at1300℃for2hours. And the porosity in outer layer was approximately67%. Moreover, the compressive strength, flexural strength and Young's modulus are245.85MPa,64.54MPa and3.98GPa, respectively, matching the bone. The results indicated that the graded porous titanium can be used to repair the hard tissue in bearing part.
     Multi-level micr-nano porous structure was forming on the surface of porous titanium by electrochemical method and chemical methods, and the results showed that anatase TiO2nanotubes were presented after anodize treatment and heat treatment. And TiO film containing microporous structure was presented after micro-arc oxidation. When the porous titanium was treated in the NaOH solution, plush-like suface containing Na, O, etc was presented. Biomimetic results showed that the three types of modified porous titanium can induce the formation of hydroxyapatite.
     Animal experiment was conducted to study the effects of the porous titanium before and after modification on bone integration. The results showed that the porous titanium had good conduction capacity and biocompatibility. Anatase nanotubes had significant effect on the growth of bone tissue and promoted bone ingrowth into the pores. When implanted in the animals for6months, the porous titanium with anatase nanotubes showed the higher bonding strength and bone ingrowth area rate than the untreated implants.
     The full-defects model was established to investigate the bone repair in the part of the bearing part. The double layer porous titanium was used to repair the bone defect. The results showed that the implants were fixed well by steel plate and screws in a month. However, the implants were loose in3and6months. It indicated that the fix method needs to be improved. In addition, the bone induction capability of the porous titanium was investigated through implanting the implants into the muscles. Results showed that the anatase TiO2nanotubes promoted expression of the bone morphogenetic protein (BMP-2). And so did the surface of implants treated by NaOH solution. It indicated that the modified surface had the potentital bone induction ability.
     Finally, the HA/Ti composites was prepared and the mechanical properties were characterized. The results showed that the compressive strength increased with the addition of the titanium. When the quality ratio of the hydroxyapatite and titanium is1:15, the compressive strength is181.89MPa. Meanwhile, the composites can induce the formation of hydroxyapatite. Moreover, the double layer graded porous composites with excellent mechanical properties can be prepared by adjusting the space holder addition. The graded porous composites with higher porosity in outer layer can be used as a new kind of bone-substitute materials.
引文
[1]Hing K A. Bone repair in the twenty-first century:biology, chemistry or engineering? Phil Trans R Soc Lond A.2004,362:2821-50.
    [2]Patka P. Bone replacement by calcium phosphate ceramics. Amsterdam:Vrije Universiteit:1984.
    [3]Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J.2001,10(Suppl 2):S 114-21.
    [4]Klein C, de Groot K, Chen W, et al. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials.1994,15:31-4.
    [5]LeGeros R Z. Properties of osteoconductive biomaterials:calcium phosphates. Clin Orthop Relat Res.2002,395:81-98.
    [6]Spies C, Schnurer S, Gotterbarm T, et al. Animal study of the bone substitute material Ostim within osseous defects in Gottinger minipigs. Z Orthop Unfall.2008,146:64-9.
    [7]Schnettler R, Stahl J P, Alt V, et al. Calcium phosphate-based bone substitutes. Eur J Trauma.2004,30:219-29.
    [8]Huber F X, McArhur N, Hillmeier J, et al. Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core:first clinical results. Arch Orthop Trauma Surg.2006,126: 533-40.
    [9]Huber F X, Berger I, McArthur N, et al. Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite cermic for the treatment of critical size bone defects (CSD) in rabbits. J Mater Sci Mater Med.2008,19:33-8.
    [10]Spies CK, Schnurer S, Gotterbarm T, et al. The efficacy of Biobon and Ostim within metaphyseal defects using the Gottinger Minipig. Arch Orthop Trauma Surg.2009, 129:979-88.
    [11]Thorwarth M, Schultze-Mosgau S, Kessler P, et al. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg.2005,63: 1626-33.
    [12]Brandt J, Henning S, Michler G, et al. Nanocrystalline hydroxyapatite for bone repair: an animal study. J Mater Sci Mater Med.2010,21:283-94.
    [13]Martin R B, Chapman M W, Sharkey N A, et al. Bone ingrowth and mechanical properties of coralline hydroxyapatite lyr after implantation. Biomaterials.1993,14:341-8.
    [14]Dressmann H. Ueber Knochenplombirerung bei Hohlenforming Defekten des Knochens. Beitr Klin Chir.1892,9:804-10.
    [15]Vigler M, Weigl D, Schwarz M, et al. Subtrochanteric femoral fractures due.to simple bone cysts in children. J Pediatr Orthop B.2006,15:439-42.
    [16]Gitelis S, Brebach G. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg (Hong Kong).2002,10:53-60.
    [17]Zhang D B, Cheng Q, Gu G S. Repair of bone defect caused by bone tumor with OsteoSet:Osteost absorption and new bone growth characters. J Clin Rehab Tissue Eng Res.2007,9:41.
    [18]Kelly C M, Wilkins R M, Gitelis S, et al. The use of a surgical grade calcium sulfate as bone graft substitute:results of a multienter trial. Clin Orthop Relat Res.2001,382:42-50.
    [19]Mirzayan R, Panossian V, Avedian R, et al. The use of calcium sulfate in the treatment of benign bone lesions. A preliminary report. J Bone Joint Surg Am.2001,83-A:355-8.
    [20]Gitelis S, Virkus W, Anderson D, et al. Functional outcomes of bone graft substitutes for benign bone tumors. Orthopedics.2004,27:141-4.
    [21]Lee G H, Khoury J G, Bell J E, et al. Adverse reactions to OsteoSet bone graft substitute, the incidence in a consecutive series. Iowa Orthop J.2002,22:35-8.
    [22]Robinson D, Alk D, Sandbank J, et al. Inflammatory reactions associated with a calcium sulfate bone substitute. Ann Transplant.1999,4:91-7.
    [23]Hench L L, Splinter R J, Allen W C, et al, Bonding mechanism at the interface of ceramic prosthetic materials. Biomed Mater Res.1971,2:117-41.
    [24]Giannoudis P V, Dinopoulos H, Tsiridis E. Bone substitutes:an update. Injury.2005, 36(Suppl.3):20-7.
    [25]Ohtsuki C, Kamitakahara M, Miyazaki T. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Intreface.2009,6(Suppl.3):s349-60.
    [26]Lossd S, Orfer Z, Chwartz S, et al. Osteoblast response to bioactive glasses in vitro inorganic Phosphate content. Biomaterials.2004,25:2547-55.
    [27]Kloddevold P R,Vandemark I, Kenney E B, et al. Osteogenesis enhanced by chitosan (poly-N-acetylgrucosam inoglycan) in vitro. J Periodtol.1996,67:1170-5.
    [28]Onishi H, Maehida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials.1999,20:175-82.
    [29]Huc A. Collagen biomaterials characteristics and applications. J Am Leather Chem Assoc.1985,80:195-212.
    [30]Santin M, Motta A, Cannas M. Changes in sefilm conditioning profiles of glutaraldehyde-cross linked collagen sponges after their treatment with calcification inhibitors. J Biomed Res.1998,40:434-41.
    [31]Romanos GE, Strub JR. Effect of Tissucolon connective tissue matrix during wound healing an immunohisto chemical study in rat skin. J Biomed Mater Res.1998,39:462-8.
    [32]Minamide A, Kawakami M, Hashizume H, et al. Evaluation of carriers of bone morphogenetic protein for spinal fusion. Spine.2001,26:933-99.
    [33]Bostman O M, Laitinen O M, Tynninen O, et al. Tissue restoration after resorption of polyglycolide and poly-lactic acid screws. J Bone Joint Surg Br.2005,87:1575-80.
    [34]Peter S J, Miller M J, Yasko A W, et al. Polymer concepts in tissue engineering. J Biomed Mater Res.1998,43:422-7.
    [35]Laschke M W, Strohe A, Menger M D, et al. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomater.2010,6:2020-7.
    [36]Bobyn J D, Stackpool G J, Hacking S A, et al. Characteristics of bone ingrowth and interface mechanics of new porous tantalum biomaterial. J Bone Joint Surg (Br).1999, 81:907-14.
    [37]Bobyn J D, Toh K K, Hacking S A, et al. Tissue response to porous tantalum acetabular cups:a canine model. J Arthroplasty.1999,14:347-54.
    [38]Poggie R A, Cohen R C, Averill R G. Characterization of a porous tantalum metal, direct compression molded UHMWPE junction. Transactions of the 44th Annual Meeting of the Orthopaedic Research Society. March 16-19,1998. New Orleans, LA:777.
    [39]Witte F, Ulrich H, Palm C, et al. Biodegradable magnesium scaffolds. Part Ⅱ. Peri-implant bone remodeling. J Biomed Mater Res A.2007,81:757-65.
    [40]Janning C, Willbold E, Vogt C, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater.2010,6:1861-8.
    [41]Wen C E. Processing of biocompatible porous Ti and Mg. Scripta Mater.2001, 45:1147-53.
    [42]邹慧,鲁琦,田卫东,等.非传统粉末冶金制备生物医用多孔钛及其性能.功能材料与器件学报.2010,16:490-4.
    [43]Zhu S L, Yang X J, Chen M F et al. Effect of porous NiTi alloy on bone formation:A comparative investigation with bulk NiTi alloy for 15 weeks in vivo.Mat Sci Eng A.2008, 8:12.71-75.
    [44]Wen C E, Yamada Y, Shimojma K, et al. Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci Mater Med.2002,13:397-401.
    [45]Wen C E, Mabuchi M, Yamada Y, et al. Processing of biocompatible porous Ti and Mg. Scripta Mater.2001,45:1147-53.
    [46]Sharma M, Gupta G K, Modi O P, et al. Titanium foam through powder metallurgy route using acicular urea particles as spacer holder. Mater Lett.2011,65:3199-201.
    [47]Bing Y, David C, Dunand. Titanium foams produced by solid-state replication of NaCl powders. Mat Sci Eng A.2010,528:691-97.
    [48]Monsourighasri A, Muhamad N, Sulong A B. Processing titanium foams using tapioca starch as a space holder. J Mater Process Tech.2012,212:83-9.
    [49]Esen Z, Bor S. Processing of titanium foams using magnesium spacer particles. Scripta Mater.2007,56:341-4.
    [50]Chino Y, Dunand D C. Directionally freeze-cast titanium foam with aligned, elongated pores.2008, Acta Mater.56:105-13.
    [51]Li J C, Dunand D C. Mechanical properties of directionally freeze-cast titanium foams. 2011, Acta Mater.59:146-58.
    [52]Yook S W, Yoon B H, Kim H E, et al. Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries.2008, Mater Lett.62:4506-8.
    [53]Cachinho S C P, Correia R N. Titanium porous scaffolds from precursor powders: rheological optimization of TiH2 slurries. Powder technol.2007,178:109-13.
    [54]李虎,虞奇峰,张波,等.稀有金属材料与工程.2006,35:154-7.
    [55]Chen Y J, Feng B, Zhu Y P, et al. Fabrication of porous titanium implants with biomechanical compatibility. Mater Lett,2009,30:2659-61.
    [56]朱亚平,陈跃军,冯波等.稀土CeO:增强型多孔钛的制备与性能。稀有金属材料与工程,2011,40:511-4.
    [57]Amigo A, Salvador M D, Romero F, et al. Microstructural evolution of Ti-6A1-4V during the sintering of microspheres of Ti for orthopedic implants. J Mater Process Tech. 2003,141:117-22.
    [58]Oh 1 H, Nomura N, Masahashi N, et al. Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Mater.2003,49:1197-202.
    [59]Nomura N, Kohama T, Oh I H, et al. Mechanical properties of porous Ti-15Mo-5Zr-3Al compacts prepared by powder sintering. Mat Sci Eng C.2005,25:330-5.
    [60]Reig L, Amigo V, Busquets D J, et al. Development of porous Ti6Al4V samples by microsphere sintering. J Mater Process Tech.2012,212:3-7.
    [61]伍本德,郭福合.球形粉末多孔钛的性能与粉末粒度和烧结制度的关系.稀有金属材料与工程.1990,2:34-6.
    [62]Li J P, Li S H, de Groot K, Layrolle P. Preparation and characterization of porous titanium. Key Eng Mater,2002,218:51-4.
    [63]Li J P, Li S H, de Groot K, Layrolle P. Improvement of porous titanium with thicker thicker struts. Key Eng Mater,2003,240:547-50.
    [64]李军,储成林,张树格,等.燃烧合成制备多孔Ti-Ni形状记忆合金的研究.金属功能材料.2004,11:10-3.
    [65]Tang C Y, Zhang L N, Wong C T, et al. Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Mat Sci Eng A.2011,528:6006-11.
    [66]Zou C M, Zhang E L, Li M W, et al. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres. J Mater Sci Mater Med.2008,19:401-5.
    [67]Li Y H, Rong L J, Li YY. Compressive property of porous NiTi alloy synthesized by combustion synthesis. J Alloy Compd.2002,345:271-4.
    [68]Krishna B V, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater.2007,3:997-1006.
    [69]Xue W C, Krishna B V, Bandyopadhyay A et al. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater.2007,3:1007-18.
    [70]Wang Y, Shen Y F, Wang Z Y, et al. Development of highly porous titanium scaffolds by selective laser melting. Mater Lett.2010,64:674-6.
    [71]Fukuda A, Takemoto M, Saito T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater.2011,7:2327-36.
    [72]Heinl P, Muller L, Korner C, et al. Cellular Ti-6Al-4V structure with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater.2008,4:1536-44.
    [73]Li X, Wang C T, Zhang W G, et al. Fabrication and characterization of porous Ti6A14V parts for biomedical applications using electron beam melting process. Mater Lett.2009, 63:403-6.
    [74]Bidiche X, Forest S, Guibert T, et al. Mechanical properties and non-homogenerous deformation of open-cell nickel foams:application of the mechanics of cellular solids and of porous materials. Mat Sci Eng A.2000,289:276-88.
    [75]Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci.2001,46:559-632.
    [76]Xue W C, Liu X Y, Zheng X B, et al. In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials.2005,26:3029-7.
    [77]Takemoto M, Fujibayashi S, Neo M, et al. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials.2006,26:6014-23.
    [78]奚正平,汤慧萍,朱纪磊,等.金属多孔材料在能源环保中的应用.稀有金属材料与工程.2006.35(增刊2):423-7.
    [79]Satyamurthy K, Hasselman D P H. Effect of spatially varying porosity on magnitude of thermal stresses during steady state heat flow. J Am Ceram Soc.1979,62:431-2.
    [80]Boccaccini A R, Janczak J, Taplin D M R et al. The multibarriers-system as materials science approach for industrial waste disposal and recycling:application of gradient and multilayered microstructures. Environ. Technol.1996,17:1193-203.
    [81]Greil P, Lifka T, Kaindl A. Biomorphic cellular silicon car bide ceramics from wood:II. Mechanical properties. J Eur Ceram Soc.1998,18:1975-83.
    [82]Fu Q S, Hong Y L, Liu X G et al. A hierarchically graded bioactive scaffold bonded to titanium substrates for attachment to bone. Biomaterials.2011,32:7333-46.
    [83]Zeschky J, Hofner T, Arnold C. Polysilsesquiozane derived ceramic foams with gradient porosity. Acta Materialia.2005,53:927-37.
    [84]Kim K H, Cho S J, Yoon K J, et al. Centrifugal casting of alumina tube membrane application. J Membrane Sci.2002,199:69-74.
    [85]Clasen R, Tabellion J. Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses-applications. J Mater Sci.2004, 39:803-11.
    [86]黄可,何思渊,何德坪.梯度孔径多孔铝合金的压缩及吸能性能.机械功能材料.2010,34:77-83.
    [87]刘玮健,徐日玮,薛蓉.组织工程用聚乳酸梯度支架的制备及分形研究.北京化工大学学报.2006,33:56-60.
    [88]Kokubo T, Kushitani H, Sakka et al. Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W. J Biomed Mater Res.1990, 24:721-34.
    [89]Filgueiras M R, Torre G L, Hench L L. Solution effects on the surface reactions of a bioactive glass. J Biomed Mater Res.1993,27:445-53.
    [90]Kokubo T, Takadama H. How useful is SBF in prediction in vivo bone bioactivity? Biomaterials.2006,27:2907-15.
    [91]Kokubo T. Bioactive glass ceramics:properties and applications. Biomaterials.1991, 12:155-63.
    [92]Kweh S W K, Khor K A, Cheng P. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials.2002,23:775-85.
    [93]Ding S J. Properties and immersion behavior of magnetron-sputtered multi-layered hydroxyapatite/titanium composite coatings. Biomaterials.2003,24:4233-8.
    [94]Chu P K, Chen J Y, Wang L P, et al. Plasma-surface modification of biomaterials. Mat Sci Eng R.2002,36:143-206.
    [95]Zheng X B, Huang M H, Ding C X. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials.2000,21:841-9.
    [96]Takemoto M, Fujibayashi S, Neo M, et al. Osteoinductive porous titanium implants: Effect of sodium removal by dilute HC1 treatment. Biomaterials.2006,27:2682-91.
    [97]Jonasova L, Muller F A, Helebrant A, et al. Biomimetic apatite formation on chemically treated titanium. Biomaterials.2004,25:1187-94.
    [98]Liang F H, Zhou L, Wang K. Apatite formation on porous tianium by alkali and heat-treatment. Sur Coat Tech.2003,165:133-9.
    [99]Wen C E, Xu W, Hu W Y, et al. Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomater.2007,3:403-20.
    [100]Critchlow G W, Brewis D M. Review of surface pretreatments for titanium alloys. Int. J. Adhesion and Adhesives.1995,3:161-72.
    [101]Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapetite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Tech.2000,125:407-14.
    [102]Ban S, Maruno S, Arimoto N, et al. Effect of electrochemically deposited apatite coating on bonding of bone to the HA-G-Ti composite and Ti. J Biomed Mater Res.1997,36: 9-15.
    [103]Ban S, Maruno S. Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. Biomaterials.1998,19:1245-53.
    [104]Narayanan R, Seshadri S K, Kwon T Y, et al. Electrochemical nano-grained calcium phosphate coatings on Ti-6A1-4V for biomedical applications. Scripta Mater.2007, 56:229-332.
    [105]Narayanan R, Kwon T Y, Kim K H. Direct nanocrystalline hydroxyapatite formation on titanium from ultrasonated electrochemical bath at physiological pH. Mater Sci Eng C. 2008,28:1265-70.
    [106]Narayanan R, Kim S Y, Kwon T Y, et al. Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte:preparation characterization, and osteoblast response. J Biomed Mater Res A.2008,87:1053-60.
    [107]Larsson C, Thomsen. Bone response to surface-modified titanium implants:studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials.1996,17:605-16.
    [108]Sul Y T, Johansson C B. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys.2001,23:329-46.
    [109]Hanawa T. Biofunctionalization of titanium for dental implant. Japanese Dental Science Review.2010,46:93-101.
    [110]Naraynan R, Ha J Y, Kwon T Y, et al. Structure and properties of self-organized TiO2 nanotubes from stirred baths. Metal Mater Trans B.2008,39:493-9.
    [111]Jang J M, Park S J, Choi G S, et al. Chemical state and ultra-fine structure analysis of biocompatible TiO2 nanotube-type oxide film formed on titanium substrate. Metal Mater Int. 2008,14:457-63.
    [112]Brothers A H, Dunand D C. Amorphous metal foams. Scripta Mater.2006,54:513-20.
    [113]汤慧萍,张正德,金属多孔材料发展现状.稀有金属材料与工程.1997,26,1:1-6.
    [114]Li B Y, Rong L J, Li Y Y, et al. Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis:reaction mechanism and anisotropy in pore structure. Acta Mater.2000,48:3895-904.
    [115]Ryan G E, Pandit A S, Apatsidis D P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials.2008,3625-35.
    [116]刘培生,黄林国.多孔金属材料制备方法.功能材料.2002,33:5-11.
    [117]姜淑文,齐民.生物医用多孔金属材料的研究进展.材料科学与工程.2002,20:597-600.
    [118]黄培云.粉末冶金原理.第2版.机械工业出版社,1997:267-9.
    [119]李士同,朱瑞富,甑良,等.烧结温度对多孔钛组织结构与性能的影响.材料热处理学报.2009,30:93-100.
    [120]关振裰,张中太,焦金生.无机材料物理性能.清华大学出版社,1992:42-3.
    [121]戴少度.材料力学.国防工业出版社,2000:117-8.
    [122]H.P.蒂吉斯切,B.克雷兹特.多孔泡沫金属.化学工业出版社,2005:147-8.
    [123]冯正听,褚丽娟.老年人股骨拉伸、弯曲力学性质实验研究.中国老年学杂志.2005,25:154-5.
    [124]杨克强,李柱林,张春林,等.深低温冷冻与常温储骨对皮质骨生物力学特性影响的研究.河北比方学院学报.2008,25:9-11.
    [125]Long M, Rack H J. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials.1998,19:1621-39.
    [126]Filiaggi M J, Coombs N A, Pilliar R M. Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system. J Biomed Mater Res.1991, 25:1211-29.
    [127]Wen H B, Wolke J G C, Wijn J R D, et al. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials.1997,18:1471-8.
    [128]Chen X B, Li Y C, Hodgson P D, et al. Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Mater Sci Eng C.2009,1:165-71.
    [129]Kim H M, Miyaji F, Kokubo T, et al. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res.1996,32:409-17.
    [130]Kokubo T, Miyaji F, Kim H M, et al. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc.1996,79:1127-9.
    [131]Wei M, Ruys AJ, Swain M V, et al. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J Mater Sci-Mater Med.1999,10:401-9.
    [132]Zhao L Z, Mei S L, Chu P K, et al. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials.2010,31:5072-82.
    [133]Yan Y Y, Sun J F, Han Y, et al. Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surf Coat Tech.2010, 205:1702-13.
    [134]Kunze J, Muller L, Macak J M, et al.Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta.2008,53:6995-7003.
    [135]Anselme K, Davidson P, Popa A M, et al. The interaction of cells and bacteria with surfaces structured at the nanometer scale. Acta Biomate.2010,6:3824-46.
    [136]Takadama H, Kim H M, Kokubo T, et al. Tem-EDX study of mechanism of bone-like apatite formation on bioactive titanium metal in simulated body fliud. J Biomed Mater Res. 2001,57:441-8.
    [137]刘达理,冯波,鲁雄,等.两段式阳极氧化法制备大管径TiO2纳米管.稀有金属材料与工程.2010,39:325-9.
    [138]钟吉品.生物玻璃的研究与发展.无机材料.1995,10:129-37.
    [139]Mor K G, Varghese O K, Paulose M, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin solid films. 2006,496:42-8
    [140]赖跃坤,孙岚,左娟,等.氧化钛纳米管阵列制备及形成机理.物理化学学报.2004,20:1063-6.
    [141]Zhao J L, Wang X H, Chen R Z, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun.2005,34:705-10.
    [142]郭智博,尹荔松,龚青,等,氧化钛纳米管阵列阳极氧化法的制备及形成机理研究.材料导报.2010,24:19-22.
    [143]石萍.退火温度及TiO2结构对羟基磷灰石的沉积诱导作用。材料热处理学报.2010,31:44-7.
    [144]赵晓兵,游静,马丽,等.相组成对TiO2薄膜生物活性的影响.硅酸盐学报.2010,38:148-52.
    [145]Lin C M, Yen S K. Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fliud. Mater Sci Eng C.2006,26:54-65.
    [146]Lindberg F, Heinrichs J, Ericson F, et al. Hydroxyapatite growth on single-crystal tutile substrates. Biomaterials.2008,29:3317-23.
    [147]Gao L, Feng B, Wang J X, et al. Micro/nanostructural porous surface on titanium and bioactivity. J Biomed Mater Res.2009,89:335-41.
    [148]Tencer F, Johnson K D. Biomechanics in orthopaedic application:Bone fracture and fixation. Lippincott Williams and Wilkins.1994,211-2.
    [149]Li L H, Kong Y M, Kim H W, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials.2004,25:2867-75.
    [150]Hong M H, Lee D H, Kim K M, et al. Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation. Thin solid films.2011, 20:7065-7070.
    [151]Chen H T, Chung C J, Yang T C, et al. Osteoblast growth behavior on micro-arc oxidized β-titanium alloy. Surf coat tech.2010,205:1624-9.
    [152]Bayati M R, Molaei R, Kajbafvala A, et al. Ivestigation on hydrophilicity of micro-arc oxidized TiO2 nano/micro-porous layers. Electrochim acta.2010,55:5786-92.
    [153]Pouilleay J, Devilliers D, Garrido F, et al, Structure and composition of passive titanium oxide films. Mater Sci Eng.1997, B47:933-9.
    [154]Pattanayak D K, Matsushita T, Nakamura T, et al. Effects of oxygen content of porous titanium metal on its apatite-formating ability and compressive strength. Mater Sci Eng C. 2009,29:1974-8.
    [155]Jonasove L, Muller F A, Helebrant A, et al. Biomimetic apatite formation on chemically treated titanium. Biomaterials.2004,25:1187-94.
    [156]He G, Liu P, Tan Q B. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. J Mech Behav Biomed Mater.2012,5:16-31.
    [157]Torres Y, Pavon J J, Rodriguez J A. Processing and characterization of porous titanium for implants by using NaCl as space holder. J Mater Process Tech.2012,212:1061-9.
    [158]Barbas A, Bonner A S, Lipinski P, et al. Development and mechanical characterization of porous titanium bone substitutes. J Mech Behav Biomed Mater.2012,9:34-44.
    [159]Yan W Q, Nakamura T, Kawanabe K, et al. Apatite layer-coated titanium for use as bone bonding implants. Biomaterials.1997,18:1185-90.
    [160]Lin D J, Ju C P, Huang S H, et al. Mechanical testing and osteointegration of titanium implant with calcium phosphate bone cement and autograft alternatives. J Mech Behav Biomed Mater.2011,4:1186-95.
    [161]Fu Q S, Hong Y L, Liu X G, et al. A hierarchically graded bioactive scaffold bonded to titanium substrates for attachment to bone.2011,32:7333-46.
    [162]Takemto M, Fujibayashi S, Neo M, et al. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials.2005,26:6014-23.
    [163]Albrektsson T, Wennerberg A. Oral implant surfaces:part I-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont.2004,17:536-43.
    [164]Buser D, Schenk R, Steinemann S, et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in mimiature pigs. J Biomed Mater Res A.1991,25:889-902.
    [165]Trisi P, Lazzara R, Rebaudi A, et al. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J Periodontol.2003,74: 945-56.
    [166]Gotfredsen K, Wennerberg A, Johansson C, et al. Anchorage of TiO2-blasted, HA-coated, and machined implants:an experimental study with rabbits. J Biomed Mater Res A.1995,29:1223-31.
    [167]Sul Y T, Johansson C B, Roser K, et al. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials.2002,23:1809-17.
    [168]Oh S, Jin S. Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater Sci Eng C.2006,26:1301-6.
    [169]Cui X, Kim H M, Kawashita M, et al. Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater.2009,25:80-6.
    [170]Zhao CY, Zhu X D, Yuan T, et al. Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater Sci Eng C,2010,30:98-104.
    [171]Liang B J, Fujibayashi S, Masashi Neo, et al. Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials.2003,24:4959-66.
    [172]薛卫昌,郑学斌,刘宣勇,等.经碱处理的等离子喷涂钛涂层的成骨性能研究.2005,9:1275-80.
    [173]Fujibayashi S, Neo M, Kim H M, et al. Osteoinduction of porous bioactive titanium metal. Biomaterials.2004,25:443-50.
    [174]Yuan H P, Li Y B, Bruijn J D, et al. Tissue responses of calcium phosphate cement:a study in dogs. Biomaterials.2000,21:1283-90.
    [175]Yang Z J, Yuan H P, Tong W D, et al. Osteogenesis in eztrakseletally implanted porous calcium phosphate ceramics:variability among different kinds of animals. Biomaterials. 1996,17:2131-7.
    [176]Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials.1996,17:31-5.
    [177]廖湘凌,李声伟,田卫东。中空多孔钛种植体复合牛骨形成蛋白的实验研究-即刻植入的组织学观察.2000,5:74-6.
    [178]Vohof J W M, Spauwen P H M, Jansen J A. Bone formation in calcium-phosphate-coated titanium mesh. Biomaterials.2000,21:2003-9.
    [179]徐建强,胡蕴玉,徐放等rhBMP-2/(?)磷脂复合材料修复犬长骨节段性骨缺损的实验研究.中国矫形外科杂志.2002,9:593-5.
    [180]Yuan HP, Yang Z J, de Bruijn J D, et al. Material-dependent bone induction by calcium phosphate ceramics:a 2.5-year study in dog. Biomaterials.2001,22:2617-23.
    [181]Qu S X, Guo X. Weng J, et al. Evaluation of the expression of collagen type Ⅰ in porous calcium phosphate ceramics implanted in an extra-osseous site. Biomaterials.2004, 25:659-667.
    [182]Yuan H P, Kurashina K, de Bruijn J D, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials.1999,20:1799-806.
    [183]Sul Y T, Johansson C B, Jeong Y, et al. Resonance frequency and removal torque anlysis of implants with turned and anodized surface oxides. Clin Oral Implants Res.2002, 13:252-9.
    [184]Osborn J, Newesely H. The material science of calcium phosphate ceramics. Biomaterials.1980,1:108-11.
    [185]Akao H, Aoki H, Kato K. Mechanical properties of sintered hydroxyapatite for prosthetic application. J Mater Sci.1981,16:809-12.
    [186]Salman S, Gunduz O, Yilmaz S, et al. Sintering effect on mechanical properties of composites of natural hydroxyapatites and titanium. Ceram Int.2009,35:2965-71.
    [187]Ning C Q, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA ang Ti powders by powder metallurgy method. Biomaterials.2002,23:2909-15.
    [188]宁聪琴,周玉,贾德昌.钛/羟基磷灰石生物复合材料的力学性能与生物学行为.硅酸盐学报.2000,28:483-6.
    [189]Ye H Z, Liu X Y, Hong H P. Cladding of titanium/hydroxyapatite composites onto Ti6A14V for load-bearing implant applications. Mater Sci Eng C.2009,29:2036-44.
    [190]Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fliud. J Non-Cryst Solids.1992,143:84-92.
    [191]De Groot K, Klein CPAT, Wolke JGC, et al. Chemistry of calcium phosphate bioceramics. In:Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics, vol. Ⅱ. Boca Raton, FL:CRC Press,1990:3-6.
    [192]Kokubo T, Matsushita T, Takadama T, et al. Development of bioactive materials based on surface chemistry. J Eur Ceram Soc.2009,7:1267-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700