原位冶金碳化钨复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于传统粉末冶金制备WC系硬质合金的工艺复杂,流程长,耗能大,成本高,并且WC颗粒具有本质遗传性,从而限制了其在某些领域的应用。为短流程快速制备WpC(WC+W2C)复合材料,本文采用W基合金粉体原料,研制开发了等离子原位冶金技术和自耗电极直流电弧原位冶金技术,实现了WpC复合材料高效低成本的原位制备。WC、W2C等硬质相从高温熔体中原位生成,体系洁净无污染,合金组织致密均匀,耐磨性能优良。原位冶金技术设备造价低廉,加工效率高,可控性强,更容易实现工业化生产。
     本文采用等离子原位冶金技术和自耗电极直流电弧原位冶金技术在42CrMo截齿齿顶盲孔内和A1203耐火材料型腔内制备出了块体WpC复合材料。采用SEM、XRD、EDS、EMPA、TEM等对WpC复合材料组织结构、物相及成分进行了分析。采用摩擦磨损试验机测量了WpC复合材料的滑动磨损性能和固定磨料条件下的磨料磨损性能。
     组织分析结果表明,采用等离子原位冶金技术和自耗电极直流电弧原位冶金技术在截齿齿顶盲孔内制备出的块体WpC复合材料的微观结构近似,相组成为WC、W2C、M6C (Fe3W3C)、γ-Fe以及少量的Cr7C3和(Fe,Ni)3C,合金和基体呈良好冶金结合,从结合界面向合金内部,依次为平面晶区、鱼骨状共晶区、十字花状树枝晶区。鱼骨状共晶主要物相为Fe3W3C(亮区)和7-Fe(暗区),十字花状树枝晶物相组成为Fe3W3C,这三个区域的总厚度一般不超过200μm;再向内一直到合金的中心,组织较均匀,其特点是具有四角到六角形分支的树枝晶—Fe3W3C分散分布于具有长条状结晶特点的基底7-Fe上,而具有规则三角形或四边形的硬质相晶粒—WC和W2C则具有集中生长的特点,晶粒尺寸约为0.5-20μm,以近似于包共晶转变的形式进行生长。
     WpC复合材料在耐火材料型腔内成型由于降温速度慢,气体有充足时间上浮逸出,使得内部组织更加致密均匀,WC和W2C晶粒长得更大,最大的三角形晶粒边长超过70μm, Fe3W3C形貌和在截齿齿顶盲孔内成型的样品明显不同,晶粒较圆整,分支结构大大减少。
     研究了纯w粉和纯C粉在直流电弧下的反应。在500A电流下,保证生成WC的W、C化学计量比的前提下,体系中加入质量百分数为4%的A1,可以得到纯相WC粉体,并呈现出层片状结晶的特点;其它条件相同,体系中加4%的Cu,则效果较差些,制备出的粉体中除含有WC外,还含有较多的W2C、WO3以及未反应的C等。在1000A电流下,Cu作反应助剂,符合化学计量比的W、C反应得到的D08样品为WC和W2C两相共存的致密烧结体,两相以共晶的形式成核与生长。
     在等离子束流及直流电弧作用下,WC原位反应成核后,在熔体中生长时具有相似特征,皆以小平面的形式结晶生长。由于界面能的不同导致各晶面的生长速度不同,最终导致结晶呈现层片状的结构。
     制备出的WpC复合材料的平均硬度都能达到HRA82以上,WC和W2C两相共存的致密烧结体D08样品平均硬度达HRA87.8。对合金内部不同物相的显微硬度分别进行分析发现,WpC相的硬度最高,能达到2000HV0.2以上,组织中的Fe3W3C相的硬度也能达到1100HV0.2以上,而基体相由于固溶了部分的合金元素也表现出具有较高的显微硬度,达到600-800 HV0.2左右。
     采用两种原位冶金技术在截齿齿顶盲孔成型的P01样品、D04样品和直流电弧下耐火材料型腔成型的D05样品,在干滑动磨损条件下,淬火45#钢作对磨环,在250N,400r/min转速下,随时间延长,三个样品的耐磨损性能已和YG13C接近,磨损趋势也基本相同,P01和D05样品耐磨性相当,D04样品稍差;在转速为400r/min,磨损时间为2h的条件下,200N和250N载荷下三个样品的耐磨损性能较好,失重小于YG13C,300N载荷下除D05样品外,其余两个样品失重稍高于YG13C; WpC复合材料的耐磨性最高可达42CrMo钢的15倍以上。固定磨料磨损条件下,随载荷增大,所有试样的失重都增加;三个样品中,耐火材料型腔中成型样品耐磨性最好,在100N、125N载荷作用下耐磨性与YG13C相当,在150N载荷作用下耐磨性稍差;两种工艺在截齿齿顶盲孔内成型样品耐磨性相当,在三种试验载荷下耐磨性都比YG13C稍差。150N载荷下,三个合金试样的耐磨性都达到了42CrMo钢耐磨性的77倍以上,在较低载荷作用下与42CrMo钢的相对耐磨性更好,显示出优良的耐磨料磨损性能。
     利用白耗电极直流电弧原位冶金法初步试制了WpC复合材料截齿刀头,WpC复合材料和截齿齿体呈现良好冶金结合,结合强度高。
Tungsten carbide (WC) is produced traditionally by powder metallurgy (PM) technology. The PM technology is complex, flow process is long, energy consumption and costs are fairly high, and WC particles have essential heredity, which limits its application in some areas. In order to prepare WpC(WC+W2C) composite materials rapidly, in this paper, we have developed plasma in-situ metallurgical technology and consumable electrode direct current (DC) arc in-situ metallurgical technology, and WpC composite materials were prepared efficiently and low costly by W based alloy powder. The WC, W2C crystals are generated and growed up in-situ in the high temperature melt pool. The reaction system is clean, the alloy's structure is compact and uniform, and wear-resistant properties of them are excellent. The devices of in-situ metallurgical technology are efficient in processing, low in cost and easy to control, it's more likely to be applied in industrial production processes.
     In this paper, bulk WpC composite materials were prepared in 42CrMo cutting pick crest hole separately by plasma in-situ metallurgical technology (PISM) and consumable electrode DC arc in-situ metallurgical technology(CEDISM), and prepared in Al2O3 refractory cavity by CEDISM. The microstructure, phases and ingredients were examined separately by SEM, XRD, EDS and EMPA. The skimming wear performance and fixed abrasive wear performance of the WpC composite materials were measured by friction wear tester.
     The structure analysis results reveal that the microstructure of the specimens those were prepared in cutting pick crest hole separately by the two preparation methods are approximate, the phases of the specimens are WC, W2C, M6C(Fe3W3C),γ-Fe, Cr7C3 and small amount of (Fe, Ni)3C, the alloy and substrate have excellent metallurgical bonding. From bonding area to internal alloy area, the microstructure shows in turn planar interface, eutectic region and cross shaped dendrite region. The phases of the herringbone shape eutectic are mainly Fe3W3C (bright area) andγ-Fe (dark area), the phase of the cross dendrite is Fe3W3C, the total thickness of the three regions is generally less than 200μm; From the cross dendrite region to alloy centre, the microstructure is uniform, the character of it is that Fe3W3C dendrite which has four to hexagonal branches distributed in theγ-Fe matrix which has long strips characteristics. Hard particles-WC and W2C have measured triangular or quadrilateral shape, tend to show concentrated growth, and the size is around 0.5-20μm, the growth form of them is approximate peritectic and eutectic transformation.
     The internal microstructure of the WpC composite materials prepared in refractory cavity is more compact and uniform due to slow cooling rate and adequate time for gases escaping. The WC and W2C crystals grow larger and the length of a triangular crystal side can reach more than 70μm, Fe3W3C is more rounding and the branch structure of it is reduced greatly.
     The reaction of the pure W and C powder in DC arc is also studied. With 500A electricity, when the stoichiometric ratio of WC is ensured,4% weight percentage Al is added to the reaction system, the pure WC powder can be obtained, and the crystal shape is lamellar; If 4% weight percentage Cu is added to the reaction system, and other conditions are same, the powder contains WC, W2C, WO3 and unreacted C element. With 1000A electricity, Cu is used as reaction assistant element; the dense sintering alloy of the D08 specimen with WC and W2C phases is obtained from W and C powder according with stoichiometric ratio. The nucleation and growth form of WC and W2C phases are eutectic.
     Under the interaction of the plasma beam and DC arc, the characteristics of the above specimens are similar. The WC crystals in-situ react, then nucleate and grow up from melt pool, the WC crystals have facet growth form; the interfacial energy of each crystal face in the WC crystal is different, so the growth speed of each crystal face is different; the result is that the WC particles are lamellar in structure.
     The average hardness of all the prepared WpC composite materials can reach more than HRA82, and the average hardness of D08 specimen is HRA87.8. The WpC phase has highest hardness and the microhardness of it can reach above 2000HV0.2; the microhardness of the Fe3W3C phase can reach above 1100HV0.2; the microhardness of the matrix can reach around 600-800 HV0.2 because of high solid solubility of alloy elements.
     In the dry sliding wear condition, quenched 45# steel as the grinding ring, the specimens produced in the cutting pick crest hole separately by PISM and CEDISM and the specimen in the refractory cavity produced by CEDISM are studied. When the load is 250N and the relative slipping speed is 400r/min, the wear resistant performances of the three specimens are close to YG13C and the wear trends of them are similar with the time extended, the wear resistant performances of P01 and D05 specimens are similar and slightly better than D04 specimen; when the rotate speed is 400r/min and wear time is 2 hours, the weight losses of the three specimens are less than YG13C when the loads are 200N and 250N, and the weight losses of the three specimens are slightly higher than YG13C when the load is 300N, and the best anti-skimming wear resistant abilities of the three specimens can reach 15 times higher than the 42CrMo steel. In the fixed abrasive wear conditions, the weight losses of all the specimens increase with the loads increase; the anti-abrasive wear performance of the specimen produced in the refractory cavity is best among the three specimens, the wear performance of it is similar while comparing with YG13C under the loads of 100N,125N, and when the load is 150N, the wear performance of it is slightly worse than YG13C; the abrasive resistance of the two specimens produced in the cutting pick crest hole are similar, and the anti-abrasive resistance performances of them are worse than YG13C under the loads of 100N,125N and 150N. The anti-abrasive resistance abilities of all the three specimens are at least 77 times higher than 42CrMo steel, and the resistance performances of them are even better compared with 42CrMo steel when the loads are lower, so the three specimens show excellent abrasive wear resistance performances.
     Preliminary trial-manufacture of WpC composite materials used in cutting picks were proceeded which was produced by CEDISM, the results shows that the bonding strength of the WC composite materials and substrate is excellent.
引文
1.高鄂译.碳化钨入门[M].台北:徐氏基金会出版,1982.
    2.黄新.优质粗晶WC粉末及合金的研制[D].重庆:重庆大学,2004.
    3.株洲硬质合金厂.钢结硬质合金[M].冶金工业出版社,1982.
    4.毕泗庆,用于钢切削加工的Fe、Ni代Co硬质合金刀具材料的研究[D].重庆:重庆大学,2004.
    5.P·基费尔П·施华尔茨柯普弗,硬质合金[M].北京:中国工业出版社,1963.
    6.迟静,李惠琪,王淑峰,等.矿用WC硬质合金的研究进展与趋势[J].矿山机械,2010,38(8):23-28.
    7. M J TOBAR, C ALVAREZ, J M AMADO, et al. Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel [J]. Surface & Coatings Technology,2006, (200): 6313-6317.
    8. Zhou Shengfeng, ZENG Xiaoyan, HU Qianwu, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization [J]. Applied Surface Science,2008, (255):1646-1653.
    9. J M AMADO, M J TOBAR, J C ALVAREZ, et al. Laser cladding of tungsten carbides (Spherotene(?)) hardfacing alloys for the mining and mineral industry [J]. Applied Surface Science,2009, (255):5553-5556.
    10.张相军.Q235钢表面激光熔注WC涂层的组织结构与耐磨性能[D].哈尔滨:哈尔滨工业大学,2007.
    11. Zhao M. H., Liu A. G, Guo M. H., et al. WC reinforced surface metal matrix composite produced by plasma melt injection [J]. Surface and Coatings Technology,2006, (201): 1655-1659.
    12.赵敏海.等离子熔化注射制备碳化物增强涂层组织及耐磨性研究[D].哈尔滨:哈尔滨工业大学,2008.
    13.张艳良.等离子熔-喷制备WC增强表层复合材料[D].北京:中国农业大学,2005.
    14.王长柏.等离子熔化注射WC-Co耐磨复合表层研究[D].哈尔滨:哈尔滨工程大 学,2006.
    15. Zhong M. L., Liu W. J., Zhang Y. Formation of WC/Ni hard alloy coating by laser cladding of W/C/Ni pure element powder blend [J]. International Journal of Refractory Metals & Hard Materials,2006, (24):453-460.
    16. Wu Xiaolei, Chen Guangnan. Nonequilibrium microstructures and their evolution in a Fe-Cr-W-Ni-C laser clad coating [J]. Materials Science and Engineering:A,1999, (270):183-189.
    17. Gu Dongdong, Wilhelm Meiners. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting [J]. Materials Science and Engineering:A,2010, (527):7585-7592.
    18.赵文彬,WC- Co复合粉的原位合成与块体硬质合金的烧结[D].北京:北京工业大学,2009.
    19. Z. Zark Fang, Xu Wang, T.aegong Ryu, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review [J]. International Journal of Refractory Metals & Hard Materials,2009,27(2):288-299.
    20.邵刚勤,吴伯麟,魏明坤,等.超细晶WC硬质合金的研制动态[J].武汉工业大学学报,1999,21(6):18-20.
    21.邱友绪.超细硬质合金晶粒生长抑制机理及热处理工艺研究[D].成都:四川大学,2007.
    22. F. Arenas, I. B. de Arenas, J. Ochoa, et al. Influence of VC on the Microstructure and Mechanical Properties of WC-Co Sintered Cemented Carbides [J]. International Journal of Refractory Metals & Hard Materials.1999,17(1-3):91-97.
    23. B. H. Kear, L. E. McCandlish. Chemical Processing and Properties of Nano-structured WC-Co Materials [J]. Nanostructured Materials.1993,3(1-6):19-30.
    24. Yao Zhengui, Jacob J. Stiglich, T. S. Sudarshan. Nanosized WC-Co holds promise for the future [J]. Metal Powder Report.1998,53(3):26-33.
    25.占志泽,谢海根.添加剂活化法制取粗晶WC的探讨[C].第八次全国硬质合金学术会议论文集,2000,60-63.
    26.张立,余贤旺,王元杰,等.Co掺杂对粗颗粒、特粗颗粒WC粉末粒度与微观形貌的影响[J].硬质合金,2008,25(3):135-139.
    27.王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1988.
    28.唐鹏.铁镍代钴型硬质合金应用研究[D].南宁:广西大学,2006.
    29. Bernhard Wittmann, Wolf-Dieter Schubert, Benno Lux. WC grain growth and grain growth inhibition in nickel and iron binder hardmetals [J]. International Journal of Refractory Metals & Hard Materials.2002, (20):51-60.
    30.张丽英,吴成义,晏洪波,等.含钒超细晶粒WC-(Ni, Fe)系硬质合金复合粉的研制[J].金属学报,1999,35(2):155-158.
    31.张玉华,张纪生.铁、镍基粘结相硬质合金研究的新进展[J].稀有金属与硬质合金.1995,(9):50-57.
    32. In-Jin Shon, In-Kyoon Jeong, In-Yong Ko, et al. Sintering behavior and mechanical properties of WC-lOCo, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering [J]. Ceramics International,2009, (35): 339-344.
    33.郑锋.铁镍粘结硬质合金[J].粉末冶金工业,1997,7(3):21-23.
    34. E. J. Rees, C. D. A. Brady, G. T. Burstein. Solid-state synthesis of tungsten carbide from tungsten oxide and carbon, and its catalysis by nickel [J]. Materials Letters,2008, (62): 1-3.
    35.谭映国,何平.无钴铁基粘结剂硬质合金的研究第一部分:粘结剂成份与组织结构的关系[J].硬质合金,1998,15(4):193-199.
    36. C. M. Weisbrook, A. D. Krawitz. Thermal residual stress distribution in WC-Ni composites [J]. Materials Science and Engineering:A,1996, (209):318-328.
    37. Bjorn Uhrenius, Henri Pastor, Emmanuel Pauty. On the composition of Fe-Ni-Co-WC-based cemented carbides [J]. International Journal of Refractory Metals & Hard Materials.1997, (15):139-149.
    38. E. G. Grigoriev, A. V. Rosliakov. Electro-discharge compaction of WC-Co and W-Ni-Fe-Co composite materials [J]. Journal of Materials Processing Technology,2007, (191):182-184.
    39.张焱,尤显卿,田四光,等.钢结硬质合金的发展现状[J].热处理,2008,23(1):12-15.
    40. T. Robisch, P. Slagle. Steel-bonded carbides for wear problems [J]. Materials & Design, 1989,10(5):258-261.
    41.王义飞.颗粒增强复合耐磨熔覆层制备及其性能研究[D].合肥:合肥工业大学,2007.
    42.尤显卿.电冶钢结硬质合金热处理的研究[J].铸造技术,2004,25(9):676-678.
    43.张玉勤.碳化钨颗粒增强铁基表面复合材料及其冲蚀磨损性能研究[D].昆明:昆明理工大学,2002.
    44. K. Van Acker, D. Vanhoyweghen, R. Persoons, et al. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings [J]. Wear,2005, (258):194-202.
    45. O. Verezub, G.Kaptay, Z. Kalazi, G. Buza, et al. In-situ synthesis of a carbide reinforced steel matrix surface nanocomposite by laser melt injection technology and subsequent heat treatment [J]. Surface & Coatings Technology,2009,203(20-21):3049-3057.
    46. K. A. Chiang, Y. C. Chen. Microstructural characterization and microscopy analysis of laser cladding Stellite 12 and tungsten carbide [J]. Journal of Materials Processing Technology,2007, (182):227-232.
    47. Chen Haihui, Xu Caiyun, Chen Jun, et al. Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear [J]. Wear,2008, (264): 487-493.
    48. Yang Yongqiang. Microstructure and properties of laser-clad high-temperature wear-resistant alloys [J]. Applied Surface Science,1999, (140):19-23.
    49. Zhou Shengfeng, Huang Yongjun, Zeng Xiaoyan, et al. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding [J]. Materials Science and Engineering:A,2008, (480):564-572.
    50. Yang Yongqiang, H. C. Man. Microstructure evolution of laser clad layers of W-C-Co alloy powders [J]. Surface & Coatings Technology,2000, (132):130-136.
    51. L. C. Lim, Qian Ming, Z. D. Chen. Microstructures of laser-clad nickel-based hardfacing alloys [J]. Surface & Coatings Technology,1998, (106):183-192.
    52. J. Przybylowicz, J. Kusinski. Structure of laser cladded tungsten carbide composite coatings [J]. Journal of Materials Processing Technology,2001, (109):154-160.
    53. Liu Dejian, Li Liqun, Li Fuquan, et al. WCp/Fe metal matrix composites produced by laser melt injection [J]. Surface & Coatings Technology,2008, (202):1771-1777.
    54. Liu Aiguo, Guo Mianhuan, Zhao Minhai, et al. Microstructure and wear resistance of large WC particles reinforced surface metal matrix composites produced by plasma melt injection [J]. Surface & Coatings Technology,2007, (201):7978-7982.
    55.羊建高.梯度结构硬质合金的制备原理及梯度形成机理研究[D].长沙:中南大学,2004.
    56.肖逸锋,贺跃辉,黄自谦,等.梯度结构硬质合金制备技术的研究进展[J].中国钨业,2005,20(3):31-36.
    57.程继贵,王华林,夏永红,等.功能梯度硬质合金和金属陶瓷材料研究的新进展[J].材料导报,2000,14(4):16-18.
    58.冯婷,李惠琪,李敏,等.等离子梯度冶金碳化物高强韧截齿刀头[J],金属热处理,2009,34(12):61-64.
    59.羊建高,王海兵,刘咏,等.碳含量对矿用硬质合金梯度结构形成的影响[J].中国有色金属学报,2004,14(3):424-428.
    60.高荣根,李沐山.梯度结构硬质合金的开发与应用[J].硬质合金,2000,17(2):77-84.
    61. Zhang J., Lee J. H., Won C. W., et al. Synthesis of A12O3-WC composite powder by SHS process [J]. Journal of Materials Science,1999, (34):5211-5214.
    62.缪曙霞,殷声,李建勇,等.自蔓燃高温合成法(SHS)制备碳化钨[J].中国有色金属学报,1994,4(2):79-81.
    63.李李泉,张树格.自蔓燃高温合成法制备WC-Al2O3复合陶瓷材料的研究[J].粉末冶金技术,1995,13(2):88-92.
    64.饶岩岩,张久兴,王澈,等.钨/钴氧化物SPS直接碳化原位合成超细WC-Co硬质合金[J].稀有金属与硬质合金,2006,34(1):18-21.
    65.罗崇玲,易茂中,谭兴龙,等.新型直接碳化法制备超细WC粉及其烧结体的结构与性能[J].粉末冶金技术,2007,25(4):243-250.
    66.张国珍,王澈,刘燕琴,等.氧化钨直接碳化SPS原位合成致密WC块体材料[J].稀有金属材料与工程.2005,34(3):486-488.
    67.孙鹏.纳米碳化钨催化剂的研究[D].武汉:武汉理工大学,2005.
    68.任莹.原位合成碳化钨增强金属陶瓷涂层的基础研究[D].天津:天津大学,2008.
    69. Liu Wenbin, Song Xiaoyan, Wang Kai, et al. A novel rapid route for synthesizing WC-Co bulk by in situ reactions in spark plasma sintering [J]. Materials Science & Engineering:A,2009, (499):476-481.
    70.张久兴,张国珍,张利平,等.氧化钨/碳SPS原位合成WC硬质合金的XPS研究[J].稀有金属材料与工程,2006,35(6):937-940.
    71. Eliria M. J. A. Pallone, Diego R. Martin, Roberto Tomasi, et al. Al2O3-WC synthesis by high-energy reactive milling[J]. Materials Science & Engineering:A,2007, (464):47-51.
    72. M. Sakaki, M. Sh. Bafghi, J. Vahdati Khaki, et al. Control of carbon loss during synthesis of WC powder through ball milling of WO3-C-2A1 mixture [J]. Journal of Alloys & Compounds,2009, (486):486-491.
    73. M. Sakaki, M. Sh. Bafghi, J. Vahdati Khaki, et al. Effect of the aluminum content on the behavior of mechanochemical reactions in the WO3-C-A1 system [J]. Journal of Alloys & Compounds,2009, (480):824-829.
    74. M. Sherif El-Eskandarany. Fabrication and characterization of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation [J]. Journal of Alloys & Compounds,2005, (391):228-235.
    75.李文戈,陈莹莹,伍天华.碳钢表面燃烧合成网络结构Cr3C2-WC陶瓷复合图层的相组成与性能[J].硅酸盐学报,2010,38(8):1468-1472.
    76.刘俊友,许振兴,许振华,等.采用离子注渗技术原位合成纳米级碳化钨颗粒[J].纳米技术与精密工程,2008,6(3):180-184.
    77.付永红,牛立斌,许云华,等.铸渗-原位反应制备WCp/W纤维混杂增强铁基复合材料[J].热加工工艺,2010,39(12):76-79.
    78.牛立斌,许云华,张夏妮,等.高碳铁与金属钨丝原位合成WC的研究[J].热加工工艺,2009,38(2):49-52.
    79.任莹,路学成,赵蓉,等.原位合成碳化钨涂层的基础研究[J].陶瓷,2010,(4):37-40.
    80.刘芳,刘常升,陈岁元,等.铜合金表面激光原位自生W2C增强镍基涂层[J].材料研究学报,2007,21(5):496-500.
    81.缪伟民,鲁玉祥,刘彦霞,等.热机械合金化合成WC-Co硬质合金研究[J].热加工工艺,2007,36(18):14-17.
    82.牛立斌,许云华,武宏,等.电磁场法原位合成WCp/w丝增强铁基复合材料[J].材 料热处理学报,2010,31(5):17-21.
    83.武宏,牛立斌,许云华.通过电磁场法原位合成WC颗粒[J].硅酸盐学报,2010,38(8):1591-1595.
    84. Jiang Guojian, Zhuang Hanrui, Li Wenlan. Simultaneous synthesis and densification of the tungsten carbide-cobalt-nickel composites by electric activated combustion [J]. Journal of Alloys & Compounds,2004, (363):122-125.
    85.江国健,庄汉锐,李文兰,等.场激活燃烧合成碳化钨和碳化钨-钴反应机理[J].硅酸盐学报,2003,31(12):1155-1165.
    86.江国健,庄汉锐,李文兰,等.场激活燃烧合成碳化钨(Ⅰ)-场激活燃烧合成[J].无机材料学报,2004,19(3)605-609.
    87.江国健,庄汉锐,李文兰,等.场激活燃烧合成碳化钨(Ⅱ)-场激活加压燃烧合成[J].无机材料学报,2004,19(4):876-880.
    88.江国健,庄汉锐,李文兰,等.场激活燃烧合成碳化钨-镍硬质合金[J].硅酸盐学报,2003,31(12):1208-1211.
    89. Kenjiro Yamada. Synthesis of tungsten carbide by dynamic shock compression of a tungsten-acetylene black powder mixture [J]. Journal of Alloys & Compounds,2000, (305):253-258.
    90. Hwan-Cheol Kim, In-Jin Shon, Jin-Kook Yoon, et al. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion [J]. International Journal of Refractory Materials & Hard Materials,2006, (24):202-209.
    91.李敏.等离子束表面冶金及原位制备铁基复合材料涂层的研究[D].北京:北京科技大学,2007.
    92.陈颢.等离子束表面冶金机理研究及铁基稀土涂层制备[D].北京:北京科技大学,2007.
    93. Dieter Born, Peter Knauf, Hans-Joachim Retelsdorf. Method of applying wear-resistant layer and consumable electrode for carrying out the method [P]. United States:5004886, 1991-04-02.
    94.黄曼平,尤显卿,宋雪峰,等.电冶熔铸WC/钢复合材料组织及碳化物演变的研究[J].铸造技术,2007,28(8):1053-1058.
    95. A. Antoni-Zdziobek, J. Y. Shen, M. Durand-Charre. About one stable and three metastable eutectic microstituents in the Fe-W-C system [J]. International Journal of Refractory Materials & Hard Materials,2008, (26):372-382.
    96. B. Vamsi Krishna, V. N. Misra, P. S. Mukherjee, et al. Microstruture and properties of flame sprayed tungsten carbide coatings [J]. International Journal of Refractory Materials & Hard Materials,2002, (20):355-374.
    97.常铁军,刘喜军.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,2005.
    98.王静.(Ti, V)C/Fe的原位合成及机械性能研究[D].四川大学,2007.
    99.高跃岗.原位VCp/Fe复合材料中VC生成条件及材料耐蚀耐磨性能研究[D].哈尔滨:哈尔滨理工大学,2006.
    100.陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,1984.
    101. Yu. V. Baikalova, O. I. Lomovsky. Solid state synthesis of tungsten carbide in an inert copper matrix [J]. Journal of Alloys & Compounds,2000, (297):87-91.
    102.梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1994.
    103.叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    104. D. V. Suetin, I. R. Shein, A. L. Ivanovskii. Structure, electronic and magnetic properties of η carbides(Fe3W3C, Fe6W6C, Co3W3C, Co6W6C) from first principles calculations [J]. Physica B,2009,(404):3544-3549.
    105.陈熙.热等离子体传热与流动[M].北京:科学出版社,2009.
    106.格罗斯B著,过增元,傅维标译.等离子体技术[M].北京:北京科学出版社,1984.
    107.过增元,赵文华.电弧和热等离子体[M].北京:清华大学出版社,1986.
    109.刘邦武,李惠琪,张丽民.等离子表面冶金层中气孔形成机理[J].金属热处理,2005,30(2):17-20.
    110.吴树森,柳玉起.材料成形原理[M].北京:机械工业出版社,2008.
    111.方亮,程羽,王雅生主编.材料成型技术基础[M].北京:高等教育出版社,2004.
    112.刘祖武.现代无机合成[M].北京:化学工业出版社,1999.
    113.[日]南绦敏夫等著,乔兴武译.直流电弧炉的电弧现象[M].北京:冶金工业出版社,1998.
    114.耿茂鹏,孙大新.电渣熔铸过程控制与模拟仿真[M].北京:冶金工业出版社,2008.
    115.谢成木,莫畏,李四清.钛近净成形工艺[M].北京:冶金工业出版社,2009.
    116.于旭光,吴咏梅,王铭扬.高速钢电渣重熔自耗电极断头的分析和工艺的改进[J].特殊钢,1995,16(4):37-40.
    117.唐建军,耿茂鹏,饶磊.电渣重熔中电极熔化过程的模拟研究[J].铸造技术,2010,31(8):1062-1065.
    118. Han Bingqiang, Li Nan. Synthesis of Al2O3/WC powder by aluminothermic reduction and carbonization method [J]. Trans. Nonferrous Met. Soc. China,2004,14(2):246-250.
    119.刘建永.反应铸渗法制备Fe-WC表面复合材料的研究[D].武汉:武汉科技大学,2003.
    120. R. V. Sara. J. Am. Ceram. Soc.,1965, (48):251-257.
    121. E. Rudy J. R. Hoffman. Planseeber. Pulvermetall.,1967, (15):174-178.
    122. Marios D. Demetriou, Nasr M. Ghoniem, Adienne S. Lavine. Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten-carbon system [J]. Acta Materialia,2002, (50):1421-1432.
    123.常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002.
    124.闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.
    125. M. Christensen, G. Wahnstrom, S. Lay, et al. Morphology of WC grains in WC-Co alloys:Theoretical determination of grain shape [J]. Acta Materialia,2007, (55): 1515-1521.
    126.何奖爱,王玉玮编著.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001.
    127.李波,蔡建平,陈琦丽.凿岩用硬质合金的磨损行为初探[J].煤矿机械,2000,(3):16-18.
    128.郑曙阳,张正富,李争艳.矿用硬质合金磨损机理研究现状[J].材料导报,2007,21(5A):431-433.
    129.杨瑞林等.矿用截齿磨损失效分析.失效分析案例汇集[C].北京:机械工业出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700